

Americas Headquarters

EMEA Headquarters

Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Using Delphi Prism XE to Develop for
iPhone, iPod Touch and iPad

Brian Long Consultancy & Training Services Ltd

February 2011

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 1 -

EXECUTIVE SUMMARY
The iPhone® is clearly a very successful smart-phone and the ability to develop
applications for iPhones opens up a new sector for developers. Initially, iPhone application
development was only within the reach of Objective-C programmers directly using Apple’s
CocoaTouch framework, but this is no longer the case.

Embarcadero’s Delphi Prism®, in conjunction with Mono® and MonoTouch from Novell®,
provides all you need to develop and debug native applications for deployment to iPhone.
This white paper looks at the process of building iPhone applications with Delphi Prism,
exploring various techniques and common application features.

CONTENT
Executive Summary ... - 1 -

Content ... - 1 -

Introduction .. - 3 -

Getting started .. - 5 -

Installing iOS SDK ... - 5 -

Installing Mono ... - 6 -

Installing MonoDevelop ... - 6 -

Installing Delphi Prism ... - 6 -

Installing MonoTouch SDK .. - 7 -

Before moving on ... - 7 -

Developing Applications With MonoTouch .. - 8 -

Interface Builder and the UI ... - 10 -

Event Handlers For CocoaTouch Actions ... - 15 -

iPhone Simulator ... - 17 -

Text Entry Keyboards .. - 18 -

Using the Documentation .. - 18 -

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 2 -

First Responders ... - 19 -

Event Handlers For MonoTouch Events .. - 20 -

View Controllers ... - 21 -

Using SQLite .. - 22 -

Table View Data Source .. - 24 -

Navigation controllers .. - 26 -

Web browsing with UIWebView ... - 29 -

Location/heading Support With CoreLocation and MapKit .. - 33 -

Device Rotation.. - 40 -

Device Information ... - 42 -

Proximity Sensor and Notifications .. - 46 -

Battery Status and Timers ... - 47 -

iPhone Interaction .. - 48 -

Utility Applications .. - 53 -

SOAP-based Web Services ... - 54 -

Images ... - 62 -

Draggable Controls .. - 63 -

Launch Screens ... - 65 -

Supporting the iPad ... - 67 -

Debugging .. - 70 -

Technical Resources .. - 70 -

Conclusion ... - 71 -

About the Author .. - 72 -

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 3 -

INTRODUCTION
Delphi Prism XE is the latest release of Embarcadero’s development
environment for .NET and cross-platform Mono. It is available as
either a standalone product or as part of Embarcadero RAD Studio
XE. Delphi Prism includes an Object Pascal compiler (the RemObjects
Oxygene compiler) that targets Microsoft’s .NET platform on
Windows® (and the Mac® if you are building Silverlight® applications).
Delphi Prism’s support for .NET constructs is very much up-to-date
with all the current features in the C# language and offers various

extensions to the familiar Delphi implementation of Object Pascal.

When building .NET applications on Windows, Delphi Prism is typically used within Visual
Studio® after installation. If a Visual Studio installation is already present when Delphi Prism
is installed, it integrates with that, else the Visual Studio shell is installed.

As well as targeting Microsoft’s .NET, Delphi Prism also compiles
applications for Novell’s Mono platform (http://www.mono-
project.com), meaning .NET programming skills can progress your
application code base from solely targeting Windows to working
against Linux and Mac OS X as well, on various hardware platforms.
Mono includes and supports various toolkits and libraries to support
the UIs and technologies available on these platforms.

When developing Mono projects you can work within Visual Studio,
as above, or you can work within the dedicated Mono development
environment, MonoDevelop (http://monodevelop.com). Whilst this is
a free and open source tool (originally based on the SharpDevelop
open source editor), you are advised not to download it directly, as
Delphi Prism has been integrated into a specific build (see Installing
MonoDevelop later).

The traditional route to iPhone development involves using Apple development tools on a
Mac. This means programming in Objective-C in Xcode® in combination with UI
development in Interface Builder to build a native iOS1 application that can be tested in

1 Where OS X is the operating system on a Mac, iOS is the operating system on an iPhone, iPod Touch and
iPad, so an iOS device could be an iPhone, an iPad or an iPod Touch. In this paper, use of the term iPhone
typically means any iOS device.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 4 -

the iPhone simulator and then deployed to an iPhone for further testing before optionally
going to Apple’s App StoreSM.

To bypass the learning curve of Objective-C and retain your .NET
programming skills, an alternative path involves building your

application using a .NET language with Mono (still employing the Interface Builder UI step)
and using Novell’s MonoTouch toolkit.

MonoTouch was originally launched in September 2009. It offers several things to facilitate
generating iPhone applications from Mono applications. Firstly it provides the managed
bindings to Apple’s Cocoa Touch® API (CocoaTouch is the touch-oriented version of
Apple’s Cocoa® UI library, as used on the iPhone), sometimes referred to as
CocoaTouch.NET. Secondly it provides a number of C# application templates targeting
iPhones (and iPad® and iPod Touch®). Finally it incorporates an AOT compiler2 that turns
the managed, normally JIT-compiled Mono code into native ARM code, stripping out as
much of the Mono library code that can be identified as never being called (what the
Delphi compiler calls smart linking) and combining the executable and all the dependant
libraries into one single executable.

This AOT compilation and native code generation is necessary as Apple prohibits dynamic
code generation, JIT compilation and shared libraries on iOS devices.

Note: your application starts off as a managed Mono application, with the Mono runtime
environment and all the trimmings. The smart linker will get rid of a lot of redundant code,
but it is fair to say your MonoTouch application will still be noticeably larger than an
equivalent application written directly in Objective-C.

At one point Apple also prohibited any application not built with Apple development
tools (essentially anything other than Objective-C) but fortunately that is all in the past now
and MonoTouch applications are welcomed onto the App Store.

MonoTouch itself offers support for C# applications but Delphi Prism adds in templates to
help kick-start development of various types of applications on the iPhone, iPhone Touch
and iPad.

Note: Delphi Prism can run on Windows within Visual Studio or MonoDevelop, however
MonoTouch (and the Interface Builder tool from Apple’s Xcode suite) requires you to be
working on a Mac.

2 AOT is Ahead Of Time as opposed to JIT or Just In Time

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 5 -

GETTING STARTED
Assuming you have an Apple Mac you will need to install several things to start developing
iPhone applications with Delphi Prism.

INSTALLING IOS SDK
The iPhone SDK (also known as the iOS SDK) is free, but you are required to register
yourself on the site first. Registering involves answering some questions on what markets
and platforms you develop for and then clicking a link in a verification email you'll receive.
You are then taken to the iOS Dev Center and sent another email confirming your Apple
ID.

From this point on, you can get back to the Apple Dev Center at
http://developer.apple.com/iphone, which you will likely want to in order to access the
various reference materials and guides. Of course any programming documentation or
sample code will be in Objective-C, but that needn’t be a complete stumbling block.

On this page, you can download the iOS SDK. The download is listed as Xcode and the
iOS SDK combining two development kits: the Xcode development environment (which
includes Interface Builder) as well as the iOS SDK (versions 3.2.5 and 4.2 respectively, at
the time of writing). The fact that this is a combined download adds some unnecessary
weight to the file if you already have Xcode installed, as it's a 3.5GB download.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 6 -

Note: Whilst the development tools and SDK are free, in order to deploy to a device or to
the App Store you must be enrolled in Apple’s iPhone Developer Program
(http://developer.apple.com/programs/ios), which costs $99 per year. It costs nothing to
run your applications in the iPhone simulator though.

INSTALLING MONO
You can find Mono for OS X at http://mono-project.com/Downloads - the latest stable
version at the time of writing is 2.8.1_3. The installation is, as is to be expected on a Mac,
trivial.

INSTALLING MONODEVELOP
MonoDevelop’s home page is at http://monodevelop.com, however if your goal is to
develop with Delphi Prism then you should ignore this site, as the Delphi Prism download
includes a dedicated copy of MonoDevelop with Delphi Prism integrated into it.

INSTALLING DELPHI PRISM
You can download the Delphi Prism Mac installer from the link at either
https://downloads.embarcadero.com/free/delphi_prism (trial version - you fill in a form
and are sent a registration code) or http://cc.embarcadero.com/reg/delphi_prism (if you
hold a valid license for Delphi Prism XE). In the zip file is the customized MonoDevelop
application, so just copy it to ~/Applications, but don’t launch it just yet!

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 7 -

INSTALLING MONOTOUCH SDK
The next step is to get the MonoTouch SDK from http://monotouch.net/Store.
MonoTouch is a commercial product and you need to buy a license in order to deploy
onto a device, though a trial version will let you run on the iPhone simulator. A single user
license for the professional version currently costs $399 and includes all released updates
for 1 year.

Download and install the trial version, which requires you to supply your email address.

BEFORE MOVING ON
Now it’s time to launch MonoDevelop for the first time. You will be asked to follow a link3
in order to register a serial number (trial or full) along with the registration code (such as
the one you were sent when requesting the trial version). Register and download the
license file, import it into the waiting MonoDevelop 2.4 dialog and it will start up.

Note: when MonoDevelop starts it will check, by default, to see if it is the latest version,
which it won’t be. The Delphi Prism archive contains MonoDevelop 2.4 but the latest
version (at the time of writing) is the bug fix release, version 2.4.1. You can download the
update if you wish (it is a standard .dmg disk image) but it is important to not proceed to
install it over the old version otherwise you will lose the Delphi Prism integration.

Instead, first quit MonoDevelop and rename it from MonoDevelop to MonoDevelop2.
Now you can install the update into your home directory’s Applications subdirectory.
In order to copy the Delphi Prism integration files from the original MonoDevelop to the
updated version you can run a couple of commands in a terminal window:

cd ~/Applications

cp -R MonoDevelop2.app/Contents/MacOS/lib/monodevelop/AddIns/Oxygene

 MonoDevelop.app/Contents/MacOS/lib/monodevelop/AddIns

MonoDevelop is now Prism-enabled and MonoDevelop2 can be deleted (or ignored).

Next, to ensure you have all the latest templates you should follow the instructions at
http://www.remobjects.com/oxygene/prismextras.aspx that show how to have
MonoDevelop pull the updates from the RemObjects MonoDevelop repository.

If you come from a Windows programming background you might have trouble getting
used to some of the keystrokes in the MonoDevelop text editor. If so you should use the

3 The next release of Delphi Prism will use a dialog at this point within MonoDevelop instead of taking you to
a web page.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 8 -

MonoDevelop preferences dialog and remap some of the editor commands to keystrokes
you find more natural.

Also, after a few hours use, sometimes the Solution window in the open source
MonoDevelop environment becomes unresponsive or the editor may throw an exception
causing Code Completion, etc. to stop working. If this happens, just close MonoDevelop
and restart it.

Now at last you’re set, so let’s get started!

DEVELOPING APPLICATIONS WITH MONOTOUCH
For our first foray into iPhone application development, tradition dictates we do a Hello
World program. In MonoDevelop choose File, New, Solution… (or press ⇧⌘N) or press
the Start a New Solution link on the welcome screen. Here you can see the various Delphi
Prism templates available. We’ll start off with a window-based project, since a Hello World
will just have a single screen.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 9 -

This creates a solution4 containing a single project made up of various files.

Info.plist is a property list file used to set various properties of interest to iOS. We’ll ignore
this for now.

The important file is Main.pas; this is where we will be writing code. The simple
Application class contains a class method Main that is the application’s entry point.
AppDelegate is a bit more interesting – it represents a delegate for the underlying
CocoaTouch Application object and can respond to Application events, such as the
FinishedLaunching event that triggers when the app has loaded up and which typically
contains initialization code.

CocoaTouch operates with an MVC model and this delegate model crops up regularly, for
example with event handlers for UI controls.

Talking of UI controls, we need to set up a UI. The MainWindow.xib5 file represents the UI;
when double-clicked it will be opened in Interface Builder, a tool you’ll be spending some
time with as you work with MonoTouch projects.

4 As with Visual Studio a solution is a means of managing potentially multiple projects, much as a Delphi
project group is.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 10 -

Just before looking at Interface Builder I’ll point out the other source file in the project.
MainWindow.xib.designer.pas is an auto-generated file that contains code necessary to
access parts of the UI, referred to as the .xib’s code-behind file. We’ll take a look at it
again presently.

INTERFACE BUILDER AND THE UI
Interface Builder is one of the tools from Apple’s Xcode development tool suite and is
where we build the UI design part of the iOS application. Which solution/project template
you start with dictates the size of the window you get to design, as the resolutions are
different. iPhone and iPod Touch are 320x4806 whereas iPad is 1024x768.

When your .xib file opens in Interface Builder you are presented with four windows, as
illustrated in the screenshot below. We will need to gain familiarity with each of these so
let’s look at them one at a time.

The first one is the Document Window and lists the key items from the .xib file and allows
them to be selected. The important ones to note right now are the App Delegate, which
tallies with the AppDelegate class in the source file from earlier, and also the Window,
which represents your application window (of which you have one in a new window-based
project).

The second one is your application’s window and it is made active if you double-click the
Window item in the Document Window. This window is sized appropriate for your iOS
target device (in this case the window is 320x480). If you look carefully at the screenshot,
you’ll see that at the top of the window is a representation of the iPhone’s status bar. This
window is essentially a form designer, and will reflect our UI as we build it up by adding
controls and views.

5 Originally, Apple UI files were binary and used a .nib extension. When building iOS applications the UI files
are XML and use the .xib extension. It is common for OS X and iOS developers to refer to both .xib and .nib
files simply as nib files.

6 iPhone 4 has a higher resolution screen than iPhone 3 at 640x960. That is an increase in pixel resolution
but, when measured in points, all iPhones offer a 320x480 resolution. This means you only need to design
the UI once and it works on all iPhones.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 11 -

The third window is the Inspector and serves the same purpose as an Object Inspector or
Properties window. It has 4 pages, selectable by the buttons at the top or by menu items.
If you check the Tools menu you’ll see that ⇧⌘I selects the Inspector window, with
whatever tab is currently active. However ⌘1, ⌘2, ⌘3 and ⌘4 select the Attributes
Inspector, Connections Inspector, Size Inspector and Identity Inspector respectively, as the
four buttons also do.

The Attributes Inspector offers up miscellaneous properties and the Size Inspector lets you
play with the size and anchoring (as Delphi would call it) of the selected control. The
Connections Inspector is where we’ll hook up outlets and actions, as we’ll see
momentarily.

The fourth window is the Library. Again, buttons at the top switch its mode. The Objects
button shows all the objects you can add to the window (rather like Delphi’s Component
Palette) and the Classes button lists all the classes available (the Media button is
unimportant for our purposes). In either mode there is a Search box at the bottom of the
window that filters the long lists shown by default.

The UI of this starting app will require two Labels (UILabel controls), a Round Rect Button
(UIButton) and a Text Field (UITextField). To find these input controls in the Library
window ensure the Objects button is selected then use the drop-down control to show
only Inputs & Values (as opposed to the full library of CocoaTouch and custom objects,

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 12 -

which is selected by default). This cuts down the list considerably and so you should be
able to find the controls readily – they are all adjacent in the list. Again, you can also use
the search box to search for the class name or the description (though that resets the drop
down filter to show the whole library once more).

Drag the controls to the form and arrange them as below. You can edit the text in all these
controls either by double-clicking the control, or using the Text or Title attributes, as
appropriate, in the Attributes Inspector (⌘1). If you prefer dark backgrounds, you can also
set the text color for the labels and the background color of the window itself. The window
attributes also let you set the color of the iPhone’s status bar7.

The text field will automatically pop up a keyboard when tapped8, and there are various
attributes we can configure in the Text Input Traits section of the Attributes Inspector. In
this case set it to capitalize words and set the Return Key attribute to Done, which changes
the normal Return button on the keyboard to be a highlighted Done button instead.

7 That setting is described in Interface Builder as a Simulated Interface Element, so shows you what it might
look like, but won’t have an effect at runtime. To finish the job we need to do it in code, and we will.

8 We shall see later that, whilst the keyboard will automatically pop up, it is down to the programmer to
dismiss it.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 13 -

That’s the UI designed, but before leaving Interface Builder we need to cater for the
programming that comes next.

OUTLETS
The code will need to read from the text field and write to the bottom label (and also, just
to prove we can, we’ll be writing to the button as well). In order to access the controls we
need to define the variables that will refer to them, which are not created by default. These
variables are called outlets and are defined in the Library window on the Classes page.

You’ll recall that in this application the App Delegate is where the code will be added, so
we need to add the outlets to this class. To locate the App Delegate on the Classes page
of the Library window, either use the drop-down box, which lists all available classes, and
scroll around till you find it, or scroll up and down the main list on the window, or
alternatively you can use the search box.

When selected you see an uninformative inheritance diagram in the lower half of the
window. Using the drop down box in the center of the window switch to the Outlet view,
where you’ll see one outlet already defined for the window object. Now use the + button
to add in an outlet for each control of interest.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 14 -

The variables are now defined but we haven’t told Interface Builder what they each
represent so we need to connect the outlets to the controls. You do this by selecting the
object that defines the outlets (select the App Delegate in the Document Window) and
then use the Connections Inspector (⌘2). You’ll see all the outlets listed in the
Connections Inspector and the window outlet shows it is connected, unlike our new
outlets.

To connect an outlet to a control you move your mouse over the little circle to the right of
the outlet whereupon it turns into a plus, then you drag from there and drop onto the
control. You can see the label outlet being connected below.

Set the three outlets up and then we can consider what happens with events.

COCOATOUCH ACTIONS AND EVENTS
The CocoaTouch controls available in Interface Builder have various events that can be
responded to, as you’d probably expect. However when using MonoTouch we have a
choice of two ways to set up the event handler. One way requires an outlet to be set up in
Interface Builder and then uses normal .NET-style events in the source code. The second
way matches the traditional Cocoa programming model and revolves around actions and
we’ll look at this approach just now.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 15 -

An action represents a method that gets implemented in your class but is connected to a
control’s event in Interface Builder. You set up an action in Interface Builder in a similar
way to defining an outlet - the Library window allows you to choose an Actions page for a
selected class. We’ll need to add an action to the App Delegate.

Note: these actions are sent around from within the underlying CocoaTouch library (the
event handler method in your code maps onto it) and so have the same rules as when
programming in Objective-C. Since all these events tend to have parameters the
requirement is to ensure the action has a colon as a suffix character, so in this case you
could add an action called myButtonPressed: and that will work out okay. Omitting the
colon won’t cause an error, but the code won’t execute as you would expect.

To hook the action up to an event you can do it in
one of 2 ways. Firstly, you can locate the action in
the Connections Inspector for the App Delegate (it’s
in the Received Actions list) and then drag it to the
relevant control (the button). This will produce a
popup list of all the events (see screenshot to the
left) and the one we probably want is the Touch Up
Inside event, such that it triggers when the user
touches the button and then moves their finger
away.

The other way to hook up the action is to select the
button, so that the Connections Inspector shows all
the available events in a list, and then drag the
required event to the App Delegate on the
Document Window. This produces a popup
containing the list of available actions, in this case
containing just the one item.

Either way, if you make the connection and save the
.xib file (⌘S) then we can switch over to
MonoDevelop and get on with the code-writing side

of things.

EVENT HANDLERS FOR COCOATOUCH ACTIONS
Switching back to MonoDevelop causes the code behind file to be regenerated so let’s
take a look at it now (listed below with some unimportant lines removed for brevity). What
we have here in the code behind file is a partial class definition for the AppDelegate class
that is also partly declared in Main.pas. A MonoTouch attribute has been used to ensure

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 16 -

this Mono class is bound to the Objective-C AppDelegate class down at the CocoaTouch
level.

You can see a declaration for the event handler method myButtonPressed is there, with
another attribute to bind it to the Objective-C action. Note the partial and empty
keywords that allow the declaration to be left here without an implementation. We will
implement the method in Main.pas. The rest of the class consists of the properties that
represent the outlets (along with setters, getters and private variables in the real code)
along with yet more binding attributes.

[MonoTouch.Foundation.Register('AppDelegate')]
AppDelegate = public partial class
Private
 [MonoTouch.Foundation.Export('myButtonPressed:')]
 method myButtonPressed(sender: MonoTouch.UIKit.UIButton); partial; empty;
 [MonoTouch.Foundation.Connect('window')]
 property window: MonoTouch.UIKit.UIWindow
 read get_window write set_window;
 [MonoTouch.Foundation.Connect('myButton')]
 property myButton: MonoTouch.UIKit.UIButton
 read get_myButton write set_myButton;
 [MonoTouch.Foundation.Connect('myLabel')]
 property myLabel: MonoTouch.UIKit.UILabel
 read get_myLabel write set_myLabel;
 [MonoTouch.Foundation.Connect('myTextBox')]
 property myTextBox: MonoTouch.UIKit.UITextField
 read get_myTextBox write set_myTextBox;
end;

Switching over to Main.pas we need to add in the declaration and implementation of the
event handler in this partial class:

type
 AppDelegate = public class
 ...
 private
 method myButtonPressed(sender: MonoTouch.UIKit.UIButton); partial;
 end;

method AppDelegate.myButtonPressed(sender: MonoTouch.UIKit.UIButton);
begin
 myLabel.Text := 'Hello world! Erm, I mean Hello ' + myTextBox.Text + '!';
end;

Straightforwardly the code looks like regular Delphi code. You can check the project builds
using the options on the Build menu (also ⌘K builds the active project in the solution
while ⌘B builds all projects in the solution).

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 17 -

IPHONE SIMULATOR
Now is the time to test the application. You can run the application
from MonoDevelop with the Run menu or ⌥⌘↩ (that’s Option-
Command-Enter, or Alt-Apple-Enter for those new to the Mac
keyboard) and it will be launched in the iPhone Simulator. You can
interact with the application using the mouse instead of your finger.
If you were implementing multi-touch you can mimic two finger
touches by holding down the Option (Alt) key.

Note: The iPhone Simulator is a simulator, not an emulator. As a
consequence you are running regular Intel code, not ARM code, and
for this and various other reasons the performance and behavior of
your application may be very different than when deployed on a real
device.

When you tap the text field a keyboard obligingly pops up with a highlighted button
inviting you to press Done when you have entered your name. Unfortunately nothing yet
happens when you press it – that’s something we have to take responsibility for. However
the Touch me button works fine.

We should add in some initialization code to blank out the greeting label on startup (or
clear it in Interface Builder. We’ll also alter the caption of the button (just add a character
on the end) and deal with this keyboard. All this code is going in the overridden
FinishedLaunching method. The call to window.MakeKeyAndVisible() is where
the screen is told to display so the startup code will be placed just before that. Clearing
the label is trivial but the button caption (or title) is a little more obscure. It turns out that
you need to get the current ‘normal state’ title and then separately set an updated ‘normal
state’ title.

myLabel.Text := '';
myButton.SetTitle(myButton.Title(UIControlState.Normal) + '!',
 UIControlState.Normal);

Sometimes you need to browse through the Code Completion window to see which
methods or properties are available. Sometimes you need to trawl through the
MonoTouch documentation (a pretty good work in progress at
http://monotouch.net/Documentation). Sometimes you need to go back to the real
documentation for CocoaTouch on the Apple web site
(http://developer.apple.com/library/ios). The syntax will look a little odd at times, but it’s
all about methods, properties and so on, so acting as a reference it’s still invaluable when
required.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 18 -

One thing before moving on; if you tried to set the iPhone status bar to be opaque black
in Interface Builder you will have noticed that the simulator ignored that setting (for no
good reason), unlike the screenshot above. This can be overcome by setting it in code
instead. In the same FinishedLaunching method add this code in towards the top:

UIApplication.SharedApplication.StatusBarStyle := UIStatusBarStyle.BlackOpaque;

Note: UIApplication.SharedApplication is how you access the underlying
Application object from anywhere in your code.

TEXT ENTRY KEYBOARDS
As mentioned we need to tell the text field to close the keyboard when we decide it is
necessary. But how do we find out how to deal with this? Well, just searching the Internet
is a good start as there is quite a large amount of information on common problems that
stump MonoTouch programmers and of course even more for CocoaTouch programmers.
But let’s walk through a search of the documentation for how to find the answer and for
the sake of it we’ll start with Apple’s reference site.

USING THE DOCUMENTATION
At http://developer.apple.com/library/ios you will find a list of all the iOS frameworks
(CocoaTouch is an umbrella term for a few of them). The class we are looking at is
UITextField and the prefix letters tell us it is part of the UIKit framework, so clicking on
UIKit gives a whole list of potential reference topics to choose from including UITextField
Class Reference. Clicking on that gives a big, detailed reference page, but in the Overview
section it says:

“A text field object supports the use of a delegate object to handle editing-related notifications.
You can use this delegate to customize the editing behavior of the control and provide guidance
for when certain actions should occur. For more information on the methods supported by the
delegate, see the UITextFieldDelegate protocol.”

We’ll need to follow the link as we are looking for an editing-related thing that we want to
customize. Typically the MonoTouch layer will merge this type of optional delegate object
functionality into the main object in question, so the methods of UITextFieldDelegate
will be implemented in MonoTouch’s UITextField object as delegate properties to save
you the chore of building a delegate class to customize the text field object. However, the
delegate class is still available as an option if you want to use a separate delegate object.

The UITextFieldDelegate page describes the methods (or messages as they are
called in Objective-C) supported by the delegate. If you browse the information you’ll see
the message textFieldShouldreturn: is the one.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 19 -

Now let’s have a look at the MonoTouch version of this. At http://www.go-mono.com/docs
start expanding the reference tree along this node path: MonoTouch Framework,
MonoTouch.UIKit, UITextFieldDelegate Class, Methods. Of the methods listed the one we
need is called ShouldReturn – as you see, MonoTouch also simplifies some member
names. Select this method and the page tells you that the method signature is a function
that takes a UITextField and returns a Boolean indicating if the keyboard should do its
default behavior when Return (or Done) is pressed.

So this shows the Apple and MonoTouch documentation of the same delegate object
property, but as mentioned MonoTouch absorbs the delegate object into the text field.
Check the help for the UITextField Class and you’ll find a ShouldReturn property that
can reference a method and this is what we’ll use.

The help indicates that we can assign a regular method to this property (with the right
signature), but it also says an anonymous method can be used. Anonymous methods are
convenient as they save a bit of typing. If the functionality is not excessive and not
required elsewhere an anonymous method is a sensible option. We can also potentially
reduce typing a little further by using a lambda, but before worrying about what that is
let’s consider what the ShouldReturn functionality needs to in order to dismiss the
keyboard.

FIRST RESPONDERS
The closest iOS equivalent to a focused control that receives input in Windows is a first
responder. When you tap the text field it becomes first responder and displays the
keyboard. Dismissing the keyboard is simply a matter of dropping this first responder
state.

myTextBox.ShouldReturn := method(textField: UITextField): Boolean

 begin Result := textField.ResignFirstResponder end;

ResignFirstResponder returns True if its first responder status was lost and so this
value is returned from the anonymous method, meaning the text field should process the
press of Return. The anonymous method above could be laid out to look more like a
traditional method implementation, but there is no real need or benefit. It can also be
compressed a little and turned into a lambda:

myTextBox.ShouldReturn := (textField) ->

 begin Result := textField.ResignFirstResponder end;

The body of the lambda contains a statement so the begin/end pair is required. However
if the body is an expression whose type is the same as the target function return type we
can simplify even further.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 20 -

myTextBox.ShouldReturn := (textField) -> textField.ResignFirstResponder;

All three options are identical in meaning, although you’ll notice that explicit parameter
type information was removed in the lambda – the compiler is able to work this out
through the type of the delegate property on the left hand side.

EVENT HANDLERS FOR MONOTOUCH EVENTS
Just before re-launching the application in the simulator to check it works let’s add in
another event handler. You may recall from earlier that there were 2 ways of setting up
event handlers for UI controls and we looked at the approach that used actions. We’ll add
another event handler onto the same Touch me button, but this time solely in code, just
using the event of the text field object.

method AppDelegate.InfoAlert(Msg: String);
begin
 using av := new UIAlertView('Info', Msg, nil, 'OK', nil) do
 av.Show
end;
...
 myButton.TouchUpInside +=
 method begin InfoAlert('Hello ' + myTextBox.Text) end;

So event handlers (which, of course, are multi-casting in .NET and Mono) can be added
using the += operator in conjunction with a method, anonymous or otherwise. This event
handler pops up an alert (the closest equivalent of a message box) via a UIAlertView
object.

Note: the using statement, like C#’s, is an abbreviated way of ensuring that Dispose is
called, to free up the Objective-C resources when we know we are done with them. The
above method is exactly the same as this slightly longer version.

method AppDelegate.InfoAlert(Msg: String);
begin
 with av := new UIAlertView('Info', Msg, nil, 'OK', nil) do
 try
 av.Show
 finally
 av.Dispose
 end
end;

Note: Objective-C typically requires explicit memory management, much like regular
Delphi Win32 programming. Mono and .NET, however, have a garbage collector (GC) and
so tidy up after you. You can merrily create your objects and leave them for the GC to
collect when it gets round to it, but if you want to be more responsible with the limited

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 21 -

memory on the device you can call the Dispose method on any objects you know are no
longer required. This will cause the underlying Objective-C object to be released.

If you test the application, it now behaves more as expected. The keyboard’s Done button
operates and the button now does 2 things (updates the label and pops up an alert).
Interestingly, pressing the button does not dismiss the keyboard, as the text box remains
the first responder. You can ‘fix’ this by adding this condition into one of the button’s
event handlers

if myTextBox.IsFirstResponder then
 myTextBox.ResignFirstResponder;

VIEW CONTROLLERS
The simple application above has all the functionality in the App Delegate, which purists
might suggest is best left to act as a delegate for the CocoaTouch Application object.
Typical applications are more likely to use one or more view controllers
(UIViewController or a descendant) as delegates for views on the various windows in
the application. You get a view controller in the application if you start with the iPhone
Navigation-based Project template or iPhone Utility Project template in MonoDevelop.
Let’s make a new Navigation-based project.

The project we get from this template has a window and an App Delegate as before, but
importantly also has a Navigation Controller, which works with a Navigation Bar. The idea
of this is to support the common workflow in an application of going from one screen to
another, and then maybe to another, etc., and being able to readily navigate back to any
of those earlier screens. iPhones facilitate this using a Navigation Bar under the control of
a Navigation Controller. The Navigation Bar reflects which screen you are on, where each
of the navigable screens is actually a UIView descendant.

Note: when you double-click MainWindow.xib there are potentially two UI windows
opened up by Interface Builder, as the .xib file defines both the main window, which is
completely blank, and also the Navigation Controller, which has the Navigation bar etc.
on. You can readily open up whichever one you choose using the Document Window.

The template sets us up a UITableView as a starting view with a corresponding
UITableViewController, suitable for showing a very customizable list in a manner
iPhone users will be very familiar with. As items are selected in the table (or list) the
application has the option to navigate to other pages.

When you look at the two .xib files in Interface Builder you see the blue Navigation Bar at
the top of the main window (you can give it some text by double-clicking it) as well as an

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 22 -

indication that the rest of the window content comes from RootViewController.xib. This
latter .xib file just contains a Table View, which is shown populated with sample data.

We’ll see how this UITableView works by displaying some information from an SQLite
database. The coding will take place in the source file that is associated with the Table
View .xib: RootViewController.xib.pas (not to be confused with the code behind file,
RootViewController.xib.designer.pas).

USING SQLITE
Before worrying about the table, we’ll get some code in place to create a database, a
table and some sample data when the main Table View is loaded. To keep things tidy we’ll
also delete the database when it unloads, though clearly a real application may need to
keep its database around between invocations. The contents of the database table will be
read from the database and stored in a strongly typed list. Again, consideration should be
given to memory requirements in a real application; in this sample there will only be a
handful of records.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 23 -

Since the list is to be strongly typed we’ll need a type to represent the data being read:

Customer = public class
public
 constructor;
 property CustID: Integer;
 property FirstName: String;
 property LastName: String;
 property Town: String;

end;

The ViewDidLoad and ViewDidUnload overridden methods are already present in the
template project so here’s the extra code that uses standard ADO.NET techniques with
the Mono SQLite database types:

uses
 ...
 System.Collections.Generic,
 System.Data,
 System.IO,
 Mono.Data.Sqlite;
...
 connection: SqliteConnection;
 dbPath: String;
 customerList: List<Customer>;
...
method RootViewController.ViewDidLoad;
const
 TblColDefs = ' Customers (CustID INTEGER NOT NULL, FirstName ntext,
 LastName ntext, Town ntext)';
 TblCols = ' Customers (CustID, FirstName, LastName, Town) ';
begin
 inherited ViewDidLoad();

 //Create the DB and insert some rows
 var documents := Environment.GetFolderPath(
 Environment.SpecialFolder.Personal);
 dbPath := Path.Combine(documents, 'NavTestDB.db3');
 var dbExists := File.Exists(dbPath);
 if not dbExists then SqliteConnection.CreateFile(dbPath);
 connection := new SqliteConnection('Data Source=' + dbPath);
 try
 connection.Open;
 using cmd := connection.CreateCommand() do
 begin
 cmd.CommandType := CommandType.Text;
 if not dbExists then
 begin
 var statements: array of String := [
 "CREATE TABLE" + TblColDefs,
 "INSERT INTO" + TblCols +
 "VALUES (1, 'John', 'Smith', 'Manchester')",
 ...
];
 for statement in statements do
 begin

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 24 -

 cmd.CommandText := statement;
 cmd.ExecuteNonQuery;
 end;
 end;
 customerList := new List<Customer>;
 cmd.CommandText := 'SELECT CustID, FirstName, LastName, Town ‘ +
 ‘FROM Customers ORDER BY LastName';
 using reader := cmd.ExecuteReader do
 begin
 //read customers from DB into customerList
 while reader.Read do
 begin
 var cust := new Customer;
 cust.CustID := Convert.ToInt32(reader['CustID']);
 cust.FirstName := String(reader['FirstName']);
 cust.LastName := String(reader['LastName']);
 cust.Town := String(reader['Town']);
 customerList.Add(cust);
 end
 end
 end
 finally
 connection.Close
 end;
 self.TableView.Source := new CustomerDataSource(self)
end;

method RootViewController.ViewDidUnload;
begin
 //Delete the sample DB. Pointlessly kill table in the DB first.
 using cmd := connection.CreateCommand() do
 begin
 cmd.CommandText := "DROP TABLE IF EXISTS Customers";
 cmd.CommandType := CommandType.Text;
 connection.Open;
 cmd.ExecuteNonQuery;
 connection.Close;
 end;
 File.Delete(dbPath);
 inherited ViewDidUnload()
end;

TABLE VIEW DATA SOURCE
After all that code that’s the Table View itself done. The remaining work is done in the
Table View’s CustomerDataSource class, a descendant of UITableViewsource. You’ll
notice a CustomerDataSource object being set up at the end of the template code in
ViewDidLoad. The data source class is set up in the template as a nested class defined
within the Table View with a number of its virtual methods already overridden for you.

Tables can be split into multiple sections, each (optionally) with its own header. Our
customer list will not need additional sections so NumberOfSections should return 1. To
tell the Table View how many rows should be displayed in this single section,
RowsInSection should return controller.customerList.Count (controller is

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 25 -

set in the constructor, giving access to the view controller). To give the section a header
you need to override the method TitleForHeader.

Overriding virtual methods is easy in MonoDevelop; start typing the declaration in the
public section of the data source class. Once you’ve typed in method and the first couple
of characters of the method name press Ctrl+Space and Code Completion will let you
select the method and fill in the declaration. You’ll have to enter the implementation
yourself though. Have it return the string Customers.

To populate the cells we use the GetCell method, whose parameters are the Table View
and the cell’s index path (the section number and row number within the section given by
the Section and Row properties). The first thing to note about the code below is the
innate support for virtual lists through reusable cells. If you wanted to display a very long
list it may not be practical to create a UITableViewCell for every item due to the
memory usage required. Instead you can take advantage of the Table View offering any
cell that is scrolled off-screen as reusable. You can have various categories of reusable
cells by simply using different cell identifiers.

method RootViewController.CustomerDataSource.GetCell(tableView: UITableView;
 indexPath: MonoTouch.Foundation.NSIndexPath): UITableViewCell;
begin
 var cellId: System.String := 'Cell';
 var cell := tableView.DequeueReusableCell(cellId);
 if cell = nil then
 begin
 cell := new UITableViewCell(UITableViewCellStyle.Subtitle, cellId);
 // Add in a detail disclosure icon to each cell
 cell.Accessory := UITableViewCellAccessory.DetailDisclosureButton;
 end;
 // Configure the cell.
 with cust := controller.customerList[indexPath.Row] do
 begin
 cell.TextLabel.Text :=
 String.Format('{0} {1}', cust.FirstName, cust.LastName);
 cell.DetailTextLabel.Text := cust.Town;
 end;
 exit cell
end;

This code creates cells that permit a text value and an additional smaller piece of text (a
subtitle). These are accessed through the TextLabel and DetailTextLabel properties
respectively.

During the cell setup a detail disclosure button is also added in. This adds in a little arrow
in a circle on the right side of each cell. This then gives us two possible actions from the
user: they can tap the row in general, which triggers RowSelected, or tap the disclosure
button, which triggers AccessoryButtonTapped. Often, RowSelected is used take
you to another screen, so in this case we will leave RowSelected doing nothing and just

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 26 -

support the disclosure button, which issue’s an alert displaying some information about
the selected customer.

method RootViewController.CustomerDataSource.AccessoryButtonTapped(
 tableView: UITableView; indexPath: NSIndexPath);
begin
 var cust := controller.customerList[indexPath.Row];
 InfoAlert(string.Format ("{0} {1} has ID {2}",
 cust.FirstName, cust.LastName, cust.CustID))
end;

All of which gives us this application:

NAVIGATION CONTROLLERS
Let’s start another iPhone Navigation-based project. This time we’ll focus more on the
navigation support than the table support; the table view will simply act as a menu for
some other pages. The menu will contain three items and, just to show how menu items
can be grouped, we’ll have some sections in the list/menu. In this case each item will be in

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 27 -

its own section, so three sections, but it is down to your application how you apportion list
items within the sections.

Make the NumberOfSections method return 3 and RowsInSection return 1 and then
add in a TitleForHeader method as above by using Code Completion in the public
part of the class declaration (type in method Ti and press Ctrl+Space). This should be
implemented thus:

method RootViewController.DataSource.TitleForHeader(tableView: UITableView;
 section: Int32): String;
begin
 case section of
 0: exit 'UIKit example';
 1: exit 'CoreLocation & MapKit example';
 2: exit 'Device information example';
 end;
end;

The different sections of the menu offer different types of choices exemplifying different
parts of the CocoaTouch library. To populate the table cells (or menu items) we need to
add code to GetCell as before. This time, though, we know we will only have a small
number of cells in the list and so the reusable cell facility described earlier is not required:

method RootViewController.DataSource.GetCell(tableView: UITableView; indexPath:
MonoTouch.Foundation.NSIndexPath): UITableViewCell;
begin
 var cell := new UITableViewCell(UITableViewCellStyle.Default, '');
 if (indexPath.Section = 0) and (indexPath.Row = 0) then
 cell.TextLabel.Text := 'Web browser';
 if (indexPath.Section = 1) and (indexPath.Row = 0) then
 cell.TextLabel.Text := 'GPS information';
 if (indexPath.Section = 2) and (indexPath.Row = 0) then
 cell.TextLabel.Text := 'Device information';
 exit cell
end;

To give us somewhere to implement these examples we require 3 additional pages. You
can add a new file to the solution’s active project either using File, New, File from the main
menu (or ⌘N) or by right-clicking your project in the Solution window and choose Add,
New File... Either way, click on iPhone and iPad in the dialog that pops up and choose
iPhone View with Controller. The first one should be called BrowserPage, then do the
same and add GPSPage and finally add a last page called InfoPage.

Each of these new files contains a UIViewController descendant named as you
specified the file should be named. When you choose an item from the table view we’ll
launch one of these new views so before leaving RootViewController.xib.pas we should fill
in the RowSelected method.

method RootViewController.DataSource.RowSelected(tableView: UITableView;
 indexPath: MonoTouch.Foundation.NSIndexPath);

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 28 -

begin
 if (indexPath.Section = 0) and (indexPath.Row = 0) then
 controller.NavigationController.PushViewController(
 new BrowserPage(), true);
 if (indexPath.Section = 1) and (indexPath.Row = 0) then
 controller.NavigationController.PushViewController(new GPSPage(), true);
 if (indexPath.Section = 2) and (indexPath.Row = 0) then
 controller.NavigationController.PushViewController(new InfoPage(), true);
end;

As you can see, the navigation controller can have a new view controller pushed onto its
stack of view controllers. This new view controller’s view is displayed and the navigation
bar will contain a button that takes you back to the previous page making return
navigation straightforward.

Finally, to edit the Navigation Bar’s text, double-click MainWindow.xib, ensure you can see
the Navigation Controller (double-click it in the Document Window if need be) and then
you can edit the Navigation Bar text by double-clicking it. Add in any text; the sample
project simply says: Brian’s Stuff.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 29 -

Note: back in the example program that used SQLite we put setup and teardown code in
ViewDidLoad and ViewDidUnload respectively. This was fine as there was just the one
view that was loaded into memory as the application started and unloaded whenever the
view is removed from memory, such as when the application exits or when memory gets
low. In this application there is a menu view and then three secondary views, each of which
may require setup and teardown code. Certainly when each view is first opened the
ViewDidLoad code will execute but when you navigate back to the menu
ViewDidUnload will not execute. Similarly when you go back to the same secondary view
ViewDidLoad will not execute again as it will still be loaded in memory.

It is important to decide whether the teardown code is important to execute as soon as
the view is no longer visible (for performance reasons, for example) or whether it is okay to
leave it until the view is eventually removed from memory. This will dictate whether you
should continue to use the ViewDidLoad/ViewDidUnload methods or maybe switch to
the ViewDidAppear/ViewDidDisappear methods.

WEB BROWSING WITH UIWEBVIEW
Let’s get the web browser page under way. The ingredients for this include a Navigation
Bar (UINavigationBar) with a Bar Button Item (UIBarButtonitem) placed on it, both
found in the Windows, Views and Bars subset of Objects on the Library window. We also
need two Round Rect Buttons (UIButton), a Text Field (UITextField) and a Web View
(UIWebView), the last of which is in the Data Views subset of Objects. They can be laid out
according to the Interface Builder screenshot below, which is followed by an image of the
target application page running (remember that the top navigation bar there comes from
the main window). The Navigation Bar button can have its image selected by its Identifier
attribute.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 30 -

Outlets will need to be set up for some of these controls so we can access them at
runtime. In the case of a page based on a UIViewController you’ll see the controls you
add to the page under the View in the Document Window. The outlets need to be added
to the BrowserPage object, which can be selected on the Document Window as File’s
Owner. The screenshot below shows the names of the five new outlets. It should be
mentioned that the button outlets are only being added so event handlers can be set up
using anonymous method syntax instead of setting up actions in Interface Builder, which
would necessitate implementing the action method to house the event handler code.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 31 -

The idea of the UI controls is for the left and right arrow to be Back and Forward history
navigation buttons, and for the Button on the lower Navigation Bar to refresh the current
page. The Text Field is meant to be the same as a browser address bar, so use the
Attributes Inspector to set the Keyboard attribute to URL and the Return Key attribute to
Go.

Notice on the top Navigation Bar (in the running app) there is a button to take you back to
the main page.

The implementation of this page is fairly simply. When the view loads the various UI
controls need initializing and a default web page is loaded:

method BrowserPage.ViewDidLoad;
begin
 inherited;
 InitButtonsAndTextField;
 InitBrowser;
 //Load a default page
 LoadPage("flickr.com");
end;

Helper functions are used for all these jobs. The initialization functions set up events for
the controls. The Buttons are trivial; they simply call corresponding methods in the

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 32 -

UIWebView. The Text Field ShouldReturn property ensures the keyboard will close
when Go is pressed, as we’ve seen before, but also then loads the URL that was entered
into the field.

method BrowserPage.Alert(Caption, Msg: String);
begin
 using av := new UIAlertView(Caption, Msg, nil, 'OK', nil) do
 av.Show;
end;

method BrowserPage.InitButtonsAndTextField;
begin
 backButton.TouchUpInside += method begin webBrowser.GoBack end;
 fwdButton.TouchUpInside += method begin webBrowser.GoForward end;
 refreshButton.Clicked += method begin webbrowser.Reload end;
 urlField.ShouldReturn := textField -> begin
 Result := textField.ResignFirstResponder; //Hide keyboard
 LoadPage(textField.Text.ToString);
 end;
end;

method BrowserPage.InitBrowser;
begin
 webbrowser.LoadStarted += method
 begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := true
 end;
 webbrowser.LoadFinished += method
 begin
 urlField.Text := webBrowser.Request.Url.AbsoluteString;
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := false
 end;
 webbrowser.LoadError += method(sender: Object; e: UIWebErrorArgs)
 begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := false;
 Alert('Browser error', 'Web page failed to load: ' + e.Error.ToString());
 end;
end;

The web browser control also has event handlers set up, with the main purpose of
activating and deactivating the network activity indicator on the iPhone status bar, which
oddly is not an automatic response to network activity, and also that reports any
navigation errors in an alert. Additionally, when a web request has finished loading a page
it may ultimately resolve to a different URL than was requested. This is very common on
mobile devices as pages redirect to a mobile-specific version. The LoadFinished event
handler reflects the final URL back to the Text Field.

The remaining method is LoadPage, which ensures the required http:// prefix is present in
the URL and then builds an NSUrlRequest from an NSUrl and passes it to the
UIWebView’s LoadRequest method.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 33 -

method BrowserPage.LoadPage(url: String);
begin
 if url <> '' then
 begin
 if not url.StartsWith('http') then
 url := string.Format('http://{0}', url);
 webbrowser.LoadRequest(new NSUrlRequest(new NSUrl(url)));
 end;
 //Show the URL that was requested
 urlField.Text := url;
end;

And there we have the fully working web browser shown earlier that defaults to displaying
http://flickr.com (which is then redirected to the mobile version of Flickr).

LOCATION/HEADING SUPPORT WITH CORELOCATION AND
MAPKIT
One of the very neat features of the iPhone and other current smartphones is the in-built
GPS and compass support. There are many handy applications that can chart your
progress during running or cycling, or just record your travelled route, built using this
capability.

Basic GPS/compass support is offered through the CoreLocation API and a location-aware
map control is found in the MapKit: the MKMapView9. The GPSPage view in this sample
application will use CoreLocation and an MKMapView to show the current location,
heading, altitude and speed. To build the UI in Interface Builder you need to lay down 16
labels with text on as shown in the screenshot below and a Map View. All the labels that
say N/A, as well as the Map View, should be connected to outlets defined in GPSPage as
per the Connections Inspector in the screenshot.

Next we start on the code.

9 The MKMapView control uses Google’s services to do its work and by using it you acknowledge that you
are bound by their terms, available online at: http://code.google.com/apis/maps/iphone/terms.html

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 34 -

The starting point for location-based functionality is the CLLocationManager class so
declare a variable locationManager of this type in your GPSPage class. This object
offers us GPS-based information about the location (position, course, speed and altitude
from the GPS hardware10) and the compass-based heading (the direction the device is
pointing). The GPS-dependant information will be of varying accuracy, as is the nature of
GPS data (you will be locked onto a varying number of satellites).

The location manager offers callback facilities that triggers as the heading and location
changes, allowing your journey to be tracked. Depending on the type of application you
build you can control how accurate you would like the data to be and you can also control
how often your application will be notified of heading and/or location changes. If you
weren’t required to track a detailed route, then being notified for every single location
change would be excessive. It may be more appropriate to be notified when the location
changes by 50 meters, say. Requiring less accuracy and being notified less often is helpful
in the context of battery usage.

10 If GPS signal or hardware is not available the device will provide coarse-grained location information
based on cell phone towers or your WiFi hotspot

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 35 -

This callback mechanism is implemented in CoreLocation using the common approach of
supporting a delegate object (inherited from type CLLocationManagerDelegate),
which has methods to override for location and heading changes. You create an instance
of such a class and assign it to the location manager’s Delegate property. An example
delegate class might look like the following code (notice that the main view, GPSPage, is
passed into the constructor and is to be stored in the Page variable, so it can access
controls on the view:

CoreLocationManagerDelegate nested in GPSPage =
 class(CLLocationManagerDelegate)
private
 Page: GPSPage;
public
 constructor (page: GPSPage);
 method UpdatedHeading(manager: CLLocationManager;
 newHeading: CLHeading); override;
 method UpdatedLocation(manager: CLLocationManager;
 newLocation, oldLocation: CLLocation); override;
end;

As we have seen before, the MonoTouch approach is to absorb such delegate objects and
their optional methods and expose them as events in the main object. So the location
manager actually has properties called UpdatedHeading and UpdatedLocation. In this
code, we’ll use those instead.

The signatures of these methods fit in with the standard .NET event signature:

method UpdatedHeading(sender: Object; args: CLHeadingUpdatedEventArgs);
method UpdatedLocation(sender: Object; args: CLLocationUpdatedEventArgs);

where sender refers to the location manager and the args parameters contains
properties matching the remaining parameters that are sent to the matching delegate
object method.

In GPSPage.ViewDidAppear we’ll initialize the location manager:

locationManager := new CLLocationManager();
locationManager.DesiredAccuracy := -1; //Be as accurate as possible
locationManager.DistanceFilter := 50; //Update when we have moved 50 m
locationManager.HeadingFilter := 1; //Update when heading changes 1 degree
locationManager.UpdatedHeading += UpdatedHeading;
locationManager.UpdatedLocation += UpdatedLocation;
locationManager.StartUpdatingLocation();
locationManager.StartUpdatingHeading();

You should also clean up in ViewDidDisappear:

locationManager.StopUpdatingHeading();
locationManager.StopUpdatingLocation();
locationManager.Dispose;

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 36 -

locationManager := nil;

Note: the setup/teardown code in this page is done in ViewDidAppear and
ViewDidDisappear (as opposed to ViewDidLoad and ViewDidUnload) to avoid the
GPS hardware continuing to report information to the view when you have navigated back
to the menu.

We’ll need to look at the event handlers referenced here, but first we should also initialize
the Map View. Above the location manager initialization code in the ViewDidAppear
method we need this:

MapView.WillStartLoadingMap += method
begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := true
end;
MapView.MapLoaded += method
begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := false
end;
MapView.LoadingMapFailed += method
begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := false;
end;
MapView.MapType := MKMapType.Hybrid;
MapView.ShowsUserLocation := True;
//Set up the text attributes for the user location annotation callout
MapView.UserLocation.Title := 'You are here';
MapView.UserLocation.Subtitle := 'YA RLY!';

You can see we have Map View events that mirror the UIWebView events and do a similar
job (though this time we simply ignore any errors). The MapType and
ShowsUserLocation properties could actually have been set in Interface Builder in the
Attributes Inspector but instead are set in code. MapType allows you to make the usual
display choice that maps such as Google or Bing offer: standard (map), satellite, or hybrid
(satellite plus road markings). ShowUserLocation controls whether the map will display
the user’s location (using an annotation), assuming it can be determined. The final
property being set, UserLocation, customizes this map annotation. When clicked on,
the annotation can produce a callout displaying extra information consisting of a title and
subtitle, and that’s what we are setting here.

Now back to the callback events. The heading change callback is short and simple, since
there are only two new heading values offered. The NewHeading object inside args has
TrueHeading (heading relative to true north) and MagHeading (heading relative to
magnetic north) properties. It also offers HeadingAccuracy that indicates how many
degrees, one way or the other, the heading values might be. If this accuracy value is
negative, then heading information could not be acquired, as is the case in the iPhone
Simulator. The Simulator has some GPS functionality, but no emulated compass.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 37 -

method GPSPage.UpdatedHeading(sender: Object;
 args: CLHeadingUpdatedEventArgs);
begin
 if args.newHeading.HeadingAccuracy >= 0 then
 begin
 MagHeadingLabel.Text := string.Format('{0:F1}° ± {1:F1}°',
 args.NewHeading.MagneticHeading, args.NewHeading.HeadingAccuracy);
 TrueHeadingLabel.Text := string.Format('{0:F1}° ± {1:F1}°',
 args.NewHeading.TrueHeading, args.NewHeading.HeadingAccuracy);
 end
 else
 begin
 MagHeadingLabel.Text := 'N/A';
 TrueHeadingLabel.Text := 'N/A';
 end
end;

The location change callback is a little longer, but only because there are more values
available from the GPS hardware. This time args has both a NewLocation and an
OldLocation CLLocation object, so you could work out the distance travelled between
the two (CLLocation offers a DistanceFrom method) if you chose:

method GPSPage.UpdatedLocation(sender: Object; args:
CLLocationUpdatedEventArgs);
const
 LatitudeDelta = 0.002; //no. of degrees to show in the map
 LongitudeDelta = LatitudeDelta;
begin
 var PosAccuracy:= args.NewLocation.HorizontalAccuracy;
 if PosAccuracy >= 0 then
 begin
 var Coord := args.NewLocation.Coordinate;
 //In simulator, MapKit's user location is fixed on Apple's HQ but
 //CoreLocation will happily detect current location via network
 //(contrary to Apple docs)
 LatitudeLabel.Text := string.Format(
 '{0:F6}° ± {1} m', Coord.Latitude, PosAccuracy);
 LongitudeLabel.Text := string.Format(
 '{0:F6}° ± {1} m', Coord.Longitude, PosAccuracy);
 if Coord.IsValid then
 begin
 var region: MKCoordinateRegion := new MKCoordinateRegion(
 Coord, new MKCoordinateSpan(LatitudeDelta, LongitudeDelta));
 MapView.SetRegion(region, False);
 MapView.SetCenterCoordinate(Coord, False);
 MapView.SelectAnnotation(MapView.UserLocation, False);
 end;
 end
 else
 begin
 LatitudeLabel.Text := 'N/A';
 LongitudeLabel.Text := 'N/A';
 end;
 if args.NewLocation.VerticalAccuracy >= 0 then
 AltitudeLabel.Text := string.Format(
 '{0:F6} m ± {1} m', args.NewLocation.Altitude,
 args.NewLocation.VerticalAccuracy)

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 38 -

 else
 AltitudeLabel.Text := 'N/A';
 if args.NewLocation.Course >= 0 then
 CourseLabel.Text := string.Format('{0}°', args.NewLocation.Course)
 else
 CourseLabel.Text := 'N/A';
 SpeedLabel.Text := string.Format('{0} m/s', args.NewLocation.Speed);
end;

Breaking the code up, the first big condition deals with the position, updating the latitude
and longitude labels with the relevant position and the accuracy achieved, and the Map
View position. If the accuracy value is negative then a position has not been obtained and
so N/A is written to the labels.

You might notice the comment in the code that talks about the GPS functionality in the
Simulator. All references I found, in forums and in the Apple documentation, state that
CoreLocation will always return a fixed location in the iPhone Simulator, the location being
the Apple HQ at 1 Infinite Loop, Cupertino, CA 95014 with an accuracy of 100m. In my
tests this was true of the Map View – if not forced to do otherwise it will always report the
user’s location as being at Apple HQ. However, CoreLocation would correctly identify my
location and return co-ordinates to my office. This seems to contradict various statements
and shows some in-Simulator inconsistency between MapKit and CoreLocation.

To keep things consistent the code takes the CoreLocation coordinate as the true location
and forces the Map View to use it by specifying a region to display and centering the map
on that coordinate (we lose the user location annotation this way, but at least we see
where we really are). The map display region is set up in terms of a coordinate and a pair
of X and Y deltas, which dictate how much of the earth to display in terms of degrees. A
small value has been used for both deltas to show a vaguely recognizable piece of the
local territory. This control of the Map View only takes place if the CoreLocation’s
coordinate is deemed to be valid. On the first few callbacks it is common for the
coordinate to start as invalid while the GPS system gets on top of its communication.

The final thing done with the Map View is a call to SelectAnnotation made against the
annotation at the user’s location. This is the equivalent of clicking the annotation and will
cause the callout (with the title and subtitle) to be displayed. Of course, if the app is
showing your actual location and the Map View has the user location annotation in
Cupertino, you are unlikely to see it. In the sample code source (not shown in the listing
above) there is a conditional define called SHOW_FAKE_POSITION_IN_SIMULATOR that
you can define to overcome this and ensure the Map View’s notion of the user location is
used for both the information labels and also the map position, and so showing the user
location annotation.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 39 -

The remaining code performs familiar looking tasks for the altitude and course –
displaying the values if they are valid – and also displays the current speed as ascertained
by the GPS observations.

The screenshot below shows the GPS Page operating, though it was taken with the
aforementioned conditional compilation symbol defined, so the image looks consistent
with the Apple documentation. The user location annotation is actually dynamic. As well as
the blue marble in the centre and the outer circle indicating the possible inaccuracy radius,
the blue circle in between pulses out from the center to the outer circle in a manner
pleasing to the eye.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 40 -

DEVICE ROTATION
You’ll doubtless be aware that many iPhone applications respond to you rotating the
phone 90 degrees by reorganizing their UI to display appropriately in a landscape manner
instead of portrait. The main underpinning to this support is the
ShouldAutorotateToInterfaceOrientation virtual method of the view controller
class. When the phone is rotated, this method is called with the new orientation
(Portrait, LandscapeLeft, PortraitUpsideDown or LandscapeRight) and the
method returns True or False depending on whether the app should be rotated to that
orientation. Returning True regardless means the app will rotate around as the phone is
rotated, but won’t reorganize per se. In the case of a simple form like this app’s main form,
just containing a Table View, that would be enough as the Table View will fill up the
available space:

However, something like GPS Page will require more attention given the variety of
controls. If we leave things as they are the Map View will not be visible and there would be
blank space on the right.

We still need ShouldAutorotateToInterfaceOrientation to return True but we
also need to implement WillAnimateRotation to act on the rotation and re-jig the
control layout. A helper routine, SetupUIForOrientation, will be used that takes the
new UI orientation.

SetupUIForOrientation(toInterfaceOrientation)

Additionally, we will need to call the helper routine from ViewDidAppear given the
phone could be in any orientation when the GPS Page is invoked.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 41 -

At the start of ViewDidAppear add:

if InterfaceOrientation not in [UIInterfaceOrientation.Portrait,
 UIInterfaceOrientation.PortraitUpsideDown] then
 SetupUIForOrientation(InterfaceOrientation);

This helper routine will look at the orientation and locate the Map View accordingly, either
below the labels in portrait modes or to the right of them in landscape modes.

method GPSPage.SetupUIForOrientation(orientation: UIInterfaceOrientation);
const
 NavBarHghtPortrait = 44;
 NavBarHghtLandscape = 32;
 TextLabelsWidth = 270; //horizontal screen extent occupied by labels
 TextLabelsHeight = 257; //vertical screen extent occupied by labels
begin
 var DeviceHeight := Integer(UIScreen.MainScreen.Bounds.Height);
 var DeviceWidth := Integer(UIScreen.MainScreen.Bounds.Width);
 with AppFrame := UIScreen.MainScreen.ApplicationFrame do
 if orientation in [UIInterfaceOrientation.Portrait,
 UIInterfaceOrientation.PortraitUpsideDown] then
 MapView.Frame := RectangleF.FromLTRB(0, TextLabelsHeight,
 DeviceWidth, AppFrame.Height - NavBarHghtPortrait)
 else
 MapView.Frame := RectangleF.FromLTRB(TextLabelsWidth, 0,
 DeviceHeight, AppFrame.Width - NavBarHghtLandscape);
end;

The constants have been worked out manually. The full screen resolution (in points) is
given by UIScreen.MainScreen.Bounds (320 wide by 480 high in iPhones) and the
available space on screen, taking into account the status bar, is given by
UIScreen.MainScreen.ApplicationFrame. The dimensions of the Map View are
calculated using these various dimensions.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 42 -

For example, in landscape mode (shown above) the Map View needs its left border placed
after the full width of the text labels area and its top at the topmost pixel, 0, which will be
immediately below the status bar and Navigation bar. Its right needs to be the rightmost
pixel on the screen, given by the screen ‘height’, and the bottom border will be at the
bottom of the landscape screen, which is the application frame width (screen ‘width’ minus
status bar height) minus the height of the Navigation Bar.

DEVICE INFORMATION
The last page in this application is intended to display various pieces of information about
the device. This requires another collection of labels to be laid out in Interface Builder, as
well as a Switch (UISwitch). The six smaller labels and the Switch are needed in the code
so outlets need connecting to them as shown here:

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 43 -

Some of the information required to populate the labels can be attained as soon as the
view is loaded, such as what device it is and what the screen resolution is. Some
information will be updated as and when necessary, such as Application Frame Size (that
will change when the status bar is toggled on and off), Proximity Sensor Status and Battery
Status. Interaction is another one that will get updated by the user interacting with the
phone – it will update to show when the phone is rotated or shaken, and when the user
taps. Let’s tackle these one at a time.

The specific device is identified using a helper class DeviceHardware that offers a class
method, Version, which returns a value from an enumerated type:

type
 HardwareVersion = public (
 iPhone,
 iPhone3G,
 iPhone3GS,
 iPhone4,
 iPod1G,
 iPod2G,
 iPod3G,
 iPod4G,
 iPad,
 iPhoneSimulator,
 iPhone4Simulator,
 iPadSimulator,
 Unknown);

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 44 -

The code in the class (which employs native interop) is not important here but is included
with the sample projects. It is adapted and enhanced from some existing C# code on the
Mono wiki at http://wiki.monotouch.net/HowTo/Device/Detect_the_Hardware_Type. The
class also has a VersionString class method that returns a descriptive string for the
current device. To display the device details ViewDidAppear contains:

deviceLabel.Text := String.Format('{0}, iOS v{1}',

 DeviceHardware.VersionString, UIDevice.CurrentDevice.SystemVersion);

This is followed by a call to a helper routine that emits the screen resolution and
application frame size.

method InfoPage.UpdateUIMetrics;
begin
 with scrn := UIScreen.MainScreen do
 begin
 //iPhone 4 doubles pixel count, but point count remains same
 resolutionLabel.Text := string.Format('{0}x{1} points, {2}x{3} pixels',
 scrn.Bounds.Width, scrn.Bounds.Height,
 scrn.Bounds.Width * scrn.Scale, scrn.Bounds.Height * scrn.Scale);
 frameSizeLabel.Text := string.Format('{0}x{1} points',
 scrn.ApplicationFrame.Width, scrn.ApplicationFrame.Height);
 end;
end;

The status bar switch needs to be set to the correct value to start with and then requires an
event handler:

 statusBarSwitch.On := not UIApplication.SharedApplication.StatusBarHidden;
 statusBarSwitch.ValueChanged += StatusBarValueChanged;
...
method InfoPage.StatusBarValueChanged(Sender: Object; E: EventArgs);
begin
 UIApplication.SharedApplication.StatusBarHidden := not statusBarSwitch.On;
 // NOTE: it's required to call the inherited View property from inside a
 // ViewController, as the autogenerated 'view' property is nil, and Pascal
 // isn't case sensitive.
 // From outside the class, the View property works fine.
 if (inherited View <> nil) and ((inherited View).Window <> nil) then
 (inherited View).Window.Frame := UIScreen.MainScreen.ApplicationFrame;

 //Without this, the nav bar is lazy about moving to the right place
 //Required a public property to be added to the AppDelegate
 var AppDel := AppDelegate(UIApplication.SharedApplication.Delegate);
 var NavController := AppDel.NavController;
 NavController.SetNavigationBarHidden(True, False);
 NavController.SetNavigationBarHidden(False, False);
 UpdateUIMetrics
end;

There are a few noteworthy things in here. Firstly the status bar’s visibility is simply
controlled via UIApplication.SharedApplication.StatusBarHidden.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 45 -

Secondly, just hiding the status bar does little to our current view. In order to fill the new
amount of space on the screen the underlying window’s Frame property is set to match
the screen’s ApplicationFrame property. Remember we are in a view controller
descendant class at the moment. The underlying window is a property of the view, for
which UIViewController defines a property, View (upper case V). However the code
behind file for this class also happens to define a property view (lower case v), which
always returns nil. Whenever you wish to access the view associated with your view
controller, it is vital to remember to use inherited View. When using MonoTouch from
C# you also get this extra (apparently pointless) view property in the partial class, but it’s
not such an issue there as C# is a case-sensitive language, unlike Delphi Prism.

Finally, even after we resize the view’s window into the available space the Navigation Bar
often doesn’t respond when it should (its decision on when to move up with the window
seems unpredictable). The best way I found to overcome the issue is to hide and then re-
show the Navigation Bar after the status bar has been toggled. However, gaining access to
the Navigation Bar requires some thought.

It’s useful to know that the Navigation Bar is exposed through properties and methods of
the navigation controller but how do we access the Navigation Controller from a
secondary view?

There is a property added to the AppDelegate class in the code behind file for the main
window, MainWindow.xib.designer.pas, that exposes the navigation controller. In the
auto-generated partial class the property navigationController is defined with a
getter and setter called get_navigationController and
set_navigationController respectively. The problem is that all these symbols are
private and so are inaccessible from where we are writing code. The most direct way to
overcome this is to define a new public property in the AppDelegate class in the main
code file Main.pas, e.g.

public
 property NavController: UINavigationController
 read get_navigationController write set_navigationController;

Of course, we then have the issue of how to talk to the AppDelegate object from the Info
Page, but this is readily solved. You may recall we saw earlier how to access the
Application object using UIApplication.SharedApplication. The Application
object’s delegate object (i.e. the AppDelegate) is available through the Application
object’s Delegate property. Once we gain access to the navigation controller its
SetNavigationBarHidden method can be used to toggle the visibility of the
Navigation Bar.

After all this, the application frame size will have changed so the UpdateUIMetrics
helper is invoked again.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 46 -

When this page was initially displayed the status bar was present, but it may be the case
that the switch has toggled it off. Before the view exits back to the menu screen we should
restore the natural order. We do this in ViewDidDisappear:

statusBarSwitch.On := True;
StatusBarValueChanged(statusBarSwitch, new EventArgs);

PROXIMITY SENSOR AND NOTIFICATIONS
The iPhone’s Proximity Sensor is used to turn the phone’s display off when you answer a
call and move the phone next to your face. It can doubtless be employed in various other
useful scenarios and so it is good to see how we can be notified of proximity state
changes. The mechanism is simple; proximity to something is either detected or not and
there will be a state change notification when the situation changes. This code is in
ViewDidAppear:

UIDevice.CurrentDevice.ProximityMonitoringEnabled := True;
if UIDevice.CurrentDevice.ProximityMonitoringEnabled then
 NSNotificationCenter.DefaultCenter.AddObserver(
 UIDevice.ProximityStateDidChangeNotification,
 method
 begin
 proximityLabel.Text := iif(UIDevice.CurrentDevice.ProximityState,
 'Proximity detected', 'Proximity not detected');
 end)
else
 proximityLabel.Text := 'Proximity sensor not available';

Not all devices have a proximity sensor (the simulator doesn’t, for example) so the advice
is to turn proximity monitoring on and then check to see if it successfully turned on. If not
there is no proximity sensor.

If you have the appropriate hardware then you need to arrange to respond to state
changes. This is one of the cases that do not use the familiar delegate object (or event
property alternative) approach. Instead it uses notifications orchestrated from a
notification centre that requires observer methods to notice. Every application has a
notification centre accessible with NSNotificationCenter.DefaultCenter and of
the various overloads AddObserver offers, the simplest one takes the notification
identifier and a delegate that is passed an NSNotification object (which we ignore in
the code and so don’t need to declare in the anonymous method). The declaration in the
MonoTouch documentation looks like this:

AddObserver(string, Action<NSNotification>) : NSObject

Action<T> is a standard .NET generic delegate type declared in the System namespace.
It represents a function that returns no value but takes a parameter of type T.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 47 -

In Objective-C, the notification identifiers are literal strings and you could very well use this
as the first parameter to AddObserver:

new NSString('UIDeviceProximityStateDidChangeNotification')

However the UIDevice class has a number of these notification identifiers set up as
properties for your convenience, for example:

UIDevice.OrientationDidChangeNotification,
UIDevice.BatteryLevelDidChangeNotification,
UIDevice.BatteryStateDidChangeNotification.

Don’t forget that we enabled proximity state monitoring so in ViewDidDisappear it is
appropriate to turn it off:

if UIDevice.CurrentDevice.ProximityMonitoringEnabled then
 UIDevice.CurrentDevice.ProximityMonitoringEnabled := False;

BATTERY STATUS AND TIMERS
The battery status monitoring operates quite similar to the proximity state monitoring. Not
all devices support battery status monitoring (for example the iPhone Simulator does not)
and to see if it’s supported you again enable monitoring and then check whether
monitoring is still enabled. If not, then it’s not supported.

Whilst battery status monitoring can be done with notifications, that is only appropriate if
you want monitoring to be on all the time. To be a bit more battery-friendly we can instead
just check once every so often, say once a minute or two. Each time we want to check we
turn battery monitoring on, if possible, check the battery level and battery state and then
turn monitoring off. This is the method that does the checking:

method InfoPage.ReadBatteryStatus;
begin
 with dev := UIDevice.CurrentDevice do
 begin
 dev.BatteryMonitoringEnabled := True;
 if dev.BatteryMonitoringEnabled then
 try
 batteryLabel.Text := string.Format('{0}% - {1}',
 Math.Round(dev.BatteryLevel * 100), dev.BatteryState);
 finally
 dev.BatteryMonitoringEnabled := False
 end
 else
 begin
 batteryLabel.Text := 'Battery level monitoring not available';
 UpdateBatteryStatusTimer.Invalidate
 end
 end
end;

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 48 -

To run this code at fixed intervals, we need a scheduled repeating timer. Timers only work
when they are scheduled on a run loop (the iOS equivalent of a Windows message loop)
and need to be repeating to fire more than once.

In ViewDidAppear, the timer is set up to trigger every 60 seconds and the battery check
code executed an initial time:

UpdateBatteryStatusTimer := NSTimer.CreateRepeatingScheduledTimer(
 60, new NSAction(ReadBatteryStatus));
ReadBatteryStatus;

NSAction is rather like Action<T> described earlier, but is a Mono delegate type that
represents a function that returns no value and takes no parameters. This looks a little
different to the anonymous method we passed in when setting up the proximity state
notification, but we could make it look more similar by writing it like this:

UpdateBatteryStatusTimer := NSTimer.CreateRepeatingScheduledTimer(
 60, method begin ReadBatteryStatus end);
ReadBatteryStatus;

It can be made more intuitive as:

UpdateBatteryStatusTimer := NSTimer.CreateRepeatingScheduledTimer(

 60, @ReadBatteryStatus);

ReadBatteryStatus;

Note that in the timer event handler earlier, if battery monitoring is not available, then the
timer is cancelled using its Invalidate method. It is also important to remember to
cancel the timer in ViewDidDisappear by calling the same method.

IPHONE INTERACTION
The final label to address in the Info Page relates to interaction and is designed to give
information about taps, swipes, shakes and rotations. The latter case is straightforward –
we’ve already looked at device rotation earlier. We need to make
ShouldAutorotateToInterfaceOrientation return True regardless of orientation
passed in and then write some code in WillAnimateRotation:

method InfoPage.WillAnimateRotation(
 toInterfaceOrientation: UIInterfaceOrientation; duration: Double);
begin
 interactionLabel.Text := case toInterfaceorientation of
 UIInterfaceOrientation.Portrait: 'iPhone is oriented normally';
 UIInterfaceOrientation.LandscapeLeft: 'iPhone has been rotated right';
 UIInterfaceOrientation.PortraitUpsideDown: 'iPhone is upside down';
 UIInterfaceOrientation.LandscapeRight: 'iPhone has been rotated left';
 end;

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 49 -

 SetTimerToClearMotionLabel;
 UpdateUIMetrics
end;

Note: a recent feature of the Delphi Prism language is used in this code snippet: a case
expression (as opposed to the more typical case statement).

Note: since we are not actually reorganizing the UI and are just responding to altered
rotation, we might be better to opt for use of the notification center and register an
observer to be called in response to the orientation change notification.

NSNotificationCenter.DefaultCenter.AddObserver(
 UIDevice.OrientationDidChangeNotification, @OrientationChanged);
...
method InfoPage.OrientationChanged(notification: NSNotification);
begin
 interactionLabel.Text := case InterfaceOrientation of
 UIInterfaceOrientation.Portrait: 'iPhone is oriented normally';
 UIInterfaceOrientation.LandscapeLeft: 'iPhone has been rotated right';
 UIInterfaceOrientation.PortraitUpsideDown: 'iPhone is upside down';
 UIInterfaceOrientation.LandscapeRight: 'iPhone has been rotated left';
 end;
 SetTimerToClearMotionLabel;
 UpdateUIMetrics
end;

As any interaction is noticed the code updates the interaction label, but then calls a helper
routine that uses a timer to reset the label text after a short time interval of three seconds.
Also the resolution labels are updated with another call to UpdateUIMetrics.

method InfoPage.SetTimerToClearMotionLabel;
begin
 if ClearMotionLabelTimer <> nil then
 ClearMotionLabelTimer.Invalidate;
 ClearMotionLabelTimer := NSTimer.CreateScheduledTimer(3,
 method
 begin
 interactionLabel.Text := 'None';
 ClearMotionLabelTimer := nil;
 end);
end;

This code should look familiar, as it is very similar to the timer code used for the proximity
sensor. In this case, however, we require a one-shot timer to reset the label instead of one
that keeps firing, so a scheduled timer is created rather than a scheduled repeating timer.

SHAKES
The iPhone recognizes when you shake it (if the application chooses to enable this).
Standard use of this feature is for undo/redo but clearly this is down to the imagination of
the programmer. But how do you enable shake recognition in the first place? Well, a few
things need to be done. It is usually considered that the shake gesture is directed at the

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 50 -

view but we can pick it up in our view controller if we configure it correctly. We need to
have the view controller assert that it can successfully become a first responder and follow
that up by making it so. Then we need to enable shake support and finally we need to
override the MotionEnded method where shake detection can take place.

By default, a view controller’s CanBecomeFirstResponder property returns False,
rather stymieing our efforts to detecting shakes. However, as luck would have it, the getter
for this property was declared virtual and so can be overridden.

method InfoPage.get_CanBecomeFirstResponder: Boolean;
begin
 exit True
end;

With calls to BecomeFirstResponder and ResignFirstResponder in
ViewDisAppear and ViewDidDisappear respectively, that covers the first step. To
enable shake support, add this to ViewDidAppear:

UIApplication.SharedApplication.ApplicationSupportsShakeToEdit := True;

That leaves the last step of actually responding to a detected shake:

method InfoPage.MotionEnded(motion: UIEventSubtype; evt: UIEvent);
begin
 if motion = UIEventSubtype.MotionShake then
 begin
 interactionLabel.Text := 'iPhone was shaken';
 SetTimerToClearMotionLabel
 end
end;

If you were using the more common intent of a shake, meaning undo or redo, then you
would need to look into the NSUndoManager class to help implement this.

TAPS
Responding to the user tapping on the screen can be done in a few ways. In this
application, we’ll take the approach of overriding the TouchesBegan, TouchesMoved
and TouchesEnded methods to report what is going on. This will allow taps, double-taps
and multi-taps to be detected and, potentially, swipe gestures also11.
TouchesCancelled finishes the set of virtual methods that support touch operations
and is useful in that it informs you when a touch operation ends abruptly due to something
like a low memory condition.

11 In general, for recognizing gestures, as opposed to simple taps, you would be well advised to look into
gesture recognizers that take care of the hard work of tracking the sequence of coordinates for you.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 51 -

method InfoPage.DescribeTouch(touch: UITouch): String;
begin
 Result := case touch.TapCount of
 0: 'Swipe';
 1: 'Single tap';
 2: 'Double tap';
 else 'Multiple tap' end +
 case touch.Phase of
 UITouchPhase.Began: ' started';
 UITouchPhase.Moved: ' moved';
 UITouchPhase.Stationary: " hasn't moved";
 UITouchPhase.Ended: ' ended';
 UITouchPhase.Cancelled: ' cancelled' end;
end;

method InfoPage.TouchesBegan(touches: NSSet; evt: UIEvent);
begin
 var touchArray := touches.ToArray<UITouch>;
 if touches.Count > 0 then
 begin
 var Coord := touchArray[0].LocationInView(touchArray[0].View);
 if touchArray[0].TapCount < 2 then
 StartCoord := Coord;
 interactionLabel.Text := string.Format('{0} ({1},{2})',
 DescribeTouch(touchArray[0]), Coord.X, Coord.Y);
 end;
end;

method InfoPage.TouchesMoved(touches: NSSet; evt: UIEvent);
begin
 var touchArray := touches.ToArray<UITouch>;
 if touches.Count > 0 then
 begin
 var Coord := touchArray[0].LocationInView(touchArray[0].View);
 interactionLabel.Text := string.Format('{0} ({1},{2})',
 DescribeTouch(touchArray[0]), Coord.X, Coord.Y);
 end;
end;

method InfoPage.TouchesEnded(touches: NSSet; evt: UIEvent);
begin
 var touchArray := touches.ToArray<UITouch>;
 if touches.Count > 0 then
 begin
 var Coord := touchArray[0].LocationInView(touchArray[0].View);
 interactionLabel.Text := string.Format('{0} ({1},{2})->({3},{4})',
 DescribeTouch(touchArray[0]),
 StartCoord.X, StartCoord.Y, Coord.X, Coord.Y);
 SetTimerToClearMotionLabel
 end;
end;

The description-making helper uses a concatenation of case expressions and also takes
advantage of the Delphi Prism support for either single or double quotes for string
delimiters.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 52 -

These methods are passed a set of UITouch objects and can potentially support multi-
touch operations. In the program as it is this will not happen, as multi-touch has not been
enabled, and so touchArray in each case will hold a single UITouch object. Notice that
the first tap coordinate is recorded into StartCoord, declared in the view controller
class, allowing the message describing a double-tap or swipe to include this starting
coordinate as well as the ending coordinate, as shown in the screenshot below.

If you need to support multi-touch in your iPhone application then you’ll need to add this
to one of your start-up methods, such as ViewDidLoad or Initialize:

(inherited View).MultipleTouchEnabled := True;

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 53 -

To simulate multi-touch in the iPhone Simulator, hold down the Option (or Alt) key.

UTILITY APPLICATIONS
Another of the available project templates lets you build a Utility (iPhone Utility Project
template). This is intended to be a simple application with two views. There’s a main view
that comes up by default with a button that allows you to go to the other view. The main
view has a little information button on it that when pressed flips over to reveal the other
view (called the flipside view) in a nice animated manner. The flipside view has a navigation
bar with a button that lets you go back to the main view, again using a nice flip animation.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 54 -

There are a number of files in a Utility project so we should briefly run through them. An
empty window and the App Delegate are defined in Main.pas, MainWindow.xib and the
code behind file MainWindow.designer.xib.pas. The App Delegate creates an instance of
the main view controller, sizes its view appropriately and puts the main view in the window.
This main view and view controller are defined in MainView.pas and
MainViewController.pas, backed by MainView.xib and the code behind file
MainView.xiv.designer.pas. If you load MainView.xib into Interface Builder, you will see the
Info Button and can locate the action, showInfo:, defined in the controller. There is a
corresponding method in the main view controller that creates the flipside view controller
and flips it into view, as well as setting up a custom event handler for the Done button on
the flipside view’s Navigation Bar that closes it.

This Utility project makes an interesting departure from the style of the previous projects
here, in that the main view and main view controller (defined in the same .xib file) have
their own source files defining the classes. This is because we have custom classes for both
the view controller and the view (for both the main view and also the flipside view),
whereas in previous projects the view was a predefined type, typically a UITableView.
That said, it is still common to do the miscellaneous UI work (event handlers for the various
controls) in the view controller descendant, leaving the view descendant dedicated to any
custom drawing or display that it requires.

SOAP-BASED WEB SERVICES
Let’s make use of a Utility project to build a web service consumer. We’ll use a simple
SOAP-base web service that’s readily available to convert temperatures between degrees
Celsius (or centigrade) and degrees Fahrenheit.

Make a new iPhone Utility Project, then in the Solution window, right-click on the project
name and choose Add, Add Web Reference. This brings up the Web Services import
dialog, which already has the URL of the simple temperature conversion web service filled
in: http://www.w3schools.com/WebServices/TempConvert.asmx. Be sure to set the
Framework to .NET 2.0 Web Services and then press OK to import the web service into the
project.

If you use a web browser and enter that web services address you can see the capabilities
of this TempConvert web service are fairly meager, but adequate, offering
CelsiusToFahrenheit and FahrenheitToCelsius. And we’ll surface these to the UI
of this application.

Anyway, back to the results of using the web service import dialog:

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 55 -

This adds a Web References directory to the solution project. Oddly, the node contains
only the reference name – www.w3schools.com – and there seems to be no direct way of
opening the generated source file. However, you can see the code by opening it manually
from the directory from a file called Reference.pas. The generated proxy class is found
therein. Its namespace is a combination of the project name and the Reference value, so if
you saved your project as WebServices, say, and left the Reference value unchanged, then
the namespace that defines this proxy class will be WebServices.www.w3schools.com.

SYNCHRONOUS VS. ASYNCHRONOUS
The web service proxy class contains a plethora of methods offering different ways of
calling the two web service methods, which can be simply divided into synchronous and
asynchronous calls. The synchronous calls are as straightforward as this:

method FahrenheitToCelsius(Fahrenheit: String): String;
method CelsiusToFahrenheit(Celsius: String): String;

Straightforward and tempting, but you should beware of synchronous web service calls as
they will block while working and freeze the UI. If the web service calls are slow or time-
consuming then your application will become unresponsive and users will not enjoy that
aspect of your user experience. It is much better to use asynchronous (async) calls.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 56 -

There are two different sets of async declarations offered. One set follows the typical .NET
asynchronous programming model.

method BeginFahrenheitToCelsius(Fahrenheit: String; callback: AsyncCallback;
 asyncState: Object): IAsyncResult;
method EndFahrenheitToCelsius(asyncResult: IAsyncResult): String;
method BeginCelsiusToFahrenheit(Celsius: String; callback: System.AsyncCallback;
asyncState: Object): IAsyncResult;
method EndCelsiusToFahrenheit(asyncResult: IAsyncResult): String;

To initiate the async web service method invocation you call either
BeginFahrenheitToCelsius or BeginCelsiusToFahrenheit, passing in the
textual input value, a reference to a callback that will be called when the web service
method completes and also an optional piece of state information that will be passed
through to the callback. Either method then returns an IAsyncResult object. Your
application then remains responsive while the web service method executes. When it is
done the callback will be invoked with the IAsyncResult object passed in with the
optional state information available in its AsyncState property. The callback will not be
called on the main UI thread but on the thread that the web service method was invoked
on.

The result of the web service method call is obtained by calling
EndFahrenheitToCelsius or EndCelsiusToFahrenheit as appropriate, passing in
the IAsyncResult object you got earlier. This is typically done inside the callback (on
that secondary thread), but can also be done in the main thread if required. For example,
you could call BeginFahrenheitToCelsius and then continue normal UI processing in
order to do some necessary operations. When the main thread has done all it needs to, or
perhaps all it can do without the result of the web service call, you can then call
EndFahrenheitToCelsius. If the web service call has concluded you will immediately
get the result. If it is still executing then the call will block until the result is available.

The other set of methods in the web service proxy class offer asynchronous invocation in
an event-driven fashion.

event FahrenheitToCelsiusCompleted: FahrenheitToCelsiusCompletedEventHandler;
method FahrenheitToCelsiusAsync(Fahrenheit: String);
method FahrenheitToCelsiusAsync(Fahrenheit: String; userState: Object);
event CelsiusToFahrenheitCompleted: CelsiusToFahrenheitCompletedEventHandler;
method CelsiusToFahrenheitAsync(Celsius: String);
method CelsiusToFahrenheitAsync(Celsius: String; userState: Object);

Here you can see two options for invoking each method, either with or without some
arbitrary state information. To get the results of the calls you hook an event handler up to
either FahrenheitToCelsiusCompleted or CelsiusToFahrenheitCompleted as
appropriate. These events are defined with the normal .NET event signature. The event
handler takes two parameters, the first being the object that triggered the event and the

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 57 -

seconds being an EventArgs descendant, either
FahrenheitToCelsiusCompletedEventArgs or
CelsiusToFahrenheitCompletedEventArgs. Both of these offer the web service call
result in the Result property and the optional state information in the UserState
property. As with the previous async callbacks these completion event handlers will be
called on a secondary thread, not the main UI thread.

ACCESSING THE UI FROM A SECONDARY THREAD
Given the async completion callbacks and event handlers execute in a secondary thread, it
is important to note that you will not be able to directly access the UI controls from there.
Code that accesses controls will compile but will do very little.

To access the UI from a secondary thread, you must call InvokeOnMainThread, which
takes an NSAction-compatible delegate (an anonymous method or lambda will work fine)
containing the UI code.

USING A WEB SERVICE
Okay, after that preamble, let’s build the UI for this web service and move on to calling it.
In the Utility app, we’ll leave the main view alone for now and add controls onto the
flipside view.

We need a Text Field for entering a temperature and a Label to describe it. Give the Text
Field a default Text attribute of 100 or some other temperature value, set the Return Key
attribute to Done and perhaps set the Keyboard attribute to Number Pad as we only want
to enter numeric temperatures12. To choose between Celsius to Fahrenheit or vice versa
we’ll use a Segmented Control (UISegmentedControl), which can be used as two
buttons in one, or like a pair of radio buttons. You can edit each segment in turn so give
the two segments Title attributes of ℃ → ℉ and ℉ → ℃.

All three of the characters in those Titles are plucked from the large spread of options in
the Unicode character set. To enter the characters in interface Builder, when you click in
the Title attribute field choose Edit, Special Characters... from the menu (or press ⌥⌘T) to
invoke the Characters window13. Using the lists and dropdowns on this window, you can
browse around a large number of different characters, but if looking for something specific

12 The number pad keyboard is just that: a numeric keypad. This means we will not be able enter fractional
temperatures or negative temperatures thanks to the lack of – and . on this keyboard.

13 You can find this menu option in many applications that allow text editing, although I notice Microsoft Word
2008 for the Mac is an exception (instead it has its own character selection option accessible through Insert,
Symbol...).

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 58 -

the search box at the bottom is helpful. In the screenshot below, it is being used to locate
the two symbols for temperature units in the two scales we are working with. Similarly,
searching for arrow gives a large number of arrows including the rightwards arrow symbol
used in the two button segment titles.

Also needed on the view in Interface Builder is a Button, with a suitable Title, to initiate the
conversion and a Label to display the result. Additionally, given the web service might take
some time to execute, add on an Activity Indicator View (UIActivityIndicatorView)
and check both the Hide When Stopped and Hidden attributes.

To have the code work you will need to add five outlets to the FlipsideViewController and
connect them as shown here:

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 59 -

They would be activityIndicator, conversionSelectionButton,
convertButton, resultLabel and temperatureTextBox.

Don’t forget to add the name of the proxy class’s namespace into the uses clause
(WebServices.www.w3schools.com if you saved the project as WebServices before
importing the web service reference). Once that is done, the code can be added.

In the ViewDidLoad method we’ll clear the result label, create an instance of the web
service proxy class and set up an event handler to respond to the conversion button being
touched:

resultLabel.Text := '';
Converter := new TempConvert();
convertButton.TouchUpInside += ConvertButtonTouched;

Converter is a variable declared in the view controller class. When the convert button
gets touched, this is the code that executes:

method FlipsideViewController.ConvertButtonTouched(sender: Object;
 e: EventArgs);
begin
 resultLabel.Text := '';
 var InputTemp: Double;
 if Double.TryParse(temperatureTextBox.Text, out InputTemp) then
 begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := True;
 activityIndicator.StartAnimating;
 if conversionSelectionButton.SelectedSegment = 0 then

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 60 -

 Converter.BeginCelsiusToFahrenheit(temperatureTextBox.Text,
 @FinishedTemperatureConversion, True)
 else
 Converter.BeginFahrenheitToCelsius(temperatureTextBox.Text,
 @FinishedTemperatureConversion, False);
 end
 else
 resultLabel.Text := 'Invalid input temperature'
end;

Assuming the text in the Text Field is numerical (given we specified a number pad then it
will either be a number or a blank string) then we start off by turning on the network
activity indicator on the status bar and also initiating our activity indicator control’s
animation. This way the user knows the application is busy doing something and that the
network is being accessed. The segmented control is checked to see in which direction
the conversion should be made and this controls whether BeginCelsiusToFahrenheit
or BeginFahrenheitToCelsius is called. In this implementation a single method is
used to act as a callback; in case we need to know which direction the conversion was
requested, a Boolean value is passed through as the optional state information, and is
designed to indicate if it was a Celsius to Fahrenheit conversion (or not). The callback
looks like this:

method FlipsideViewController.FinishedTemperatureConversion(
 AsyncResult: IAsyncResult);
begin
 var FromCelsius := Boolean(Asyncresult.AsyncState);
 var Answer :=
 iif(FromCelsius, Converter.EndCelsiusToFahrenheit(AsyncResult),
 Converter.EndFahrenheitToCelsius(AsyncResult));
 // Since we are running on a separate thread, we can not access UIKit
 // objects from here, so we need to invoke those on the main thread:
 InvokeOnMainThread(() ->
 begin
 resultLabel.Text := String.Format(

 iif(FromCelsius, '{0}℃ is {1:F2}℉', '{0}℉ is {1:F2}℃'),
 temperatureTextBox.Text, Convert.ToDouble(Answer));
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := False;
 activityIndicator.StopAnimating;
 end);
end;

The optional state information is extracted and restored to Boolean type. This is used to
decide whether to call EndCelsiusToFahrenheit or EndFahrenheitToCelsius to
extract the result of the temperature conversion, after passing in the received
IAsyncResult object. In order to write the result out and turn off the activity indicators,
we execute the next bit of code indirectly via InvokeOnMainThread, since we aren’t
running in the UI thread (as discussed earlier).

That works quite well except for the keyboard, which has not been encouraged to
disappear after you’ve entered your chosen temperature. That can be addresses by

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 61 -

hooking event handlers to trigger when any other control is used and implementing them
to make the keyboard go away. These two statements can be added to ViewDidLoad –
note that the convert button now has two TouchUpInside event handlers:

convertButton.TouchUpInside += AnyNonTextControlTouched;

conversionSelectionButton.ValueChanged += AnyNonTextControlTouched;

The handler itself is straightforward and matches what we have seen in a previous
example:

method FlipsideViewController.AnyNonTextControlTouched(Sender: Object;
 E: EventArgs);
begin
 temperatureTextBox.ResignFirstResponder
end;

Now we have a functioning web services application with the functionality resident on the
flipside of a blank main screen. Before looking to address that, it might be good to see
what the code looks like when using the event-based async web service methods as
opposed to the Begin/End async methods we just employed. These statements need
adding to the ViewDidLoad method immediately after constructing the web service
proxy:

Converter.CelsiusToFahrenheitCompleted += FinishedCelsiusToFahrenheit;

Converter.FahrenheitToCelsiusCompleted += FinishedFahrenheitToCelsius;

Notice we now have two separate event handlers as they take a different EventArgs-
descendant parameter. The button event handler changes to look like this:

method FlipsideViewController.ConvertButtonTouched(sender: Object;
 e: EventArgs);
begin
 resultLabel.Text := '';
 var InputTemp: Double;
 if Double.TryParse(temperatureTextBox.Text, out InputTemp) then
 begin
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := True;
 activityIndicator.StartAnimating;
 if conversionSelectionButton.SelectedSegment = 0 then
 Converter.CelsiusToFahrenheitAsync(temperatureTextBox.Text)
 else
 Converter.FahrenheitToCelsiusAsync(temperatureTextBox.Text);
 end
 else
 resultLabel.Text := 'Invalid input temperature'
end;

Notice that since we have two separate web service method completion event handlers
there is no need for the optional state parameter to be passed through. Here are those
event handlers:

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 62 -

method FlipsideViewController.FinishedCelsiusToFahrenheit(sender: Object;
 args: CelsiusToFahrenheitCompletedEventArgs);
begin
 InvokeOnMainThread(() ->
 begin

 resultLabel.Text := String.Format('{0}℃ is {1:F2}℉',
 temperatureTextBox.Text, Convert.ToDouble(args.Result));
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := False;
 activityIndicator.StopAnimating;
 end);
end;

method FlipsideViewController.FinishedFahrenheitToCelsius(sender: Object;
 args: FahrenheitToCelsiusCompletedEventArgs);
begin
 InvokeOnMainThread(() ->
 begin

 resultLabel.Text := String.Format('{0}℉ is {1:F2}℃',
 temperatureTextBox.Text, Convert.ToDouble(args.Result));
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible := False;
 activityIndicator.StopAnimating;
 end);
end;

IMAGES
On the main view of your Utility Project you can clearly put what you like. In this case we
will add an image. We could use Interface Builder to add an appropriate control to the
main view and set its attributes, but this time we’ll skip Interface Builder and do it solely in
code.

To add an image to an iOS project you can copy the file into the source directory tree;
mine is called Fire.jpg (whose dimensions are smaller than that of an iPhone screen) and
has been placed in the project’s main directory, alongside the source. In MonoDevelop
you notify the project of the image’s existence firstly by adding the image to the project
(right-click the project and choose Add, Add Files... or press ⌥⌘A), and secondly by right-
clicking the image in the project and choosing Build Action, Content.

Now in the main view controller’s ViewDidLoad you can write:

method MainViewController.ViewDidLoad;
begin
 inherited ViewDidLoad();
 //Deal with image
 var image := new UIImage("Fire.jpg");
 var imageView := new UIImageView(image);
 with appF := UIScreen.MainScreen.ApplicationFrame, imgS := image.Size do
 imageView.Frame := new RectangleF((appF.Width - imgS.Width) div 2,
 (appF.Height - imgS.Height) div 2, imgS.Width, imgS.Height);
 (inherited View).AddSubview(imageView);
end;

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 63 -

This loads the image file into an Image control, adds it to an image view, sets the image
view frame to be centered in the application frame and finally adds the image view into
the main view. The main view of the application can now be seen below. Something a little
more helpful and informative would be better in a real application, but there is a loose
reason why the picture was chosen. This is a temperature conversion program and fires
imply high temperatures.

DRAGGABLE CONTROLS
If you want to play about you could make this image draggable. Let’s build a new class
UIDraggableImageView that inherits from UIImageView and supports being dragged
around. The class is actually quite simple and operates by overriding the methods
TouchesBegan, TouchesMoved and TouchesEnded to shift the image view’s frame
around based upon where the user drags their finger. You may recall we used those
methods to track touch movement in an earlier project.

The class definition looks like this:

type
 UIDraggableImageView = public class(UIImageView)

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 64 -

 private
 StartLocation: PointF;
 method MoveImage(touches: NSSet);
 public
 constructor(image: UIImage);
 method TouchesBegan(touches: NSSet; evt: UIEvent); override;
 method TouchesMoved(touches: NSSet; evt: UIEvent); override;
 method TouchesEnded(touches: NSSet; evt: UIEvent); override;
 end;

The constructor and methods are implemented thus:

constructor UIDraggableImageView(image: UIImage);
begin
 inherited;
 UserInteractionEnabled := True;
end;

method UIDraggableImageView.MoveImage(touches: NSSet);
begin
 // Move relative to the original touch point
 var pt := (touches.AnyObject as UITouch).LocationInView(Self);
 // Use a separate frame var to ensure both new coordinates are set at once
 var frame := Self.Frame;
 with appFrame := UIScreen.MainScreen.ApplicationFrame do
 begin
 frame.X := frame.X + pt.X - StartLocation.X;
 if frame.X < 0 then frame.X := 0;
 if frame.X + Image.Size.Width > appFrame.Width then
 frame.X := appFrame.Width - Image.Size.Width;
 frame.Y := frame.Y + pt.Y - StartLocation.Y;
 if frame.Y < 0 then frame.Y := 0;
 if frame.Y + Image.Size.Height > appFrame.Height then
 frame.Y := appFrame.Height - Image.Size.Height;
 end;
 Self.Frame := frame;
end;

method UIDraggableImageView.TouchesBegan(touches: NSSet; evt: UIEvent);
begin
 var pt := (touches.AnyObject as UITouch).LocationInView(Self);
 StartLocation := pt;
 Superview.BringSubviewToFront(Self);
end;

method UIDraggableImageView.TouchesMoved(touches: NSSet; evt: UIEvent);
begin
 MoveImage(touches)
end;

method UIDraggableImageView.TouchesEnded(touches: NSSet; evt: UIEvent);
begin
 MoveImage(touches)
end;

Since the image is intended for single touch, TouchesBegan just plucks any of the touch
objects from the passed in set; typically there will only be one anyway. The location of that

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 65 -

touch is then recorded as the starting point. As the user’s finger is moved around the
MoveImage helper routine does the job of incrementing or decrementing the x and y
coordinates of the frame and ensuring it is kept inside the screen boundaries.

This class was based on a code snippet from http://monotouchexamples.com.

LAUNCH SCREENS
The example above includes an image but it is embedded in one of the views. A common
aspect of commercial applications is a launch screen (or splash screen), which serves to
distract the user from the length of time the application takes to start up and initialize. The
Apple UI guidelines suggest that a splash screen should be an image of the application
running but this is often ignored. Applications typically include company marketing
information, logos for the application and the company, etc. But how do we include a
splash screen? Moreover, how do we include icons so our applications stand out a little
more than they currently do?

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 66 -

The answer to the questions is to add various specially named files to the project and set
their Build Action to Content. Let’s look at a launch screen first.

To incorporate a launch screen, it is simply a matter of adding a file called Default.png to
your project, set to a size of 320x460 (the iPhone resolution is 320x480 and this image size
takes account of the 20 pixel high status bar). That image will work for iPhone 3 and iPod
Touch. It will also work with iPhone 4 but you may recall that the pixel resolution of iPhone
4 has doubled. To cater better for the improved display (and avoid the original image
being stretched to fit) you can also include a 640x920 file called Default@2x.png and this
will be used automatically when the application is launched on an iPhone 4.

This Utility Project we have been working on is included in the files that accompany this
paper. In the project are two launch images as per the specification above. They are the
same image, a picture of some ice (cold temperature), but Default.png has been shrunk to
the smaller resolution. In order to prove the point and be sure the right file is used, a big
number 3 has been drawn on the smaller file and a big number 4 on the larger file. The
following screenshot shows this same application being launched in the iPhone 4
Simulator.

You can switch between simulating the various hardware options in the Simulator by
choosing Hardware, Device and then either selecting iPhone (for the iPhone 3 and iPod
Touch Simulator), iPhone (Retina) (for the iPhone 4 Simulator) or iPad.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 67 -

SUPPORTING THE IPAD
If you run any of your applications in the iPad Simulator they won’t look like they fit in very
well as all our windows and views have been hardcoded to fit to a resolution of 320x480. If
you want an application to run on the iPad then you really ought to design it for the iPad
and the various features it offers, not least of which, the 1024x768 screen resolution.

If you start with the iPad Window-based project then your UI will be sized sensibly. The
Universal Window-based project covers both options by having two nib files, one for the
iPhone resolution and one for the iPad resolution. However you choose to go, there is
support for the iPad.

If iPad is a valid target for your application you should also explore the various project
options available (right-click on your project in the Solution window and choose Options),
especially on the iPhone Build and iPhone Application pages.

Space doesn’t really allow much on the specifics of iPad programming but it’s safe to say
that all the techniques we’ve looked at thus far are perfectly applicable to programming an
iPad application. However, with regard to launch screens there are various different files
required to cater for the different orientations the iPad application may be started in. You
can find full details in the post at http://phunkwerk.posterous.com/ipad-managing-
multiple-launch-images-aka-defa.

ICONS
There are three places that an icon is used in iOS: the Home screen, the Settings screen
and the Spotlight (search) screen. Each of these places may require an icon of different
dimensions. Depending on what devices you are targeting you may have to consider
additional dimensions of each image again as iPhone 3 and iPod Touch use one set of
resolutions, iPhone 4 uses another and iPad uses yet another.

In the simple case of targeting iPhone 3 and iPod Touch, you would include two image
files for these icons. Icon.png (57x57) is used on the Home screen and Icon-Small.png
(29x29) is used on the Settings screen and also on the Spotlight screen.

If you were building a Universal application targeting all iOS devices then you would need
to include all these icon files:

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 68 -

File name Image dimensions Purpose
Icon.png 57x57 iPhone/iPod Touch Home screen
Icon@2x.png 114x114 iPhone 4 Home screen
Icon-72.png 72x72 iPad Home screen
Icon-Small.png 29x29 iPhone/iPod Touch Spotlight and Settings,

iPad settings
Icon-Small@2x.png 58x58 iPhone 4 Spotlight and Settings
Icon-Small-50.png 50x50 iPad Spotlight

Unlike the launch screen image, these icons are not automatically used by iOS. Instead you
have to specify the root file name in an entry in your project’s Info.plist file. This is an XML
Information Property List file processed by iOS to set things up correctly for your
application. Double-clicking on Info.plist invokes the property list editor. By default, you’ll
see the file has very little in it. You must add in a new entry in using the Add Child button
(or Add Item button, depending on what is selected). The new entry (the key) should be
Icon file (this can be selected from the drop down list) and the value should be the root
icon file name as shown below.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 69 -

The web services example contains the iPhone and iPhone 4 icons and also has a
customized display name on the Home screen thanks to one of the project options. On
the iPhone Application page of the options, the Display Name value in the Application
Bundle section controls what text is written under the icon on the Home screen.

Note: The release version of Delphi Prism XE has an occasional bug when running in
MonoDevelop. After browsing through the options, you will sometimes find that
subsequent compilations will fail with an unexpected error like:

Error CE19: Cannot open file "/Users/brian/Projects/Prism/MyProject" (CE19) (MyProject)

This will typically be due to this intermittent issue where somehow the Win32 Icon option
(found in the project options dialog in the Build, General section) has been given the
project directory as a value. Unfortunately, it seems this cannot be rectified from within
MonoDevelop. Instead you should close MonoDevelop and open the project file (it has an

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 70 -

.oxygene extension, so Myproject.oxygene for example) in a text editor. Locate the line
that looks like this (with your project directory):

<ApplicationIcon>/Users/brian/Projects/Prism/Pages</ApplicationIcon>

and simply delete the whole line.

DEBUGGING
When running MonoTouch applications in the iOS Simulator from MonoDevelop, you have
access to a very capable debugger in the MonoDevelop IDE. It has the usual features of
breakpoints, stepping into calls, stepping over calls, watches, local variables, call stack,
thread information, etc. All that is needed is some time to get used to where the windows
and controls are and what shortcuts are available.

Some important things to note, however, include the fact that when debugging an
application it takes up much more space than a release version and will be much slower
due to the way debugging is implemented.

Additionally, you need to take care when trying to debug code that executes during the
application startup process, for example in your main view controller’s ViewDidLoad
method or the App Delegate’s FinishedLaunching method. iOS keeps an eye on an
application as it starts and checks to see it makes it past startup to be usable by the user in
a timely fashion. If it gets held up in the startup process for more than 10-20 seconds, iOS
will assume the application has hung and so will kill it. So if you place a breakpoint in one
of those startup methods, you get very little time to debug anything before the application
is removed before your very eyes.

To debug code in the main view’s startup methods, consider making it a secondary view
launched from a button on a temporary main view. Alternatively, use the very common
process of logging information to the Application Output window in order to track down
your bug. Calls to Console.WriteLine get listed in the MonoDevelop Application
Output window and this proves to be a very handy tracking mechanism.

TECHNICAL RESOURCES
Delphi Prism extends the regular Delphi language in various ways. You can get a heads-up
at these pages: http://prismwiki.embarcadero.com/en/Language,
http://prismwiki.embarcadero.com/en/The_Prism_Primer,
http://prismwiki.embarcadero.com/en/Anonymous_Methods_and_Delegates.

The MonoTouch API Reference is at http://www.go-mono.com/docs (towards the bottom
of the hierarchy on the left of the page). Tutorials (C# biased) can be found at

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 71 -

http://monotouch.net/Tutorials, How-To documents at http://wiki.monotouch.net/HowTo
and other articles at http://monotouch.info.

The iOS Reference Library is at http://developer.apple.com/library/ios.

A recommended book is Professional iPhone Programming with MonoTouch and .NET/C#
by Wallace B. McClure, Rory Blyth, Craig Dunn, Chris Hardy, Martin Bowling
(http://www.amazon.com/dp/047063782X).

SQLite SQL syntax is documented at http://www.sqlite.org/lang.html.

CONCLUSION
This white paper has shown how Delphi Prism can be utilized to leverage .NET
programming knowledge and start building applications for iPhone, iPod Touch and iPad
in a very capable manner.

The MonoTouch SDK provides a convenient means of starting to write iPhone apps
without having to learn an entirely new programming language. Of course, an
understanding of CocoaTouch (or at least CocoaTouch.Net) needs to be built up in order
to do the job well, but working with a language you are familiar with helps ease the
transition to a new UI framework.

Business logic can potentially be reused in applications running on iOS if partitioned
sensibly, but clearly an entirely different UI needs to be developed for this type of
application.

Using Delphi Prism XE to Develop for iPhone, iPod Touch and iPad

© 2011 Brian Long Consulting and Training Services Ltd. All Rights Reserved.
Embarcadero Technologies - 72 -

ABOUT THE AUTHOR
Brian Long has spent the last 1.5 decades as a trainer, trouble-shooter and mentor
focusing on the Delphi, C# and C++ languages, and the Win32, .NET and Mono platforms,
recently adding iOS and Android onto the list. In his spare time, when not exploring the
Chiltern Hills on his mountain-bike or pounding the pavement in his running shoes, Brian
has been re-discovering and re-enjoying the idiosyncrasies and peccadilloes of Unix-based
operating systems. Besides writing a Pascal problem-solving book in the mid-90s he has
contributed chapters to several books, written countless magazine articles, spoken at
many international developer conferences and acted as occasional Technical Editor for
Sybex. Brian has a number of online articles that can be found at http://blong.com.

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of
the Fortune 100 and an active community of more than three million users worldwide rely
on Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered
in San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

