

Americas Headquarters

EMEA Headquarters

Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Reasons to Migrate to Delphi XE

What you might have missed since Delphi 7

Andreano Lanusse

November 2010

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 1 -

TABLE OF CONTENTS
Table of Contents ... - 1 -

Introduction... - 5 -

What’s new in the IDE .. - 7 -

Subversion Integration – Version Insight ... - 7 -

Project Manager... - 7 -

Gallery .. - 8 -

New Project Options .. - 9 -

Build Configurations ... - 9 -

IDE Insight ... - 10 -

Component Creation Wizard ... - 11 -

COM ... - 11 -

New Resource Manager .. - 12 -

Managing the menu Reopen Files ... - 13 -

Use Unit – Interface/Header .. - 13 -

Class Explorer.. - 14 -

Component Search in the Tool Palette .. - 15 -

The old Component Toolbar is back .. - 15 -

Code Editor .. - 16 -

Source Code Formatter ... - 18 -

Source Code Editor SEARCH ... - 20 -

Search in File ... - 20 -

Change History .. - 22 -

Refactoring ... - 23 -

Unit Testing .. - 23 -

Data Explorer ... - 24 -

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 2 -

SQL Window - Query Builder ... - 25 -

Background Compilation .. - 26 -

Debugger ... - 26 -

What’s new in the VCL and RTL .. - 29 -

VCL Direct2D and Windows 7 ... - 29 -

Touch and Gestures .. - 30 -

Ribbon Controls ... - 32 -

Windows Vista and Windows 7 support .. - 33 -

New and enchanced VCL Components .. - 34 -

New memory manager and new RTL functions .. - 47 -

SOAP 1.2 client support .. - 48 -

Regular Expression ... - 48 -

Object-oriented file and directory I/O classes .. - 49 -

100% Unicode.. - 49 -

New language features and compiler resources.. - 52 -

Enhanced RTTI .. - 52 -

Attributes .. - 52 -

Exit Function .. - 53 -

Inline Directive ... - 54 -

Operator Overloading .. - 55 -

Class Helpers... - 57 -

Strict private and Strict protected... - 59 -

Records support methods .. - 59 -

Class abstract, Class sealed, Class const, Class type, Class var, Class property - 60 -

Nested classes... - 60 -

Final methods .. - 61 -

Static class method .. - 61 -

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 3 -

For … in ... - 61 -

Generics ... - 62 -

Anonymous Methods ... - 64 -

Virtual Method Interception .. - 65 -

New $POINTERMATH {ON – OFF } Directive .. - 68 -

New Warnings.. - 68 -

dbExpress .. - 69 -

Framework ... - 69 -

dbExpress Metadata .. - 71 -

dbExpress Drivers ... - 73 -

Cloud Computing ... - 76 -

Microsoft Windows Azure .. - 76 -

Amazon EC2 .. - 76 -

DataSnap ... - 77 -

Concepts .. - 77 -

DataSnap Server – Server Container .. - 78 -

DataSnap Server – Server Module .. - 79 -

DataSnap Server – Filters ... - 80 -

DataSnap Server – HTTP Tunneling ... - 81 -

DataSnap – Security .. - 84 -

DataSnap REST Server ... - 85 -

DataSnap Client – dbExpress .. - 87 -

DataSnap – Sending and Receiving objects ... - 90 -

Delphi translation tools – Localizing your Applications .. - 93 -

UML modeling, audits, metrics, and documentation .. - 94 -

UML Modeling .. - 94 -

Audits ... - 97 -

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 4 -

Metrics ... - 100 -

Documentation ... - 102 -

Third-party Tools and components .. - 103 -

AQtime – Performance Profiling .. - 103 -

FinalBuilder – Build Automation... - 104 -

CodeSite – advanced Logging System ... - 105 -

IP*Works .. - 105 -

TeeChart 2010 ... - 106 -

Rave Reports 9 .. - 106 -

Beyond Compare ... - 106 -

VCL for the Web .. - 106 -

Delphi XE Editions – Professional, Enterprise and Architect ... - 107 -

Conclusion.. - 107 -

About The Author ... - 108 -

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 5 -

INTRODUCTION
Many Delphi users wonder whether they’ll find compelling reasons to migrate to Delphi
XE. Here they are: a plethora of new features allied to unparalleled developer productivity,
all aimed at your ability to create higher-quality applications with improved performance.
This article gives a few good reasons to migrate, along with an overview of all the new
features added to Delphi product releases since version 7.

The following table gives a quick snapshot of the new, top level, capabilities in each of the
Delphi product releases since Delphi 7. This paper provides the deep technical
information for all of these features and more.

Delphi 2005

• Multi-unit namespaces, for ... in ... do loops, inline functions and other code optimizations.

• Heterogeneous database access, multi-tier database applications

• Refactoring, Source code History view

• Unit testing

Delphi 2006

• Code block completion/Surround, Editor Change Bars

• Live Code Templates

• UML Modeling, Audits, Metrics, Doc Gen

• Design Patterns

Delphi 2007

• MSBuild, Build Configurations

• VCL - AJAX, Vista compatibility

• Vista and XP Themes for applications

• dbExpress - new framework, delegate drivers, Unicode database support

Delphi 2009

• Unicode throughout the language, library and IDE

• Generics and Anonymous Methods

• Resource Editor, Class Explorer

• DataSnap multi-tier

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 6 -

• VCL – new components, Custom Hints, Ribbon Controls

• Localization – Integrated Translation Environment, External Translation Manager

Delphi 2010

• Windows 7, Multi-Touch and Gesture support, Direct-2D

• IDE Insight, Source Code Formatter, Search task bar

• Background compilation

• Enhanced RTTI

• Breakpoints in threads, freeze/thaw threads

• DataSnap – HTTP protocol support

Delphi XE

• DataSnap – HTTPS, JavaScript, REST support

• Subversion integration

• Regular Expression library

• AQTime, CodeSite, Beyond Compare, Final Builder

• Cloud Services and Cloud Deployment

We understand that developers are busy creating software, and that spending time to
migrate to a new version is not always possible since you always have to deliver new
projects.

Possibly the best reason for you to migrate to Delphi XE, C++Builder XE or RAD Studio
XE, is that buying those versions gets you earlier versions at no extra cost.

For example buying Delphi XE also gets you Delphi 7, Delphi 2007, Delphi 2009 and
Delphi 2010.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 7 -

WHAT’S NEW IN THE IDE

SUBVERSION INTEGRATION – VERSION INSIGHT
With Delphi XE you can easily use the popular Subversion version control system to
manage source code revisions for your own code or among your team. Features include:

• Integration into the project manager and history manager

• Support for common version control tasks like import, update, commit and show
log.

• Difference and merge viewer

• Source code for the integration using the Open Tools API available as an open
source project

This integration is Open Source and is hosted on SourceForge
(http://sourceforge.net/projects/radstudioverins/), but there’s actually an easier way to
access it if you already have XE. We ship a version of the source in the RAD Studio samples
directory (which is at C:\Users\Public\Documents\RAD Studio\8.0\Samples).

PROJECT MANAGER
The new Project Manager introduces a lot of new capabilities, which will bring more
productivity like:

• Sorting the Contents of the Project Manager: The new Sort By toolbar button
enables you to sort the items in the Project Manager by name, timestamp, path
name, or file type. You can also specify Auto Sort, which means that future additions
to the project or project group are to be added in the current specified sort order.
See Project Manager.

o Compile All From Here and Build All From Here: The project context menu
on the Project Manager contains a new From Here command that enables
you to perform the following:

o Compile All From Here

o Build All From Here

o Clean All From Here
These three commands start a compile, a build, or a clean operation,
respectively, beginning at the selected node in the project. These
commands are described in Project Context Menu.

http://sourceforge.net/projects/radstudioverins/

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 8 -

• Compile All, Build All, and Clean All: These new context menu commands are
available for Project Groups that contain more than one project. See Project Group
Context Menu.

• The Project context menu on the Project Manager contains a new Install|Uninstall
command that enables you to either install or uninstall a design-time package.

GALLERY
The Gallery has been augmented with a search feature. And as an extra productivity
enhancement, all gallery items show up but the ones that used to be invisible are grayed
out. This should really help those customers migrating from Delphi 7 where all COM
wizards were visible but you had to know the order in which to create them. Now, you can
run any wizard that is enabled and there won't be any question of where the COM wizards
went.

Figure 1. New project Gallery, search integrated

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 9 -

NEW PROJECT OPTIONS
We’ve changed the IDE in many different ways in order to make development faster and
easier. The project compilation options are now displayed in columns and grouped by
categories in a friendly manner. It’s also now possible to save your project’s configuration
options, or build configurations, as you’ll see in Figure 2.

Figure 2. Build Configurations

BUILD CONFIGURATIONS
Compiling and debugging projects are regular tasks for developers. However, the project
options that are used to run the final version (release) are not always the same project
options you use when debugging. Having to constantly change your project’s options is a
time-consuming task that you can now avoid, never again being forced to spend lots of
time working with the Project Manager. In Delphi XE the build configuration options are
seamlessly integrated to the Project Manager.

In addition, project configurations can be saved in XML-format OPTSET files. Working with
these files you're able to reuse project options from previous projects, no longer having to
set them each time a new project is started. Named option sets and further configure
build configuration files.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 10 -

IDE INSIGHT
The new IDE Insight search box enables you to type in a string and then select from a list
of all the matching items in the IDE and in your current project environment. The IDE
Insight box contains a list of categories such as Commands, Files, Components, Project
Options, and so forth.

As you type your search string, IDE Insight performs an incremental search: the IDE Insight
box displays only the categories that contain matching items, along with the one "best"
match from each category. You can press Alt+A or a button on the IDE Insight dialog box
to toggle between showing all categories (with one "best" match per category) or all
matches (which might require you to scroll through the list to find the match you seek).

Figure 3. IDE Insight

When you double-click an item in the IDE Insight box, the IDE automatically invokes or
performs the associated action. For example, if you type "open", the list displays all the
currently available items that contain the string "open". If you double-click the name of a
dialog box, the dialog box is invoked. If you double-click a component (such as
TOpenDialog), the component is automatically added to the active form.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 11 -

COMPONENT CREATION WIZARD
The Component Creation and Import Wizards have been redesigned to include type
libraries, ActiveX controls and assemblies. Both wizards can now install into an existing
package or in a new package.

As you see in Figure 4, a new field was added to filter components, making it easier for
you to locate the component you want to inherit.

Figure 4. Ancestor Component

COM
COM wizards and the entire type library have been restructured. In fact, the COM Object
Creation Wizards are all brand new.

What has changed? A new file type - RIDL (Restricted Interface Definition Language) – was
added to the COM architecture. RIDL files work as recording devices projects use to save
type libraries. Therefore, the Type Library (.TLB) binary file becomes an intermediary file,
like .DCU, .RES, .OBJ, and so on. This means developers are now able to recompile tlb

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 12 -

files using the command line prompt, and even edit a tlb file using a text editor, while still
keeping track of its version.

The type library now uses a text file (the RIDL file), not TLB. This is beneficial because:

• You no longer need to check the tlb file in. It’s now automatically generated based on
the last RIDL file.

• Different developers can work with the same type library. This is so because the text file
can now be merged, something that couldn’t be done with the binary file used
previously.

• The RIDL format provides the Type Library editor with much higher flexibility.
• You can easily compare different RIDL files.

NEW RESOURCE MANAGER
The Resource Compiler allows you to choose between compiling your resources with
BRCC32.exe or RC.exe (Microsoft Platform SDK resource compiler). RC supports the use of
Unicode characters in resource files and file names. It also supports the new Windows Vista
types (e.g., icons and alpha channel). When you use RC you must define #include
<winresrc.h> explicitly both for Delphi and C++.

The New Resource Manager allows you to add many resource files (bitmaps, icons,
fonts…) to your project.

Figure 5. Resource Editor

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 13 -

MANAGING THE MENU REOPEN FILES
It is now possible to control the number of files and projects that appear on the File
Reopen menu. You can now specify the amount of projects and files that you want to
appear in the list, as well as clean up old files/projects you no longer want in the list.

USE UNIT – INTERFACE/HEADER
Until Delphi 2009 the Use Unit option declared the unit on the section Implementation,
now you can define where it will be declared, Interface or Implementation for Delphi code.

In addition, our projects bring tens, hundreds or even thousands of Units, when we need
to declare the unit in the code it becomes difficult to do through the Use Unit option, not
anymore, now you can use masks to Filter the units and make it easy to find the unit as
shown in Figure 6.

Figure 6. New Use Unit window

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 14 -

CLASS EXPLORER
The Class Explorer is a very useful tool that enables you to visualize a project’s class
hierarchy and its interfaces, as well as add properties, methods and variables to it. These
operations can be performed by means of UML, through the use of class models. UML is
one of the many resources that were incorporated to Delphi.

Figure 7. Class Explorer

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 15 -

COMPONENT SEARCH IN THE TOOL PALETTE
In Delphi 2006 you could filter components typing the first couple of letters of their names
in the Tool Palette. In Delphi 2007 this feature was enhanced and you were then able to
type in any portion of the component name. In Delphi XE an Edit field is used to achieve
the same result, making this feature clearer and easy to recognize at first glance.

Users who prefer Delphi 7’s layout (i.e., components displayed at the upper portion of the
IDE) will be glad to know Delphi XE’s IDE can look just like Delphi 7’s.

However, before switching to the old Delphi 7 layout, give the Tool Palette in the new
version a try. Locating components with ease, the orderly arrangement of categories, etc.,
can provide great productivity gains.

Figure 8. Component Search

THE OLD COMPONENT TOOLBAR IS BACK
We have heard that a lot of developers liked the old Component Toolbar as it was in
Delphi 7, and consider that one of the reasons not to move to the new release. In Delphi
2010 (and later versions) you can use the old Component Toolbar and/or the new Tool
Palette.
To activate the Component Toolbar just right click on the main toolbar and select
Component. After that you can right click on the Component Toolbar to see the list of all
categories available or just navigate through the tabs and chose one.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 16 -

The configuration of the Tool Palette and Component Toolbar are independent, and you
can for example reorder the categories. There is also a search box for the components on
the Component Toolbar.

Figure 9. Delphi IDE using Delphi 7 layout

CODE EDITOR
The new Live Templates feature implemented in Delphi 2006 extends your ability to create
code templates in Delphi. These are created as XML files, and help you program with less
code.

Block completion is one of the resources involved in enabling automatic begin and end.
And who can honestly say he’s never had a hard time with begin..end?

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 17 -

Consider this context: you want to change the name of all variables in a selected part of
the code. Find..Replace is not a good practice for this situation. It doesn’t guarantee only
variable names will be changed in the process. Since Delphi 8 you can use Sync Edit to
edit different portions of code simultaneously, provided they share the same identifier.
Taking the code below as an example, you could select the entire block, make sure sync
edit is active and then change the “Comm” variable a single time.

Figure 10. Live Templates, sync edit, code folding and other source code editor features

Alongside the code block you see yellow and green marks. The yellow ones are shown for
lines that have changed since the last Save. Green marks, in turn, indicate lines that were
recently changed and saved.

You also see the smart code line numbering. And you’re able to either expand or collapse
a method or a class right within the block.

Think about a unit with tens of methods. You hope one day you’ll have enough time to
stop and set it in order, but never really find time to do so. The code above holds a region
called “Methods for enabling/blocking user access”. This region has two methods for
either enabling or blocking users. You can’t see those methods, unless their region is
expanded. A question remains: wouldn’t it be easier to organize and visualize the code
with the assistance of such features?

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 18 -

Help from within the code (Help Insight): Press F1 in order to see the documentation of a
method, type, class, etc. As you can see, the code above displays the CreateCommand
method help info. The same thing happens with any method, type or class, provided it has
a description available.

Find references for a method, class, variable, or any other specific item. Imagine your code
holds a class named TCGC, which you want to rename to TCNPJ. Assuming you’re a
careful developer, tell me where the TCGC class is referenced in the project. Find..Replace
won’t work this time. Instead, try pressing Shift + CTRL + Enter over class TCGC. The IDE
then looks for all references in the project, as seen below.

Figure 11. Find References with Live Template

If you’re now wondering how to rename all classes to TCNPJ, wait until we discuss
Refactoring.

Another useful feature is named Surround. It works basically by allowing you to add
begin/end, if/begin/end, try/finally, try/except, etc., to a block of code.

SOURCE CODE FORMATTER
Delphi has its default formatting code, but we all know that many developers follow this
pattern and many have their own style, this is cause for great discussion, but that is no
longer a problem.

The IDE now provides a fully customizable code formatter for accessible via CTRL + D.
This allows you to have your unit formatted according to the desired settings.
Furthermore, you can use the Project Manager to format all units included in the project.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 19 -

The IDE Insight Formatter (Figure 12) allows you to set your own options for Indentation,
Spaces, Line breaks and Capitalization, and your code will be formatted according to
these options when you invoke the code formatter.

Figure 12. Code Formatter configuration window

There is also Profile support, which allows you to maintain and switch between several sets
of formatting options used by the source code formatter. The formatting options are
stored in configuration files. By selecting a profile you activate the set of formatting
options stored in this profile.

To create a configuration file use the Save As command button. By default, configuration
files have the .config extension.

Profiles are special kinds of configuration files. Profiles have the following additional
properties:

• Profiles should match the Formatter_*.config file mask (profile mask).

• Profiles should be located in the RAD Studio working directory. By default, this is
the "%APPDATA%\Embarcadero\RAD Studio\VersionNumber" directory.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 20 -

SOURCE CODE EDITOR SEARCH
The search feature in the code editor has been overhauled and is based on other popular
search implementations (e.g. Firefox and Internet Explorer).Now when you press CTRL + F
and type a search word you will see results as shown in Figure 13, where the first content
from the cursor will be highlighted in black and the remaining orange.

Figure 13. Searching for the word “function”, yields the above result.

SEARCH IN FILE
Find content in files is a common task and take time, almost time we try to find content in
directories that are not part of the project, repeating this operation many times is stressful.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 21 -

In Delphi 2010 we added a feature to enable you to select directories for “Find in files”
easier. You can now save groups of directories that you use on a regular basis in
conjunction with “Find in Files” (See Figure 14).

Figure 14. Search in File window

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 22 -

CHANGE HISTORY
Files are locally versioned whenever they’re changed, even in the absence of version
control, thus allowing you to make comparisons between them.

Figure 15. Change History

If your project is integrated with Subversion, the Change History will list the file revisions
from your version control system.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 23 -

REFACTORING
Delphi 7 users will surely love to try this resource. Refactoring is a technique you can use to
restructure and modify your existing code in such a way that
the intended behavior of your code stays the same.
Refactoring allows you to streamline, simplify, and improve
both performance and readability of your application code.

Delphi includes a refactoring engine that evaluates and
executes the refactoring operation. The engine also displays
a preview of the changes that will occur in a refactoring pane
that appears at the bottom of the Code Editor. The potential
refactoring operations are displayed as tree nodes, which can
be expanded to show additional items that might be affected
by the refactoring, if they exist. Warnings and errors also
appear in this pane. You can access the refactoring tools from
the Main menu and from context-sensitive drop down menus.

UNIT TESTING
Delphi integrates an open-source testing framework, DUnit, for developing and running
automated test cases for your applications. This framework simplifies the process of
developing tests for classes and methods in your application. Using unit testing in
combination with refactoring can improve your application’s stability. Running a standard
set of tests every time a small change is made throughout the code makes it more likely
that you will catch any problems early in the development cycle.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 24 -

DATA EXPLORER
It’s now easier to retrieve data from databases. Using the Data Explorer along with drag-
and-drop capabilities you can access tables, views, stored procedures and other database
items. Besides that, you can also search for data using SQL.

Connections are established through dbExpress. This means Data Explorer supports every
database dbExpress supports.

Each connection is assigned an alias which is saved in the dbxconnections.ini file
(dbExpress’ configuration file). Aliases are treated as shared information, thus facilitating
the use of Data Explorer.

Figure 16. Data Explorer

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 25 -

SQL WINDOW - QUERY BUILDER
The Data Explorer allows developers to easily build complex SQL queries via an intuitive
visual query builder interface.

Figure 17. SQL Window

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 26 -

BACKGROUND COMPILATION
Since Delphi 2010 you can perform background compilation — that is, you can start a
compile running as a separate and parallel thread and continue working in the IDE while
the compiler compiles your project.

You can continue to work in the IDE while a background compilation runs. For example,
you can edit files, even the files you are compiling, and you can set and modify
breakpoints.

Figure 18. Compiler dialog transparent during the compiler process running in background

DEBUGGER
The debugger now comes with the “Thread View and Wait Chain Traversal” feature,
available only for Windows Vista and Windows 7. This resource helps you locate deadlocks
and thread contentions.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 27 -

During the debug process it is helpful to visualize the content of variables. The Watch List
comes in handy for that, but the higher the number of items added the more confusing
the visualization gets. Developers can now group Watch List variables based on custom
names. Custom variable groups are then represented as tabs in the Watch List.

After the debug is finished, all units that are opened during the process are automatically
closed; only units that remain open are the ones that were open before the debug process
was started.

There are a lot of improvements with the visualization and usability of local variable
window, call stack and others. There is also a new tree view for the content of objects that
are being debugged, shown in Figure 19:

Figure 19. Debugger

Starting with Delphi 2010 it’s much easier to debug a multi-threaded application. New
features in the debugger allow for step-by-step debugging in threads, as well as freezing
and thawing of threads. This way you can isolate only the threads that want to debug,

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 28 -

freezing all irrelevant ones. There are options in the “Thread Status View” to "Freeze"
"Freeze All Other Threads", "Thaw" and "Thaw All Threads". Also, there is now a
breakpoint option to only break on a specific thread.

Debugger Visualizers make it much easier to debug your data. How many times have you
needed to debug a variable of type TDate, TTime TDateTime? The IDE now shows these
as you would expect – human readable dates and times, instead of floating point values.
Similarly for TStringLists – the list of strings is shown in plain text
.
Furthermore, you can add your own Debugger Visualizers for your own custom types.

Figure 20. Data Visualizer for TStrings data type

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 29 -

WHAT’S NEW IN THE VCL AND RTL
Since Delphi 7, the VCL and RTL have been continuously enhanced. Besides complete
support to Windows XP, 2000, Vista, Windows 7 and Unicode, new components have been
added and existing components have been improved by the addition of new
functionalities.

All these add up to better component usability, easy creation of rich interfaces and the
ability to use Windows Vista and Windows 7 new functionalities, as well the full support for
touch and gesture. In this section, we focus on what’s new in existing components and the
changes in RTL classes.

VCL DIRECT2D AND WINDOWS 7
Microsoft Windows 7 introduces Direct2D a hardware-accelerated, immediate-mode, 2-D
graphics API that provides high performance and high-quality rendering for 2-D geometry,
bitmaps, and text. The Direct2D API is designed to interoperate well with GDI, GDI+, and
Direct3D. Direct2D forwards all drawing operations to the GPU (Graphics Processing Unit)
instead of the CPU and that means more resource available to your application. This topic
discusses how to take advantage of the new screen Direct2D Delphi in your application.

Direct2D is only supported on Windows 7, along with Delphi 2010 (or later) is 100%
compatible with Windows 7 and it uses several features of the new Microsoft operating
system, Direct2D is one. To make sure you're developing your application using Direct2D,
you must include the following units in your application:

• Direct2D, which exposes the wrapper classes as TDirect2DCanvas VCL.

• D2D1, which contains the header translations to Microsoft Direct2D API

The follow example shows how to override the Paint method of the form, using the class
TDirect2Canvas.

procedure T2D2Form.FormPaint(Sender: TObject);
var
 LCanvas: TDirect2DCanvas;
begin
 LCanvas := TDirect2DCanvas.Create(Canvas, ClientRect);
 LCanvas.BeginDraw;

 try
 { Drawing goes here }
 LCanvas.Brush.Color := clRed;
 LCanvas.Pen.Color := clBlue;
 LCanvas.Rectangle(100, 100, 200, 200);
 finally
 LCanvas.EndDraw;
 LCanvas.Free;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 30 -

 end;
end;

Direct2D will be the natural replacement of Canvas, the difference in graphics quality is
very high, as shown in Figure 21.

Figure 21. Graphic using Direct2D

TOUCH AND GESTURES
The application development market is not the same after the year of 2009, today the
emergence of applications for cameras, phones, GPS-based Touch and Gesture is very
large and growing rapidly. Windows 7 introduce the support for Multi-Touch where users
can interact with the application by two or more taps on the screen.

Before start developing touch applications is important to understand the 3 kinds of touch:

• Basic Touch already used in the market, fingers replace the right mouse button,
e.g. ATMs, point of sale, etc.

• Multi-touch Application elements with extensive interactions via touch, example:
movie Minority Report and iPhone. Only supported by Windows 7 and newer
hardware.

• Gestures Act with the movement of a finger or mouse, firing an event. May be
intuitive, allowing customization, more inputs and is supported by almost all
systems touch.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 31 -

Delphi has an architecture that allows users to plug other gesture engine and it will runs on
all supported versions of Windows, not only Windows 7. It’s also backwards compatible
with the available hardware and enables users to emulate mouse movements or touch.
The VCL brings more than 30 standard pre-defined gestures, as well the gesture editor for
writing, testing and reproduction of recorded GESTURE. In addition, Delphi includes a
component to simulate a virtual keyboard, the TTouchKeyboard.

All visual components have a Touch property, which has a sub-property, named Gesture
Manager, which will be connected to the respective component. The Gesture Manager will
manage all the gestures made in the application, it triggers an action for each gesture, all
actions are managed by the Action Manager, so even if you use Action Manager simply
connect their Actions to the Gesture Manager.

Figure 22 shows the Gesture Designer that allows recording, playback and testing of the
generated motion, the movement associated with the VCL component will trigger an
action by the Action Manager, the movement has to be close as possible, and you can
adjust sensitivity for each gesture.

Figure 22. The Gesture Designer, allow developers to create and test gesture

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 32 -

RIBBON CONTROLS
Most of you already know about the new Ribbon interface (used in Office 2007). Such
interfaces are designed to facilitate user access to your application’s menu options.

The VCL now comes with Ribbon Controls, a group of components that allows you to
create Ribbon-style Delphi interfaces.

Ribbon Controls integrate with the Action Manager, which means that applications with
Actions and the traditional menus can be easily migrated to Ribbon.

The architecture behind Ribbon Controls is very simple. From a Ribbon control you are
able to add a Tab (which contains groups). Each of these groups contains buttons with
customized appearance. Additionally, the Ribbon control includes the Quick Access
Toolbar and the Application Menu.

Figure 23 provides an example application with Ribbon Controls.

Figure 23. Ribbon Controls

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 33 -

WINDOWS VISTA AND WINDOWS 7 SUPPORT
Applications compiled with Delphi 2007 (or later) are 100% compatible with Windows Vista
and Windows 7. The VCL has been updated to support the new characteristics of this OS,
while new components were also added: TFileOpenDialog, TFileSaveDialog and
TTaskDialog.

New classes have also been created; for instance:

• TCustomFileDialog • TFileTypeItems
• TCustomFileOpenDialog • TTaskDialogBaseButtonItem
• TCustomFileSaveDialog • TTaskDialogButtonItem
• TCustomTaskDialog • TTaskDialogButtons
• TFavoriteLinkItem • TTaskDialogButtonsEnumerator
• TFavoriteLinkItems • TTaskDialogProgressBar
• TFavoriteLinkItemsEnumerator • TTaskDialogRadioButtonItem
• TFileTypeItem

Dialog box components are now displayed in a Vista-like fashion. You are now probably
wondering what happens to applications when you run them on Windows XP. There’s no
reason to be concerned about it. VCL recognizes the OS, using its specific resources and
the appropriate interface.

The TaskMessageDlg function was designed to support Windows Vista. It has the same
functionality seen in MessageDlg, with additional parameters that support Windows Vista’s
characteristics. When you run your application on Windows XP, MessageDlg is
automatically executed. VCL is there to ensure it.

The UseLatestCommonDialogs global variable defines that all dialog components
(TOpenDialog, TSaveDialog, TOpenPictureDialog and TSavePictureDialog) should follow
Windows Vista’s design whenever it receives a TRUE statement.

For example, this is how Open and Save Dialogs look in Windows Vista and Windows 7:

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 34 -

Figure 24. Open Dialog in Windows Vista Figure 25. Save Dialog in Windows Vista

The units below were enhanced to support Window’s new APIs.

• UxThemes – new
• DwnApi – new
• ActiveX – updated
• Windows – updated
• Messages – updated
• CommCtrl – updated
• ShlObj - updated

NEW AND ENCHANCED VCL COMPONENTS

TACTIONMANAGER
New properties - DisabledImages, LargeImages and LargeDisabledImages - that allow you
to define large and disabled images, based on the TImageList component.

PNG SUPPORT
The Image component supports the PNG format natively.

TBITMAP
Support to 32-bit alpha bitmaps, along with the addition of the AlphaFormat property.

TBUTTONGROUP
This component allows you to group many different buttons in a panel.

TBUTTONEDIT
The new TButtonEdit component allows you to add images within the Edit field. Images
can be placed either at the right or left side. You can also use events to control image
clicking – by means of the onLeftClick and onRightClick events.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 35 -

TLINKLABEL
LinkLabel allows you to add HTML tags that affect the appearance of the component.

TPOPUPACTIONBAR
Now supports ActionBar styles.

THEADERCONTROL AND THEADERSECTION
New checkbox support.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 36 -

TBUTTON
Windows Vista now has two new button styles, both supported by Delphi with its TButton
class.

CommandLink has a different, friendlier design. You can use it to add a more detailed
description of the button functionality.

SplitButton opens a list of options when clicked. This list is presented as a PopMenu. You
can also assign images to the items.

Figure 26 New Button Styles
TLISTVIEW AND TTREEVIEW
TListView now allows you to define basic and advanced groups. The advanced group
support enables deeper customization of groups (requires Vista), allowing you to define
images for each of them.

TTreeView allows enabling/disabling nodes and images for expanded items.

Figure 27. TListView

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 37 -

TBALLOONHINTS
Hints now come in Windows Vista style and allow the addition of titles, descriptions and
images, which will make your user notifications much friendlier.

Figure 28. Balloon Hints

TCATEGORYPANELGROUP
This new component is very useful. It works like an Outlook bar, to which you can add
many different panels. Each of these panels can contain any VCL component. You can
define a title, an image, the alignment and an icon for each of the panels, being able to
expand and collapse them.

Figure 29. Panel Group

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 38 -

NEW PANELS
The traditional TPanel is a visual container for other components. Within TPanel you are
able to accommodate visual controls wherever you want. In other words, it works with
absolute positioning (the Top and Left coordinates of the control refer to the panel’s
upper left corner).

Inspired by similar Java concepts (namely, the Layout Manager, which defines how
controls are distributed within the container) we can say we now have three kinds of layout
managers:

• TPanel : absolute type, or XY. Components are placed in fixed, precise positions.
• TFlowPanel : components are placed in a sequence, according to a given order (similar to

an HTML page, neither using tables nor CSS stylesheets).

o The flow is determined by the FlowStyle property, which accepts the options you see
below. In order to understand the naming convention, keep in mind that components are
accommodated according to the direction defined by the first pair (e.g., LeftRight). When
there’s no space left in the panel, the direction is redefined by the second pair (e.g.,
TopBottom):

 fsLeftRightTopBottom: left to right, top down (default)
 fsRightLeftTopBottom: right to left, top down
 fsLeftRightBottomTop: left to right, bottom up
 fsRightLeftBottomTop: right to left, bottom up
 fsTopBottomLeftRight: top down, left to right
 fsBottomTopLeftRight: bottom up, left to right
 fsTopBottomRightLeft: top down, right to left
 fsBottomTopRightLeft: bottom up, right to left

o Another relevant property is AutoWrap. When True, indicates the flow will be “broken”

towards the other direction in case the panel runs out of space. When False, components
outside the boundaries of the panel will not be visible.

o You can use this panel to automatically generate forms, with fields being dynamically
defined either in a database or a file. This way you do not need to be concerned about
positioning each of the fields.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 39 -

Figure 30. Form Auto Generation

• TGridPanel : the panel is partitioned by lines and columns, with each of the resulting cells
holding a component (similar to the use of HTML tables).

o Components are arranged according to the order of the lines (top down) and, within each

line, column-wise (left to right).
o The number of lines is determined by the RowCollection property, which can contain

various objects of the TRowItem class. Each item has two properties:

 SizeStyle: determines the standard by which line height is specified in the Value
property:

• ssAbsolute: number of pixels
• ssAuto: the number is disregarded, with line height being automatically

calculated
• ssPercent: percentage in comparison to the panel height

 Value: a number expressing the height, according to the SizeStyle property.

o Similarly, the number of column is determined by the ColumnCollection property, which

contains objects of the TColumnItem class. TColumnItem has the same properties
TRowItem does, differing only in that they relate to the column width, not the row's.

o The ExpandStyle property determines an action for whenever someone tries to add a
component into a panel that is out of free cells. Its possible values are:

 emAddRows: a new line is added to the panel to accommodate the components
 emAddColumns: new columns are added to accommodate the components
 emFixedSize: an exception is raised when there’s no more free space to accommodate

new components.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 40 -

Figure 31. Expand Property Style

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 41 -

TCATEGORYBUTTONS
This component allows you to create buttons and group them into categories, similar to
what's seen in an Outlook bar. It helps you refine the design of your applications.

Figure 32. TCategoryButtons

TDRAWGRID, TSTRINGGRID, TDBGRID
Themed and gradient styles have been added to the grid components.

TTRAYICON
Think of those icons you see beside the taskbar clock, in the Windows tray. What if you
could place your application right there too? It’s now more than simple to do so. All you
have to do is place a TTrayIcon component (Win32 tab) in the main form. Set just a few
properties and you’re done:

• Icon: Stores the icon that is displayed in the tray. You can use your application’s icon or an icon
that describes a status or situation. This icon can be changed at anytime.

• Icons: references a TImageList containing a bunch of bitmaps or icons which will be used in the
animation.

• Animate: When True, keeps swapping the icons in the Icons list. The index of the icon that is
being currently displayed can be either retrieved or changed using the IconIndex property.

• AnimateInterval: millisecond interval of the icon swapping process. The OnAnimate event is
generated after each iteration, allowing you to define an action to be taken.

• BalloonTitle and BalloonHint: Title and text for the balloon, displayed by the
ShowBalloonHint method. The balloon can be closed by a simple click (either on it or over the
dialog’s X). However, it goes away automatically after the interval predefined in the
BalloonTimeout property (milliseconds).

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 42 -

• PopupMenu: it’s common to associate a popup menu to the application’s icon; enabling users
to quickly access the most commonly used commands. All it takes for you to do so is reference
the menu in this property. To access it, left-click the icon.

You can hide the main form (using methods Hide or Visible := False) without halting the
application. In this case it’s essential to provide the tray icon with a menu or event
(OnMouseClick, for instance) to ensure the control is passed back to you right after.

Figure 33. Tray Icon

VCL – MARGINS AND PADDING
Three seems to be a magic number these days… Besides three new visual components,
the VCL has also been improved with three additional classes:

• TMargins
• TPadding
• TCustomTransparentControl

The TControl class now has an additional property (Margins, of TMargins class). TMargins
is used in the Margins property of TControl and its descendants. TMargins helps define
the relative position between components on a form, and between the edges of the form
and the component. For example, when you set the left margin for a component to 10
pixels, the component will not come closer than 10 pixels to the edge of the container or
to another component on the left edge. The number of pixels by which two components
are separated is the sum of the pixels of both components.

The TWinControl class adds an extra property – Padding, of TPadding class: a TMargins
descendent. a

Padding adds space along the edge the control. Child controls that are aligned to the
parent are positioned inside the control according to this spacing. Padding does not affect

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 43 -

child controls which are not aligned to the parent control, nor does it affect the size of the
ClientArea.

Padding is the opposite of Margins. Margins affects the positioning of the control itself
inside the parent control, but Padding affects how all aligned child controls are positioned
with respect to the parent control.

TRANSPARENT CONTROLS
The new TCustomTransparentControl class can be used for components that need to be
there while pretending they’re not. Uh oh. Well... think of it as the glass of a window or
door. You know it’s there, although you’re unable to visually perceive it. To see the
difference, you can do this test: create a new VCL application (File | New | VCL Forms
Application – Delphi for Win32). Place two TButtons and two TLabels in it, see Error!
Reference source not found.

Figure 34. Transparent Controls

Set both buttons' Top property to 40; Button 1 and 2’s Left properties to 30 and 210,
respectively. When you’re done, type the code as below. Note that the form implements
the events OnCreate, OnDestroy and OnClick, with both buttons sharing the same
OnClick event.

I’ve created a TCustomTransparentControl descendent – TTransparentControl – and a
TCustomControl descendent - TOpaqueControl. They are dynamically created by the
form’s OnCreate event, being positioned right above the other existing controls. I’ve also
added an OnClick event to our customized controls for you to observe their behavior. The
result can be seen in Figure 35.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 44 -

Figure 35. Transparent Control Example

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 45 -

type
 TTransparentControl = class(TCustomTransparentControl)
 protected
 procedure Paint; override;
 end;

 TOpaqueControl = class(TCustomControl)
 protected
 procedure Paint; override;
 end;

 TfCustomTransparentControl = class(TForm)
 Button1: TButton;
 Button2: TButton;
 Label1: TLabel;
 Label2: TLabel;
 procedure Button1Click(Sender: TObject);
 procedure FormClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 InvCon : TTransparentControl;
 VisCon : TOpaqueControl;
 procedure ControlClick(Sender: TObject);
 end;

var
 fCustomTransparentControl: TfCustomTransparentControl;

implementation

{$R *.dfm}

{ TTransparentControl }
procedure TTransparentControl.Paint;
const
 txt = 'Transparent';
begin
 Canvas.Ellipse(0,0,Width,Height);
 Canvas.TextOut((Width - Canvas.TextWidth(txt)) div 2, Height div 2, txt);
end;

{ TOpaqueControl }
procedure TOpaqueControl.Paint;
const
 txt = 'Opaque';
begin
 Canvas.Ellipse(0,0,Width,Height);
 Canvas.TextOut((Width - Canvas.TextWidth(txt)) div 2, Height div 2, txt);
end;

{ Form }
procedure TfCustomTransparentControl.FormCreate(Sender: TObject);
begin
 InvCon := TTransparentControl.Create(Self);

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 46 -

 InvCon.Parent := Self;
 InvCon.SetBounds(10,10,100,100);
 InvCon.OnClick := ControlClick;

 VisCon := TOpaqueControl.Create(Self);
 VisCon.Parent := Self;
 VisCon.SetBounds(200,10,100,100);
 VisCon.OnClick := ControlClick;
end;

procedure TfCustomTransparentControl.FormDestroy(Sender: TObject);
begin
 InvCon.Free;
 VisCon.Free;
end;

procedure TfCustomTransparentControl.Button1Click(Sender: TObject);
begin
 ShowMessage('You have clicked on ' + (Sender as TButton).Caption);
end;

procedure TfCustomTransparentControl.ControlClick(Sender: TObject);
begin
 ShowMessage('You have clicked on control ' + (Sender as
TControl).ClassName);
end;

procedure TfCustomTransparentControl.FormClick(Sender: TObject);
begin
 ShowMessage('Form clicked!');
end;

The custom message CM_INPUTLANGCHANGE was added to the VCL components for
notification when the operating system language has changed, so you can reflect changes
in language in its application without restarting the system.

Icons can now be associated with bitmaps using TIcon.AssignTo, moreover the TImage
component supports TIFF.

New Month Calendar drop down box to define dates of properties in the Object Inspector
define as Date data type, in addition to the new Property Editor added to the Object
Inspector, which allows users to use checkbox for Boolean properties.

Other new features was implemented in Delphi adding the capability to rename
TCategoryButtons components, method CheckAll (cbUnchecked, True, True) for
TCheckListBox, function PtInCircle added to unit "Types" (similar to "PtInRect"),
ActiveLineNo property which returns the correct position of the cursor TRichEdit
component and the new unit IOUtils.pas which implement 3 new statics classes,

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 47 -

TDirectory, and TPath TFile, these classes expose many statics methods useful for
interacting with I/O.

Although there are dozens of improvements in VCL not here mentioned, but you can get a
complete list of these improvements through help system.

To conclude this topic, several VCL methods have become inline methods, and hence the
performance of these methods when used improved, as result the VCL gain in speed.

INTELLIMOUSE SUPPORT
IntelliMouse is how we refer to support for mouse-wheel scrolling in your application.
Support for this technology was first introduced to VCL in Delphi 2006. In order to use it,
simply declare the IMOUSE unit in your application.

TOBJECT
The father of all components in Delphi has also been enhanced:

• New methods
o class function UnitName : string
o function Equals(Obj : TObject) : Boolean;virtual
o function GetHashcode : Integer; virtual
o function ToString ; String;virtual

• A few additional Overloads for the following methods:

o MethodAddress
o FieldAddress

• The type of return of the functions below has changed from ShortString to String in order to

support Unicode
o ClassName
o MethodName

Other components - TPanel, TProgressBar, TTrayIcon, TScreen, and TRadioGroup – also
provide a lot of improvements.

NEW MEMORY MANAGER AND NEW RTL FUNCTIONS
Many RTL functions have been updated to improve the application performance.
FASTMM is the most relevant of such improvements. A new memory manager aimed at
Win32 applications, FASTMM enables applications to have better performance by
performing the compilation in Delphi 2006, and identifies memory leaks just declaring
ReportMemoryLikeonShutdown := True in any part of your program, in general I
recommend to add at the initialization section.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 48 -

It can’t be overemphasized that simply by compiling your applications in Delphi 2006 or
later, you experience performance gains, while also being able to detect memory
leakages.

SOAP 1.2 CLIENT SUPPORT
Delphi 2010 introduced the SOAP 1.2 client support through the THTTPRIO component.
In Delphi XE THTTPRIO exposes new properties to allow the developer to select a Client
Certificate at design-time.

REGULAR EXPRESSION
Delphi XE introduces RTL support for regular expressions (unit RegularExpressions).
Regular expressions provide a concise and flexible means for matching strings of text,
such as particular characters, words, or patterns of characters.

The following example shows how to use regular expression to validate IP address.

program RegExpIP;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 RegularExpressions;

var
 ipRegExp : String;
begin
 try

 ipRegExp := '\b(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.’ +
 ‘(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25’ +
 ‘[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]’ +
 ‘|2[0-4][0-9]|[01]?[0-9][0-9]?)\b';

 if TRegEx.IsMatch(paramstr(1), ipRegExp) then
 Writeln('Text DOES match the regular expression')
 else
 Writeln('Text DOES NOT match the regular expression');

 except
 on E: Exception do
 Writeln(E.ClassName, ': ', E.Message);
 end;
end.

Passing the parameter 200.100.2.21 (valid IP) the result will be:

 Text DOES match the regular expression

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 49 -

Passing the parameter 200.100.2.263 (invalid IP) the result will be:

 Text DOES NOT match the regular expression

OBJECT-ORIENTED FILE AND DIRECTORY I/O CLASSES
Delphi 2010 brings a new unit IOUtils contains three static classes: TDirectory, TPath and
TFile. These classes expose a number of static methods useful for I/O tasks. Most methods
are functionally and signature compatible with .NET classes System.IO.Directory,
System.IO.Path and System.IO.File.

The follow code shows how to read all files from specific folder.

procedure TForm2.Button2Click(Sender: TObject);
var
 Path : string;
begin
 if not TDirectory.Exists(edtPath.Text) then
 Caption := 'Invalid Path'
 else
 Caption := edtPath.Text;

 ListBox1.Clear;

 for Path in TDirectory.GetFiles(edtPath.Text, ‘*.*’) do
 Listbox1.Items.Add(Format('Name = %s', [Path]));
end;

100% UNICODE
One of the greatest challenges faced by our R&D team was incorporating Unicode
support throughout the Delphi language, VCL, RTL, and the IDE and the Delphi ecosystem
of tool and component partners..

As part of the Unicode development process we had meetings with customers, authors,
consultants and technology partners Working directly with our tool and component
partners proved essential in allowing third-party components to be available to support
the latest version of Delphi, as well as in keeping developers updated about how to work
with Unicode.

Unicode is a standard that allows computers to consistently represent and handle text from any
existing system of writing.

- The Unicode Standard: Version 5.0. 5. ed. Addison-Wesley Professional, 2006. 1472 p

Many character sets – like Chinese, Japanese, and Russian, along with others of Asian
background – are represented by means of Unicode. The most commonly used encodings

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 50 -

are UTF (Unicode Transform Format) and UCS (Universal Character Set). To learn more
about Unicode, visit: http://en.wikipedia.org/wiki/Unicode.

The result of all this is a Delphi that is 100% Unicode. You’re now probably wondering if
the migration is that easy. Definitely yes, the VCL and the compiler handle many things. In
case you want more detailed information about Unicode techniques I recommend that you
to read the white paper, “Delphi Unicode Migration for Mere Mortals”, available at
http://edn.embarcadero.com/article/40307.

One of the most relevant changes in this version is that String types are now based on
UNICODE. Previously based on the ANSI standard, the AnsiString and WideString types
still work the same way, except regarding their data size in bytes.

Unicode changes, in short:

• String maps UnicodeString, no longer AnsiString
• Char now maps WideChar (2 bytes, not 1 byte) being a UTF-16 character
• PChar maps PWideChar
• AnsiString maps the old String type

No changes were applied to:

• AnsiString
• WideString
• AnsiChar, PAnsiChar
• Short String contains AnsiChar elements
• Implicit conversions still work.
The user's active code page controls the mode (ANSI vs. Unicode), so that ANSI strings are still
supported.

Operations that do not depend on character size:

• String concatenation
• Standard String functions. E.g., Length, Copy, Pos, and so on.
• Operators. E.g., <string> < comparison> <string>, CompareStr(), CompareText(), etc.
• FillChar (<struct or memory>)
• Windows API

Operations involving the character size (measured in bytes) may require a few changes.
Nothing too complicated, but here’s a tip: pay special attention to code in which you:

1. Assume Sizeof (Char) is 1.
2. Assume the size of a string equals the number of bytes in the string.
3. Handle String or PChars directly.
4. Saves or reads a string from/to a file.

http://en.wikipedia.org/wiki/Unicode
http://edn.embarcadero.com/article/40307

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 51 -

Items 1 and 2 do not apply to Unicode, because in Unicode the Sizeof (Char) is 2 bytes and
the size of a string is twice as big as the number of bytes. Besides, the code that reads and
saves files must understand the right number of bytes to perform those operations, for a
character is no longer represented as 1 byte.

As you can see, migrating is very easy. The benefit of having Unicode support is that of
allowing Delphi developers to distribute their applications worldwide. Brazil is currently
one of the most relevant software developers in the global market. Many Brazilian
companies distribute their applications and/or interchange information with China, Japan,
Russia and other countries where Unicode is crucial.

In 2007, the Russian government acquired 1 million Delphi licenses to be used in teaching
primary and high school students to develop software with Delphi. Therefore, Unicode
support is vital for that country.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 52 -

NEW LANGUAGE FEATURES AND COMPILER

RESOURCES

ENHANCED RTTI
The RTTI is largely responsible for providing us with information about our objects,
thereby allowing the application and interaction of objects. One great example of the use
of RTTI is the Delphi IDE itself, where we use the Object Inspector, code editor, modeling
and other resources.

The evolution and development in other languages have changed the way we do
programming. Java and. NET applications are good examples in this direction, where the
language is now offering a high level of dynamic interaction. With the enhanced RTTI
support added in Delphi 2010, Delphi for Win32 now has the same power of reflection
that. NET and Java have. The new RTTI (RTTI.pas) is fully object oriented and allows the
creation and interaction with the applications in a much more dynamic way.

ATTRIBUTES
How many times have you heard your fellow users of Java and. NET comment on
attributes, I believe that many, actually attributes is a very interesting feature, often used in
frameworks such as Hibernate, .NET and Java.

Attributes let you define classes and features for their respective elements. There are
several examples that show the usefulness of the attributes. The best example for
attributes is to create framework object relational (O/R Mapping).

Attributes are defined through mandatory classes, they inherit from TCustomAttribute.

Example: TableAttribute – a class that will be used to map the application classes to the
database, the TableName property defines the name of the table.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 53 -

Set the attribute mapping table, and use it in their classes.

Example: A class is mapping TClient to the CUSTOMER (CLIENTE) table.

In this example we use attributes to map only the class, but we can also map methods,
variables, properties, method parameters, etc.

Attributes added in Delphi 2010 takes the language to another level and undoubtedly
enables us to provide great improvement in the future, as well as allow you to implement
several new features in your applications TODAY.

EXIT FUNCTION
The Exit function can take a parameter specifying a result. The parameter of the
System.Exit function must be of the same type as the result.

function doValidate(I : Integer) : boolean;
begin
 if I = 0 then
 exit(False)
 else
 begin
 …..
 // result something
 end;
end;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 54 -

INLINE DIRECTIVE
The Delphi compiler allows functions and procedures to be tagged with the inline
directive to improve performance. If the function or procedure meets certain criteria, the
compiler will insert code directly, rather than generating a call. Inlining is a performance
optimization that can result in faster code, but at the expense of space. Inlining always
causes the compiler to produce a larger binary file. The inline directive is used in function
and procedure declarations and definitions, like other directives.

program InlineDemo;
{$APPTYPE CONSOLE}

uses
 MMSystem;

 function Max(const X,Y,Z: Integer): Integer;inline
 begin
 if X > Y then
 if X > Z then Result := X
 else Result := Z
 else
 if Y > Z then Result := Y
 else Result := Z
 end;

const
 Times = 10000000; // 10 million

var
 A,B,C,D: Integer;
 Start: LongInt;
 i: Integer;

begin
 Random; // 0
 A := Random(4242);
 B := Random(4242);
 C := Random(4242);
 Start := TimeGetTime;
 for i:=1 to Times do
 D := Max(A,B,C);
 Start := TimeGetTime-Start;
 writeln(A,', ',B,', ',C,': ',D);
 writeln('Calling Max ',Times,' times took ',Start,' milliseconds.');
 readln

end.

When the above code is executed, the Max method is called 10 million times. The
numbers below vary depending on your machine. Using a Pentium M 1.8GHz with 2GB
RAM we’ve obtained the following results:

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 55 -

With inline Without inline
25 milliseconds 68 milliseconds

The inline directive is a suggestion to the compiler. There is no guarantee the compiler will
inline a particular routine, as there are a number of circumstances where inlining cannot be
done. The following list shows the conditions under which inlining does or does not occur:

• Inlining will not occur on any form of late-bound method. This includes virtual,
dynamic, and message methods.

• Routines containing assembly code will not be inlined.
• Constructors and destructors will not be inlined.
• The main program block, unit initialization, and unit finalization blocks cannot be

inlined.
• Routines that are not defined before use cannot be inlined.
• Routines that take open array parameters cannot be inlined.
• Code can be inlined within packages, however, inlining never occurs across package

boundaries.
• No inlining will be done between units that are circularly dependent. This included

indirect circular dependencies, for example, unit A uses unit B, and unit B uses unit C
which in turn uses unit A. In this example, when compiling unit A, no code from unit B
or unit C will be inlined in unit A.

• The compiler can inline code when a unit is in a circular dependency, as long as the
code to be inlined comes from a unit outside the circular relationship. In the above
example, if unit A also used unit D, code from unit D could be inlined in A, since it is
not involved in the circular dependency.

• If a routine is defined in the interface section and it accesses symbols defined in the
implementation section, that routine cannot be inlined.

• If a routine marked with inline uses external symbols from other units, all of those units
must be listed in the uses statement, otherwise the routine cannot be inlined.

• Procedures and functions used in conditional expressions in while-do and repeat-until
statements cannot be expanded inline.

• Within a unit, the body for an inline function should be defined before calls to the
function are made. Otherwise, the body of the function, which is not known to the
compiler when it reaches the call site, cannot be expanded inline.

If you modify the implementation of an inlined routine, you will cause all units that use that
function to be recompiled. This is different from traditional rebuild rules, where rebuilds
were triggered only by changes in the interface section of a unit.

OPERATOR OVERLOADING
Delphi allows certain functions, or "operators" to be overloaded within record
declarations. The name of the operator function maps to a symbolic representation in

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 56 -

source code. For example, the Add operator maps to the + symbol. The compiler
generates a call to the appropriate overload, matching the context (i.e. the return type,
and type of parameters used in the call), to the signature of the operator function.

The following table shows the Delphi operators that can be overloaded:

Operator Category Declaration Signature Symbol Mapping

Implicit Conversion Implicit(a : type) : resultType; implicit typecast

Explicit Conversion Explicit(a: type) : resultType; explicit typecast

Negative Unary Negative(a: type) : resultType; -

Positive Unary Positive(a: type): resultType; +

Inc Unary Inc(a: type) : resultType; Inc

Dec Unary Dec(a: type): resultType Dec

LogicalNot Unary LogicalNot(a: type): resultType; not

Trunc Unary Trunc(a: type): resultType; Trunc

Round Unary Round(a: type): resultType; Round

In Set In(a: type; b: type) : Boolean; in

Equal Comparison Equal(a: type; b: type) : Boolean; =

NotEqual Comparison NotEqual(a: type; b: type): Boolean; <>

GreaterThan Comparison GreaterThan(a: type; b: type) Boolean; >

GreaterThanOrEqual Comparison GreaterThanOrEqual(a: type; b: type): Boolean; >=

LessThan Comparison LessThan(a: type; b: type): Boolean; <

LessThanOrEqual Comparison LessThanOrEqual(a: type; b: type): Boolean; <=

Add Binary Add(a: type; b: type): resultType; +

Subtract Binary Subtract(a: type; b: type) : resultType; -

Multiply Binary Multiply(a: type; b: type) : resultType; *

Divide Binary Divide(a: type; b: type) : resultType; /

IntDivide Binary IntDivide(a: type; b: type): resultType; div

Modulus Binary Modulus(a: type; b: type): resultType; mod

LeftShift Binary LeftShift(a: type; b: type): resultType; shl

RightShift Binary RightShift(a: type; b: type): resultType; shr

LogicalAnd Binary LogicalAnd(a: type; b: type): resultType; and

LogicalOr Binary LogicalOr(a: type; b: type): resultType; or

LogicalXor Binary LogicalXor(a: type; b: type): resultType; xor

BitwiseAnd Binary BitwiseAnd(a: type; b: type): resultType; and

BitwiseOr Binary BitwiseOr(a: type; b: type): resultType; or

BitwiseXor Binary BitwiseXor(a: type; b: type): resultType; xor

Here is an example that implements addition, subtraction, implicit and explicit operators:

TMyClass = record
 class operator Add(a, b: TMyClass): TMyClass; // Addition

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 57 -

 class operator Subtract(a, b: TMyClass): TMyClass; // Subtraction
 class operator Implicit(a: Integer): TMyClass; // integer to TMyClass
 class operator Implicit(a: TMyClass): Integer; // TMyClass to integer
 class operator Explicit(a: Double): TMyClass; // Double to TMyClass
end;
// Method implementation example. Add
class operator TMyClass.Add(a, b: TMyClass): TMyClass;
begin
 // ...
end;
var
 x, y: TMyClass;
begin
 x := 12; // Implicit conversion of Integer, executes Implicit method
 y := x + x; // Executes TMyClass.Add(a, b: TMyClass): TMyClass
 b := b + 100; // Executes TMyClass.Add(b, TMyClass.Implicit(100))
end;

No operators other than those listed in the table may be defined on record.

Overloaded operator methods cannot be referred to by name in source code. To access a
specific operator method of a specific class or record, you must use explicit typecasts on
all of the operands. Operator identifiers are not included in the class or record's list of
members.

No assumptions are made regarding the distributive or commutative properties of the
operation. For binary operators, the first parameter is always the left operand, and the
second parameter is always the right operand. Association is assumed to be left-to-right in
the absence of explicit parentheses.

Resolution of operator methods is done over the union of accessible operators of the
types used in the operation (note this includes inherited operators). For an operation
involving two different types A and B, if type A has an implicit conversion to B, and B have
an implicit conversion to A, an ambiguity will occur. Implicit conversions should be
provided only where absolutely necessary, and reflexivity should be avoided. It is best to
let type B implicitly convert itself to type A, and let type A have no knowledge of type B (or
vice versa).

As a general rule, operators should not modify their operands. Instead, return a new value,
constructed by performing the operation on the parameters. Overloaded operators are
used most often in records (i.e. value types).

CLASS HELPERS
A class helper is a type that - when associated with another class - introduces additional
method names and properties which may be used in the context of the associated class (or
its descendants). Class helpers are a way to extend a class without using inheritance. A
class helper simply introduces a wider scope for the compiler to use when resolving
identifiers. When you declare a class helper, you state the helper name, and the name of

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 58 -

the class you are going to extend with the helper. You can use the class helper any place
where you can legally use the extended class. The compiler's resolution scope then
becomes the original class, plus the class helper.

Class helpers provide a way to extend a class, but they should not be viewed as a design
tool to be used when developing new code. They should be used solely for their intended
purpose, which is language and platform RTL binding. You can see an example below.

type
 TMyClass = class
 procedure MyProc;
 function MyFunc: Integer;
 end;

...

procedure TMyClass.MyProc;
var
 X: Integer;
begin
 X := MyFunc;
end;

function TMyClass.MyFunc: Integer;
begin
 ...
end;

type
 TMyClassHelper = class helper for TMyClass
 procedure HelloWorld;
 function MyFunc: Integer;
 end;

procedure TMyClassHelper.HelloWorld;
begin
 Writeln(Self.ClassName); // Self refers to TMyClass, not TMyClassHelper
end;

function TMyClassHelper.MyFunc: Integer;
begin
 ...
end;

var
 X: TMyClass;

begin
 X := TMyClass.Create;
 X.MyProc; // Executes TMyClass.MyProc
 X.HelloWorld; // Executes TMyClassHelper.HelloWorld
 X.MyFunc; // Executes TMyClassHelper.MyFunc
end.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 59 -

Note that the reference is always pointed to TMyClass. The compiler recognizes when it’s
appropriate to execute the call in TMyClassHelper.

STRICT PRIVATE AND STRICT PROTECTED
In Delphi, you have two options for determining the visibility of a class’ attributes: strict
private and strict protected.

• Strict private: class attributes are visible only within the class in which it is declared.
Those attributes can’t be seen by methods declared in the same unit, or by those that
are not part of the class.

• Strict protected: determines that class attributes and their descendents are visible.

RECORDS SUPPORT METHODS
Record data types in Delphi represent a mixed set of elements. Each element is called a
field and the declaration of a record type specifies a name and type for each field.

Records as of Delphi 2006 are even more powerful, bringing features supported only in
class. Here's a list of the new record features in Delphi 2006:

• Constructors
• Operator overload
• Non-virtual methods declaration
• Static methods and properties

The following example is the implementation of a record with the new characteristics:

type
 TMyRecord = Record
 type
 TColorType = Integer;
 var
 pRed : Integer;
 class var
 Blue : Integer;
 Procedure printRed();
 Constructor Create(Val : Integer);
 Property Red : TColorType Read pRed Write pRed;
 Class Property pBlue : TColorType Read Blue Write Blue;
 End;

Constructor TMyRecord.Create(Val: Integer);
Begin
 Red := Val;
End;

Procedure TMyRecord.printRed;
Begin

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 60 -

 WriteLn('Red: ', Red);
End;

Now the record can use many of the functionalities that were exclusive to classes.
However, records are not classes, meaning they still have many differences:

• Records do not support inheritance.
• Records may have variable parts; classes may not.
• Records are data types and, as so, can be copied. Classes cannot.
• Records have no destructors.
• Records do not support virtual methods.

CLASS ABSTRACT, CLASS SEALED, CLASS CONST, CLASS TYPE,
CLASS VAR, CLASS PROPERTY
There are many ways for you to declare classes, types, variables and properties.

• Class abstract defines an abstract class
• Class sealed classes cannot be extended through inheritance - such a class cannot

be used as a base class for some other (derived) class
• Class const defines a class constant that can be accessed without having to

instantiate the class
• Class type defines a class type that can be accessed without having to instantiate

the class
• Class var defines a variable from the scope of the class which you can access without

having to instantiate the class
• Class property grants access to the property without requiring the class to be

instantiated

NESTED CLASSES
Nested types are used throughout object-oriented programming in general. They allow
you to keep conceptually related types together, and to avoid name collisions. The same
syntax for declaring nested types may be used with the Delphi compiler. Class sample
below:

type
 TOuterClass = class
 strict private
 myField: Integer;

 public
 type
 TInnerClass = class
 public

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 61 -

 myInnerField: Integer;
 procedure innerProc;
 end;

 procedure outerProc;
 end;

This is how the method is implemented:

procedure TOuterClass.TInnerClass.innerProc;
begin
 ...
end;

To access the method within the Nested class, see the next example:

var
 x: TOuterClass;
 y: TOuterClass.TInnerClass;

begin
 x := TOuterClass.Create;
 x.outerProc;
 ...
 y := TOuterClass.TInnerClass.Create;

FINAL METHODS
The Delphi compiler also supports the concept of a final virtual method. When the
keyword final is applied to a virtual method, no descendent class can override that
method. Use of the final keyword is an important design decision that can help document
how the class is intended to be used. It can also give the compiler hints that allow it to
optimize the code it produces.

STATIC CLASS METHOD
When these classes are declared as Static they do not need to be instantiated.

FOR … IN
Delphi 2007 brought support for element-in-collection (collections, arrays, string
expressions and set-type expressions) style iteration over containers.

Example: Iteration in an Array

var
 IArray1: array[0..9] of Integer = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 62 -

 I: Integer;
begin

 for I in IArray1 do
 begin
 // do something here...
 end;

Example: Iteration in a String

var
 C: Char;
 S1, S2: String;

 OS1, OS2: ShortString;
 AC: AnsiChar;

begin

 S1 := ’New resources in Delphi 2009';
 S2 := '';

 for C in S1 do
 S2 := S2 + C;

 if S1 = S2 then
 WriteLn('SUCCESS #1');
 else
 WriteLn('FAIL #1');

 OS1 := 'Migrating from Delphi 7 to Delphi 2009...';
 OS2 := '';

 for AC in OS1 do
 OS2 := OS2 + AC;

 if OS1 = OS2 then
 WriteLn('SUCCESS #2');
 else
 WriteLn('FAIL #2');

end.

GENERICS
Support for generics was introduced in Delphi 2009.

What are generics? ‘Generics’ is the defining term for generic types. It is a language
construct that allows you to predefine any type of data from arrays, collections and other
sorts of lists. Using Generics allows you to write code in a generic way and have it work

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 63 -

with a specific type of data - classes or class methods. It’s also possible to define types at
runtime.

While using Generics, you will often also work with Collections. The Delphi RTL provides
several pre-defined Collections (defined in the “Generics.Collections” unit) see the of
data or objects including

• TList
• TQueue
• TStack
• TDictionary
• TObjectList
• TObjectQueue
• TObjectDictionary
• TThreadedQueue

Items added to these classes are of TObject type, meaning you can only add a single type
to the list. Whenever you need to read the items you must perform the type cast for each
of them, leaving all processing for the compiler. This is nothing but additional effort for
your application, or something that can potentially impact its performance. A relevant
portion of our code can be adapted to work with generics. Below you see a sample class
whose Key property should be a String and whose Value property should be an Integer. In
this case you do not use Generics.

type
 TSIPair = class
 private
 FKey: String;
 FValue: Integer;
 public
 function GetKey: String;
 procedure SetKey(Key: String);
 function GetValue: Integer;
 procedure SetValue(Value: Integer);
 property Key: TKey read GetKey write SetKey;
 property Value: TValue read GetValue write SetValue;
 end;

Using generics it’s possible to define the Key and Value properties as being of any type.
This is how you do so:

type
 TPair<TKey,TValue>= class // declares the TPair type with 2 parameters

private
 FKey: TKey;
 FValue: TValue;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 64 -

 public
 function GetKey: TKey;
 procedure SetKey(Key: TKey);
 function GetValue: TValue;
 procedure SetValue(Value: TValue);
 property Key: TKey read GetKey write SetKey;
 property Value: TValue read GetValue write SetValue;
 end;

You can now use this class in many different ways:

type
 TSIPair = TPair<String,Integer>; // declares it with types String and Integer
 TSSPair = TPair<String,String>; // declares it with other types
 TISPair = TPair<Integer,String>;
 TIIPair = TPair<Integer,Integer>;

You’ll find many uses for generics. Examples are provided here as a simple, limited
reference.

ANONYMOUS METHODS
As the name suggests, an anonymous method is a procedure or function that does not
have a name associated with it. An anonymous method treats a block of code as an entity
that can be assigned to a variable or used as a parameter to a method. In addition, an
anonymous method can refer to variables and bind values to the variables in the context in
which the method is defined. Anonymous methods can be defined and used with simple
syntax. They are similar to the construct of closures defined in other languages.

Example:

function MakeAdder(y: Integer): TFuncOfInt;
begin
 Result := { START anonymous method } function(x: Integer)
 begin
 Result := x + y;
 end; { END anonymous method }
end;

The MakeAdder function returns a nameless function; that is, an Anonymous Method.

Note that MakeAdder returns a value of TFuncOfInt type. The type of the Anonymous
Method is declared as a reference to the method.

Example: Executing the MakeAdder function

var
 adder: TFuncOfInt;
begin

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 65 -

 adder := MakeAdder(20);
 Writeln(adder(22)); // prints 42
end.
type
 TFuncOfInt = reference to function(x: Integer): Integer;

The above statement indicates this Anonymous Method:

• Is a function
• Receives an Integer value
• Returns an Integer value

You can declare both procedures and functions as Anonymous Methods.

type
 TSimpleProcedure = reference to procedure;
 TSimpleFunction = reference to function(x: string): Integer;

Anonymous Methods offer much more than just a simple execution point in code:

• Binding in variables
• Ease to use and define methods
• Ease to parameterize the code

VIRTUAL METHOD INTERCEPTION
Delphi XE has a new type in Rtti.pas called TVirtualMethodInterceptor. It creates a derived
metaclass dynamically at runtime that overrides every virtual method in the ancestor, by
creating a new virtual method table and populating it with stubs that intercepts calls and
arguments. When the metaclass reference for any instance of the "ancestor" is replaced
with this new metaclass, the user can then intercept virtual function calls, change
arguments on the fly, change the return value, intercept and suppress exceptions or raise
new exceptions, or entirely replace calling the underlying method. In concept, it's
somewhat similar to dynamic proxies from .NET and Java. It's like being able to derive
from a class at runtime, override methods (but not add new instance fields), and then
change the runtime type of an instance to this new derived class.

Why would you want to do this? Two obvious purposes spring to mind: testing and
remoting. Mock objects have been in vogue in the testing space in other languages for
some time. By intercepting method calls, one may more easily verify that a particular
subsystem is calling all the right methods, with the correct arguments, in the expected
order; similarly, the subsystem can proceed with the return values from these method calls,
without necessarily having to hit the database, the network, etc. for what should be a unit
test. Remoting on the basis of method calls is somewhat less useful, especially when an
unreliable and latency-prone network gets into the stack, but that's not the only usage
point. The virtual method interceptor logic was originally implemented to be used as part

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 66 -

of DataSnap authentication, so that a call that comes in from the network can still be
checked as its code flow spreads throughout the graph of objects.

Anyhow, here's a simple example to get started:

uses SysUtils, Rtti;
{$apptype console}
type
 TFoo = class
 // Frob doubles x and returns the new x + 10
 function Frob(var x: Integer): Integer; virtual;
 end;

function TFoo.Frob(var x: Integer): Integer;
begin
 x := x * 2;
 Result := x + 10;
end;

procedure WorkWithFoo(Foo: TFoo);
var
 a, b: Integer;
begin
 a := 10;
 Writeln(' before: a = ', a);
 try
 b := Foo.Frob(a);
 Writeln(' Result = ', b);
 Writeln(' after: a = ', a);
 except
 on e: Exception do
 Writeln(' Exception: ', e.ClassName);
 end;
end;

procedure P;
var
 foo: TFoo;
 vmi: TVirtualMethodInterceptor;
begin
 vmi := nil;
 foo := TFoo.Create;
 try
 Writeln('Before hackery:');
 WorkWithFoo(foo);

 vmi := TVirtualMethodInterceptor.Create(foo.ClassType);

 vmi.OnBefore := procedure(Instance: TObject; Method: TRttiMethod;
 const Args: TArray<TValue>; out DoInvoke: Boolean; out Result: TValue)
 var
 i: Integer;
 begin
 Write('[before] Calling ', Method.Name, ' with args: ');
 for i := 0 to Length(Args) - 1 do

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 67 -

 Write(Args[i].ToString, ' ');
 Writeln;
 end;

 // Change foo's metaclass pointer to our new dynamically derived
 // and intercepted descendant
 vmi.Proxify(foo);

 Writeln('After interception:');
 WorkWithFoo(foo);
 finally
 foo.Free;
 vmi.Free;
 end;
end;

begin
 P;
end.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 68 -

Here's what it outputs:

Before hackery:
 before: a = 10
 Result = 30
 after: a = 20
After interception:
 before: a = 10
[before] Calling Frob with args: 10
 Result = 30
 after: a = 20
[before] Calling BeforeDestruction with args:
[before] Calling FreeInstance with args:

You'll notice that it intercepts all the virtual methods, including those called during destruction, not
just the one I declared. (The destructor itself is not included.)

NEW $POINTERMATH {ON – OFF } DIRECTIVE
The $POINTERMATH directive enables mathematic operations with pointers.

NEW WARNINGS
When you compile your application with Delphi XE, four new warnings might appear in
your IDE’s message window. These messages regard the use of the new UnicodeString
type. These new warnings include:

• 1057 Implicit string cast from '%s' to '%s'

• 1058 Implicit string cast with potential data loss from '%s' to '%s'

• 1059: Explicit string cast from '%s' to '%s'

• 1060 Explicit string cast with potential data loss from '%s' to '%s'

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 69 -

DBEXPRESS

FRAMEWORK
One of the most significant changes in Delphi 2007, dbExpress architecture has been
restructured, and you can now count on a framework that is totally written in Delphi. We
have performed lab tests to simulate the most diverse situations with varied databases; in
some of those tests the performance was improved by 100%.

DbExpress 4 is also a milestone for applications developed in Delphi that require database
connectivity. The new architecture was designed to support Win32 and .NET, enabling the
same drivers to be used in both platforms, for example the dbExpress DataSnap driver can
be used for Win32 and .NET, it allows developers to create DataSnap client applications in
Delphi Win32 and Delphi Prism (.NET)

Figure 36 dbExpress 4 Architecture

Remember that applications developed in prior versions are 100% compatible with Delphi
XE.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 70 -

The dbExpress Framework comes with a new group of classes that facilitate the task of
accessing and otherwise handling databases. Now you can find all the information
regarding the database within the framework. Previously you’d have to use components
SQLConnection, SQLDataSet, SQLQuery, and others instead.

The following example represents a console application that uses database connection
resources, reads connections parameters, sends a query and displays its result – all in a
single transaction.

program DBX4Example;

{$APPTYPE CONSOLE}

uses
 SysUtils,
 DBXDynalink,
 Dialogs,
 DBXCommon;

var

 aConnName: string;
 aDBXConn: TDBXConnection;
 aDBXTrans : TDBXTransaction;
 aCmnd: TDBXCommand;
 aReader: TDBXReader;
 i, aColCount: integer;

begin

 aDBXConn := TDBXConnectionFactory.GetConnectionFactory.GetConnection(
'EMPLOYEE', 'sysdba','masterkey');

 // Write the all connection parameters
 Writeln('================= Connection Properties ============');
 WriteLn(aDBXConn.ConnectionProperties.Properties.Text);
 Writeln('==');
 Writeln('');

 if aDBXConn <> nil then
 begin

 aCmnd := aDBXConn.CreateCommand;

 // Start transaction
 aDBXTrans:= aDBXConn.BeginTransaction(TDBXIsolations.ReadCommitted);

 // Prepare and execute the SQL Statement
 aCmnd.Text := 'SELECT * FROM Country';
 aCmnd.Prepare;
 aReader := aCmnd.ExecuteQuery;

 aColCount := aReader.ColumnCount;
 Writeln('Results from Query: ' + aCmnd.Text);

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 71 -

 Writeln('Number of Columns: ' + IntToStr(aColCount));

 while aReader.Next do
 begin
 Writeln(aReader.Value['Country'].GetAnsiString);
 end;

 Writeln('==');
 Writeln('');

 end;
 // Commit transaction
 aDBXConn.CommitFreeAndNil(aDBXTrans);

 Readln;
 aReader.Free;
 aCmnd.Free;
 aDbxConn.Free;

 end;

end.

DBEXPRESS METADATA
The new metadata support is used extensively by the Data Explorer pane of the Delphi
IDE, but can also be used by any application. In short, you'll not only be able to browse the
database structure, but also be able to use classes and objects to modify it, rather than
relying directly on the native database SQL commands for creating and modifying data
structures. Not only will the code look more object-oriented, but it will be also easier to
target different database servers with the same code, as dbExpress abstracts the metadata
capabilities of each server.

The unit DBXMetaDataNames has been provided to read metadata. The dbExpress class
TDBXMetaDataCommands provides a set of constants to read various types of metadata.
Set the TDBXCommand.CommandType property to DBXCommandTypes.DBXMetadata
and set TDBXCommand.Text to one of the constants in TDBXMetaDataCommands to
acquire the designated metadata TDBXCommand.ExecuteQuery returns a TDBXReader to
access the metadata. The new classes in DBXMetaDataNames describe and provide
access to this metadata's columns. Below a list of metadata you can read using dbExpress:

• Data types
• Tables
• Columns (from tables, views, etc.)
• Indexes
• Fields from those indexes
• Foreign key

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 72 -

• Fields from Foreign keys
• Stored Procedures
• Stored Procedures’ parameters
• User list
• Catalogs
• Schemas
• Views
• Synonyms
• Stored Procedures’ source code
• Packaged Stored Procedures
• Packaged Stored Procedures’ source code
• Packaged Stored Procedures’ parameters
• Roles
• Reserved words

Data Explorer includes support for creating SQL dialect sensitive CREATE, ALTER, and
DROP statements. dbExpress also exposes a DbxMetaDataProvider class that surfaces this
capability for applications. This slightly increases the size of application, since the
metadata writers must be included. The ability to generically create tables is useful for
many applications. The interface allows you to describe what a table and its columns look
like and pass this description to the TdbxMetaDataProvider.CreateTable method.

The following example on how to create tables, primary keys, foreign keys, and indexes
using dbExpress Framework’s classes.

var
 Provider: TDBXDataExpressMetaDataProvider;
 Country, State: TDBXMetaDataTable;
 IdCountryField,
 IdField: TDBXInt32Column;
 StrField : TDBXUnicodeVarCharColumn;
begin
 Provider := DBXGetMetaProvider(conn.DBXConnection);

 // Country
 Writeln('Creating Table - Country');
 Country := TDBXMetaDataTable.Create;
 Country.TableName := 'COUNTRY';

 IdCountryField := TDBXInt32Column.Create('COUNTRYID');
 IdCountryField.Nullable := false;
 IdCountryField.AutoIncrement := true;
 Country.AddColumn(IdCountryField);

 StrField := TDBXUnicodeVarCharColumn.Create('COUNTRYNAME', 50);
 StrField.Nullable := False;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 73 -

 Country.AddColumn(StrField);

 Provider.CreateTable(Country);
end;
 // Defines COUNTRYID as Primary Key
 AddPrimaryKey(Provider, Country.TableName, IdCountryField.ColumnName);

 // Defines Unique Index as COUNTRYNAME
 AddUniqueIndex(Provider, Country.TableName, StrField.ColumnName);

 // State
 Writeln('Creating Table - State');
 State := TDBXMetaDataTable.Create;
 State.TableName := 'STATE';

 IdField := TDBXInt32Column.Create('STATEID');
 IdField.Nullable := false;
 IdField.AutoIncrement := true;
 State.AddColumn(IdField);

 StrField := TDBXUnicodeVarCharColumn.Create('SHORTNAME', 2);
 StrField.Nullable := False;
 State.AddColumn(StrField);

 StrField := TDBXUnicodeVarCharColumn.Create('STATENAME', 50);
 StrField.Nullable := False;
 State.AddColumn(StrField);

 State.AddColumn(IdCountryField);

 Provider.CreateTable(State);

 // Defines STATEID as Primary Key
 AddPrimaryKey(Provider, State.TableName, idField.ColumnName);

 // Defines Unique Index as STATENAME
 AddUniqueIndex(Provider, State.TableName, StrField.ColumnName);

 AddForeignKey(Provider, State.TableName, IdCountryField.ColumnName,
 Country.TableName, IdCountryField.ColumnName);

 FreeAndNil(Provider);
 FreeAndNil(Country);

The source code for this example is available at http://cc.embarcadero.com/Item/26210.

DBEXPRESS DRIVERS
Support for the latest versions of databases: InterBase 2009, MySQL 5.1, Oracle 10g/11g,
the new dbExpress SQL Server 2008 driver includes support the new data type datetime
offset. Drivers for Oracle, InterBase and MySQL now come with Unicode support.

http://cc.embarcadero.com/Item/26210

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 74 -

Delphi 2010 brought a dbExpress driver for Firebird, which was the number one request at
that time. The dbExpress driver for Firebird supports Firebird version 1.5 and 2.x, and not
only that, the DBX Framework is fully compatible with Firebird so you can create tables,
primary keys, foreign keys, indexes and more through the framework. Data Explorer fully
supports Firebird as well.

BIGINT fields are 100% supported and are mapped as TLargeIntField in the VCL, and the
BLOB type is mapped as TBlobField.

Certainly the question arises, support for the blob and bigint as it gets. BIGINT fields are
100% supported and are mapped as TLargintField the VCL, the BLOB works perfectly and
are mapped as TBlogField.

New concepts, called “Delegate Driver” and “Pools Connections”, are available in
dbExpress and require simple parameter configuration.

You can also extend the dbExpress framework to write delegation drivers, which provide
an extra layer between the application and the actual driver. Delegate drivers are useful
for connection pooling, driver profiling, tracing, and auditing DBXTrace is a delegate
driver used for tracing.

Below you see the log result generated by the Delegate in Delphi language. It’s easy to
read, understand, and even execute operations once again.

Trace configuration. The following example captures events according to the TraceFlags
parameter, saving the log file at c:\dbxtrace.txt. The dbExpress connection has a
parameter to indicate the trace configuration; for instance: DelegateConnection=
DBXTraceConnection

[DBXTraceConnection]
DriverName=DBXTrace
TraceFlags=EXECUTE;COMMAND;CONNECT
TraceDriver=true
TraceFile=c:\dbxtrace.txt

Generated log result:

Log Opened ==
{CONNECT } ConnectionC1.Open;
{COMMAND } CommandC1_1 := ConnectionC1.CreateCommand;
{COMMAND } CommandC1_1.CommandType := 'Dbx.SQL';
{COMMAND } CommandC1_1.CommandType := 'Dbx.SQL';
{COMMAND } CommandC1_1.Text := 'select * from employee';
{PREPARE } CommandC1_1.Prepare;
{COMMAND } ReaderC1_1_1 := CommandC1_1.ExecuteQuery;
{COMMAND } CommandC1_2 := ConnectionC1.CreateCommand;
{COMMAND } CommandC1_2.CommandType := 'Dbx.MetaData';

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 75 -

{COMMAND } CommandC1_2.Text := 'GetIndexes "localhost:C:\
database\employee.ib"."sysdba"."employee" ';
{COMMAND } ReaderC1_2_1 := CommandC1_2.ExecuteQuery;
{READER } { ReaderC1_2_1 closed. 6 row(s) read }
{READER } FreeAndNil(ReaderC1_2_1);
{COMMAND } FreeAndNil(CommandC1_2);

You can also use connection pools with dbExpress natively. Below you see an alias
(Pool_DelegateDemo) passing to DBXPoolConnection the control over the connection
pool (where the maximum number of connections is set).

[DBXPoolConnection]
DriverName=DBXPool
MaxConnections=16
MinConnections=0
ConnectTimeout=0

[Pool_DelegateDemo]
DelegateConnection=DBXPoolConnection
DriverName=Interbase
DriverUnit=DBXDynalink
DriverPackageLoader=TDBXDynalinkDriverLoader
DriverPackage=DBXCommonDriver110.bpl
DriverAssemblyLoader=Borland.Data.TDBXDynalinkDriverLoader
DriverAssembly=Borland.Data.DbxCommonDriver,Version=11.0.5000.0,Culture=neutra
l,PublicKeyToken=a91a7c5705831a4f
Database=localhost:C:\database\employee.ib
RoleName=RoleName
User_Name=sysdba
Password=masterkey
ServerCharSet=
SQLDialect=3
BlobSize=-1
CommitRetain=False
WaitOnLocks=True
ErrorResourceFile=
Interbase TransIsolation=ReadCommited
Trim Char=False

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 76 -

CLOUD COMPUTING

MICROSOFT WINDOWS AZURE
Components for working with Windows Azure accounts are shipped with Delphi XE.
Windows Azure (not to be confused with SQL Azure) allows you to store and manage
Blobs, Queues of messages, and Tables of data on the Azure cloud. Once you have
created an account, you can use the corresponding components found under the
Microsoft Azure section of the Tool Palette. The available Azure components are:

• TAzureTableManagement Window Azure Tables; these provide scalable
structured storage. Think NOSQL type tables where each entry stored in a table
can have a different set of properties made up of different types, such as string or
int.

• TAzureQueueManagement unlike blobs and tables, which are used to store
data, queues serve another purpose, a persistent asynchronous messaging, where
each message is up to 8kb long

• TAzureBlobManagement Windows Azure Blob Storage; Blob storage is
unstructured storage as it is used for storing large pieces of data such as images,
video, documents, etc inside a defined container.

There is also a component called TAzureConnectionString, which takes into consideration
information for connecting to your Windows Azure account. All these components use the
Windows Azure REST API to manage the features that come with each of these services.

Azure components are useful for any developer who wants to make an application that
manages a Windows Azure account. If used programmatically, the application itself could
use information from the end-user's Azure account.

AMAZON EC2
Delphi XE introduces a wizard that is able to deploy files to a remote machine. The remote
machine in this instance would be the Amazon EC2 infrastructure. Note that only EC2- and
Windows-based instances are supported. In this way, Delphi XE provides a simple three-
step process to allow a developer to deploy to a cloud infrastructure.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 77 -

DATASNAP
Integration between DataSnap and dbExpress is among the most significant new features
in Delphi 2009. Later releases added even more features. Based on feedback received
from our customers and user groups, we created the new DataSnap. As usual, creating a
multilayer application seemed easy. However, considering its continued use and the
impressive number of DataSnap applications available, many opportunities for
improvement have been identified. In this section, we explore the concepts surrounding
the creation of multilayer applications with the new DataSnap.

The DataSnap today is the core technology in Delphi for multi-tier development, in XE
release DataSnap provide a open architecture for other technologies to execute the
Server Methods (business roles implemented on the server side), languages like:
C++Builder, .NET (Delphi, C#, VB.NET, etc.), PHP and JavaScript.

Figure 37. DataSnap core technology in Delphi for multitier development

CONCEPTS
The new integration between DataSnap and dbExpress – which many are calling
dbExpress remoting – brought great flexibility into the world of multi-layer application
development. Before that, sending and receiving data by means of ClientDataSet was the
practice. Working with remote functions was something that required the use of a Type
Library, consequently making you dependent on COM (present in Remote Data Module).
Developers requested that we remove the COM dependency. This is a main attribute of
the new DataSnap: it does not depend on any COM technology. However, this technology

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 78 -

was not disregarded and compatibility is maintained, allowing you to use it whenever you
find appropriate.

DataSnap integration with dbExpress allows dynamic execution of server methods using,
for example, SQLDataSet or the new SqlServerMethod component. The parameter and
the result of the method are defined using the Param properties.

One way to execute the methods on the server is to use the new SqlServerMethod
component. this component inherits from CustomSQLDataSet, which means you can
execute server side methods using a DataSet, input/output parameters will be
represented by Params property.

DATASNAP SERVER – SERVER CONTAINER
DataSnap servers are defined by two components: DSServer and DSTCPTransport or
DSHTTPTransport. Add these two components to your application and you have a
DataSnap server. The form/datamodule that hosts these components can be called Server
Container. From now on we will start using a new naming convention.

DSServer is your DataSnap server. When connected to DSTCPTransport – which is where
you define the connection port, the maximum number of threads, etc. – it exposes your
application as a server.

DSTCPTransport transports information by means of TCP, thus enabling you to extend and
create new transport methods (e.g., HTTPS, SSL, to name a few). DSTCPTransport
currently uses Indy’s infrastructure for TCP connections.

If you use BSS, your application will still work in Delphi XE. However, it’s recommended
that you migrate to the new DataSnap.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 79 -

 Figure 38. Server Container based on DataModule

DATASNAP SERVER – SERVER MODULE
You most probably have many classes that hold business rules which would otherwise be
of better use in a multi-layer application. Using Server Methods you can easily expose all
public methods to the client side.

In order for a class to be made available as a Server Method, it must:

• Descend from TPersistent
• Have the {$MethodInfo ON} directive. This directive allows dbExpress to obtain

information about the class from RTTI.
• Be registered by means of the DSServerClass component.

Finally, we use the term Server Module to define the location of the providers, Server
Methods, etc. You can create a Server Module selecting File | New | Other | Delphi Files |
Server Module.

The Server Module is a DataModule that comes with the directive $MethodInfo ON by
default.

Each class you make available has an associated DSServerClass component. This
component is responsible for registering the class and making it available to client
applications. It’s recommended that you keep your DSServerClass components in the
Server Module. You can have as many Server Modules as you wish, which helps you to
have a better organized application.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 80 -

The various DSServerClass define the application lifetime, or the LifeCycle property:

• Server One component instance is used per server (Singleton)
• Session One component instance is used per DataSnapSession: (Statefull).
• Invocation One component instance is used per invocation of a method (Stateless).

Additionally, DSServerClass comes with a few events that require you to use the
OnGetClass event to get the class registered. Below you see an example of it, with
TServerMethods working as a datamodule that holds many methods:

procedure TDMServerContainer.DSServerMethodsGetClass (DSServerClass :
TDSServerClass; var PersistentClass : TPersistentClass);
begin
 PersistenClass := TServerMethods
end;

Proceed the same way in case you have a Remote Data Module in your application.

DATASNAP SERVER – FILTERS
A suite of filters can intercept the communication between a DataSnap client and a
DataSnap server. Each filter can perform transformations over the byte stream such as
encryption and/or compression; the byte stream can be intercepted by more than one
filter and such the output of one becomes the input of the next filter. The filters are
attached to the byte stream at design time (or coded), by setting the Filters property of
the DataSnap server transport components such as
DSTCPServerTransport.TDSTCPServerTransport or DSService.TDSHTTPService.

The filters are available at design time if they are present in a package registered with RAD
Studio. The filter needs to be built into a package and the package needs to be installed
into Delphi. Server-side design time support enables the filter to show up in the filter list
editor. Client-side design time support enables design time connection using
TSQLConnection.

There is no need to associate filters at the client side, as they are automatically instantiated
based on a handshake protocol between client and server. Hence it is important that the
client code registers the filters before connecting to a filtered server either by adding the
unit name to the uses clause or in an early stage, such as initialization time.

Delphi XE has a filter based on zlib compression, where the data is compressed
automatically. You can also define an encryption filter.

You can find some samples of filters at Code Central
http://cc.embarcadero.com/Author/38483.

http://cc.embarcadero.com/Author/38483

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 81 -

DATASNAP SERVER – HTTP TUNNELING
DataSnap 2010 implemented a new feature, which allows developers to implement
redundant solutions like Failover and Load Balancing in DataSnap applications. Questions
about this subject are very frequent and this topic will give you an overview how to
implement Failover. After reading this topic you will be able to understand how you can
implement Failover in your DataSnap applications and then use that to implement other
redundant solution, like Load Balancing.

When we started to think about application servers as part of our N-tier development we
had many goals like centralized processes, business rules, hardware investments, updates,
etc. When we think about a centralized process, we also need to think about redundancy,
which is the duplication of critical components of a system with the intention of increasing
reliability , usually via a backup or fail-safe.

Before Delphi 2010, failover or load balance was not easy to implement, but now it is
another story.

DataSnap 2010 brings a feature named HTTP Tunneling which allow you to have control of
the data sent and received between the client and the server. HTTP Tunneling
communicates through the HTTP protocol. Thus, you have to use that for the
communication between client and server, which is not a problem.

When you implement Load Balancing or Failover, you will need a middleware application
to control things. This application will be responsible for receiving the data from the client
application, analyzing it, and forwarding it to the appropriate Server.

Translating that to the DataSnap world, the client application connects to the Failover
Server that is our proxy and it will forward the connection to the appropriate DataSnap
Server in case the primary connection fails. The below example will simulate a client
application sending/receiving data, while at some point the main DataSnap Server will
crash, and you will see the Failover Server redirecting the connection to a secondary
DataSnap Server.

You will only need to make two changes on the client application:

• Define HTTP as connection protocol in your SQL Connection

• Connect to the Failover Server and not directly to your DataSnap Server

Besides this you need to create your Failover Server, and you can use this example code
as a start.

The Failover Server needs two components, the DSHTTPService which represent your
server and is connected to the DSHTTPServiceAuthenticationManager for the
authentication process, so that only authorized users can connect to the server.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 82 -

To enable the HTTP Tunneling feature you will need to implement the following events on
the HTTP Service Tunnel Service:

• DSHTTPService1.HttpServer.TunnelService.OnErrorOpenSession

• DSHTTPService1.HttpServer.TunnelService.OnErrorWriteSession

• DSHTTPService1.HttpServer.TunnelService.OnErrorReadSession

• DSHTTPService1.HttpServer.TunnelService.OnOpenSession

• DSHTTPService1.HttpServer.TunnelService.OnWriteSession

• DSHTTPService1.HttpServer.TunnelService.OnReadSession

• DSHTTPService1.HttpServer.TunnelService.OnCloseSession

These events are executed during the communication process. The event names explain
what they do, and this example implements all of them. The example has a log which will
help you to see what is happening during the communication.

In the case of the Failover solution, all the events need to be implemented. The events
OnErrorXXX will be executed when something goes wrong. These events will allow you
identify and decide what to do with the bytes transferred. I will focus on the event
OnErrorOpenSession that will redirect the connection in case of error during the opening
session.

The follow code implements a method named Redirect which is associated with the event
OnErrorOpenSession. You can see how the session data is represented by parameters on
this method, and how it includes everything you need to redirect the data.

In this sample we use the Session.UserFlag to control if the connection was already
redirected.We are only allowing one redirection, and in case that the Sender parameter
becomes anException, we will save the error message in our log. After that we created an
instance of DBXProperties, which has the new redirection server information. I’m using the
same HostName and changed the port to 213, differentiating it from the other DataSnap
Server on the same machine, for demo purposes.

After that just reopen the session passing the new properties as parameter and it’s done
— that is all you need.

Procedure TForm6.Redirect(Sender: TObject; Session: TDSTunnelSession; Content:
TBytes; var Count: Integer);
var
 DBXProperties: TDBXDatasnapProperties;
 Msg: String;
begin
 if Sender is Exception then
 Msg := Exception(Sender).Message;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 83 -

 Log('>>' + Msg);

 if Session.UserFlag = 1 then
 Raise Exception.Create('Backup session cannot be redirected once more.' +
Msg);

 DBXProperties := TDBXDatasnapProperties.Create(nil);
 DBXProperties.Values[TDBXPropertyNames.DriverName] := 'Datasnap';
 DBXProperties.Values[TDBXPropertyNames.HostName] := 'localhost';
 DBXProperties.Values[TDBXPropertyNames.Port] := '213';

 try
 try
 Session.Reopen(DBXProperties);
 Session.UserFlag := 1;

 Msg := 'Flow commuted to alternate resource.';
 Log('>>' + Msg);
 except
 Raise Exception.Create(Msg + '. Commuting to alternate resource failed.');
 end;
 finally
 DBXProperties.free;
 end;

end;
In case you want to run the sample code on your machine, here are the steps you need for
that.

The sample includes two projects: Failover Server and DataSnap Server. We will use
DataExplorer as our client application. Using the follow steps you will be able to see the
Failover Server in action.

• Open and execute the Failover server, the sample use HTTP protocol and port 8080

• Execute the DataSnap Server twice, one using port 211 and other one port 213. The
server using the port 213 will work as the backup server

• Create a DataSnap alias in your Data Explorer, remembering to configure it to use
HTTP as protocol and port 8080

• On the Stored Procedure node, find the method EchoString, pass the value Delphi
2010 as parameter and execute. The return value will be Delphi 2010 (Server 211)

• Close the DataSnap Server that runs on the port 211

• Repeat the step 4 and look the return value, which should be Delphi 2010 (Server
213)

• Now look the log on the Failover Server, you will see the exception error and the
redirection log information

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 84 -

You can download the source code at http://cc.embarcadero.com/Item/27391.

DATASNAP – SECURITY
Once you have a server created with some server methods you will probably want to add
in some logic to control who can invoke those methods. For this you can use the
new/improved functionality in the Authentication Manager component.

To get started you simply drop this component onto your form and set it as the
authentication manager to use in the TDSHTTPWebDispatcher, TDHTTPService or
TDSTCPServerTransport component, depending on your server’s configuration.

The authentication manager has two events; OnUserAuthenticate and OnUserAuthorize. It
also has a ‘Roles’ collection.

The OnUserAuthenticate event is called when a user tries to connect (invoke a method) for
the first time, and takes as input parameters connection info such as the user’s name and
password, and allows you to set a value for the in/out parameter “valid”. By default this is
set to true, but you can decide, based on the user information or anything else you wish, if
you want to set valid to true or false. Setting it to false will deny the user connection, and
therefore also deny any invocation they may have been attempting.

You can define Roles in several different ways. You can go to your server methods class
and add a TRoleAuth attribute to the code (requires DSAuth unit.) This attribute can either
be added at class level, or at method level, like this:

[TRoleAuth('admin')]
TServerMethods1 = class(TComponent)
public
 function EchoString(Value: string): string;
 function ReverseString(Value: string): string;
end;
Or this:

TServerMethods1 = class(TComponent)
public
 [TRoleAuth('admin')]
 function EchoString(Value: string): string;
 function ReverseString(Value: string): string;
end;

In the first example both ‘EchoString’ and ‘ReverseString’ would require the user to have
the “admin” role to invoke the method. In the second example, only the ‘EchoString’
method has the admin role associated with it. Note that the TRoleAuth attribute has an
optional second parameter, which is the ‘denied roles’ list which behaves as you would
expect. Both of these parameters can be a comma-separated list of roles.

http://cc.embarcadero.com/Item/27391

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 85 -

The OnUserAuthorize event is called whenever a user who has already been successfully
authenticated tries to invoke a server method. You do not need to implement this event. If
you add roles to the UserRoles list in the OnUserAuthenticate event, then those roles
alone can be used to decide if the user has permission to invoke any given server method.
However, if you wish to have more control over the process (such as allowing or denying
invocation based on time of day,) then you can implement this event. Passed into the
event is an object containing information such as the user name, the UserRoles populated
in the authentication event, and the allowed/denied roles for the method being called.
You can use this information, as well as anything else you like, to decide on if you want to
set the value of “valid” to true or false, which will allow or deny the method invocation.

DATASNAP REST SERVER
Delphi XE provide REST support for DataSnap, in other words your DataSnap Server can
expose all server methods as REST interfaces.

The new DataSnap client proxy generation system included in XE has generators for the
Delphi, C++, Delphi Prism, PHP and JavaScript programming languages. The proxy
generator handles the complexity of communicating with and consuming REST services by
translating the DataSnap methods and complex types into "native" implementations for
the target client language.

To create a DataSnap REST Server, Delphi XE provides a DataSnap REST Application
Wizard which creates a project that is the starting point for building an AJAX-enabled web
application. The communication protocol between server and client applications is HTTP
and the architectural style is REST (Representational State Transfer).

The DataSnap REST Application Wizard consists of four or five steps, depending on the
type of REST Application you select (in the first step).

In the first step, you are prompted to select the type of REST Application. The possible
options are:

• Stand-alone VCL application
A stand-alone REST VCL application is a web server that displays a VCL form. It
supports HTTP using an Indy HTTP server component.

• Stand-alone console application
A stand-alone REST console application is a web server that has a text-only user
interface. It supports HTTP using an Indy HTTP server component.

• ISAPI dynamic link library
ISAPI and NSAPI Web server applications are shared objects that are loaded by the
web server. Client request information is passed to the DLL as a structure and
evaluated by TISAPIApplication. Each request message is handled in a separate
execution thread. When you select this type of application, the library header of the

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 86 -

project files and the required entries are added to the uses list. Also, the clause of
the project file is exported. ISAPI libraries integrates with IIS. IIS has support for
HTTP and HTTPS.

• Web App Debugger executable
Web Application Debugger provides an easy way to monitor HTTP requests,
responses, and response times. Web Application Debugger takes the place of the
web server. Once you have debugged your application, you can convert it to one of
the other web application types and install it with a commercial web server.

• Class Name
Class Name is an identifier that will be used in the URL to connect to a particular
Web App Debugger executable.

The second step is available only if you choose Stand-alone VCL application or Stand-
alone console application in the first step. You are prompted to enter the HTTP
communication port. The wizard also allows you to test the availability of the port using
the Test Port button. Clicking the Find Open Port button automatically completes
theHTTP Port field with one of the auto-detected available ports.

The third step asks for DataSnap REST server features.

If you select the Authentication option, a TDSHTTPServiceAuthenticationManager
component is placed on the server form. The TDSHTTPWebDispatcher component uses
TDSHTTPServiceAuthenticationManager as the AuthenticationManager to allow the
implementation of HTTP user authentication for the DataSnap server. The implementation
consists of implementing the HTTPAuthenticate property. When Authentication is
selected, the client must provide the DataSnap user name and password as SQL
connection properties.

Select the Server Methods Class option to add a TDSServerClass component to the server
form and to allow defining a class on the server that will expose the server methods to the
client applications.

If you select the Sample Methods option, ServerMethodsUnit will contain the
implementation of two simple methods called EchoString and ReverseString, which return
the Value given as a parameter in normal respective reversed states.

The fourth step of the DataSnap REST Application Wizard asks you for the ancestor type of
the server method class.

Choose TDSServerModule to expose the data sets from the server to the client
applications. Choose TDataModule if you want to use nonvisual components in your server
class. Choose TComponent if you want to entirely implement the server class.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 87 -

The fifth step asks you to select the root location for the REST web application. This is the
output directory of the project executable and the location of the web application files
such as .js, .html and .css files.

DATASNAP CLIENT – DBEXPRESS
Since Delphi 2007 - when the dbExpress Framework was first created - our goal was to
build an infrastructure for many technologies, databases and platforms, extending the
existing multi-layer support and enabling Java, .NET, PHP, and other clients to connect to
DataSnap servers.

DbxClient is now being used to connect the client to the DataSnap server, as well. This
means that in order to connect to a DataSnap server you must use an SQLConnection,
informing that the connection driver is DataSnap and providing the hostname (server) and
port

There are many ways to execute the server methods. Let’s assume the server holds a class
that contains the HelloWorld and GetEmployee methods.

function TDMServerDB.HelloWorld(IncommingMessage : WideString): WideString;
begin
 Result := 'Hello World';
end;

function TDMServerDB.GetEmployee(ID : Integer): TDBXReader;
begin
 SQLDataSet1.Close;
 SQLDataSet1.Params[0].AsInteger := ID;
 SQLDataSet1.Open;
 Result := TDBXDataSetReader.Create(SQLDataSet1, False);
end;

The HelloWorld method is quite simple. It sends a string and returns another. Method
GetEmployee, in turn, sends an ID and receives a TDBXReader. In other words, it’s a cursor
that can be read client-side either as a DBXReader or as a ClientDataSet.

Still working with the HelloWorld method, you’ll now execute it using the
SQLServerMethod component. See below:

begin
 DMDataSnapClient.DSServerConnect.Open; // opens the connection by means of
SQLConnection

 SMHelloWorld.SQLConnection := DMDataSnapClient.DSServerConnect;
 SMHelloWorld.Params[0].AsString := 'Message sent from Client';
 SMHelloWorld.ExecuteMethod;

 ShowMessage(SMHelloWorld.Params[1].AsString); // shows the result
End;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 88 -

Let’s look at the GetEmployee method. In this example the server method is executed
through the dbExpress Framework. The same method could be executed through
SqlServerMethod.

 1 var
 2 Command : TDBXCommand;
 3 Reader : TDBXReader;
 4 begin
 5 DMDataSnapClient.DSServerConnect.Open;
 6 With DMDataSnapClient.DSServerConnect.DBXConnection do begin
 7
 8 Command := DMDataSnapClient.DSServerConnect.DBXConnection.CreateCommand;
 9 Command.CommandType := TDBXCommandTypes.DSServerMethod;
10 Command.Text := TDSAdminMethods.GetServerMethodParameters;
11 Reader := Command.ExecuteQuery;
12
13 TDBXDataSetReader.CopyReaderToDataSet(Reader, ClientDataSet1);
14 ClientDataSet1.Open;
15 end;

Note that the execution is performed by TDBXCommand. The return of type DBXReader is
copied to a ClientDataSet in line 13, thus allowing data to be visualized in the VCL.

In cases where you don’t need to display the data, DBXReader can be read directly.

You might be wondering… If this is all dynamic now, wouldn’t the compiler be able to
detect when server methods change? The answer could be positive in case server
methods were not represented by means of a client interface. SQLConnection includes an
option called “Generete DataSnap Client Access”, that generates a client-side unit with all
the methods available at server-side. Each method in the client class contains an
implementation to execute the server method.

See a sample class below:

 TDSServerMethodsClient = class
 private
 FDBXConnection: TDBXConnection;
 FGetServerDateTimeCommand: TDBXCommand;
 FExecuteJobCommand: TDBXCommand;
 public
 constructor Create(ADBXConnection: TDBXConnection);
 destructor Destroy; override;
 function GetServerDateTime: TDateTime;
 function ExecuteJob(JobId: Integer): Integer;
 end;
implementation

function TDSServerMethodsClient.GetServerDateTime: TDateTime;
begin
 if FGetServerDateTimeCommand = nil then
 begin

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 89 -

 FGetServerDateTimeCommand := FDBXConnection.CreateCommand;
 FGetServerDateTimeCommand.CommandType := TDBXCommandTypes.DSServerMethod;
 FGetServerDateTimeCommand.Text := 'TDSServerMethods.GetServerDateTime';
 FGetServerDateTimeCommand.Prepare;
 end;
 FGetServerDateTimeCommand.ExecuteUpdate;
 Result := FGetServerDateTimeCommand.Parameters[0].Value.AsDateTime;
end;

function TDSServerMethodsClient.ExecuteJob(JobId: Integer): Integer;
begin
 if FExecuteJobCommand = nil then
 begin
 FExecuteJobCommand := FDBXConnection.CreateCommand;
 FExecuteJobCommand.CommandType := TDBXCommandTypes.DSServerMethod;
 FExecuteJobCommand.Text := 'TDSServerMethods.ExecuteJob';
 FExecuteJobCommand.Prepare;
 end;
 FExecuteJobCommand.Parameters[0].Value.SetInt32(JobId);
 FExecuteJobCommand.ExecuteUpdate;
end;

constructor TDSServerMethodsClient.Create(ADBXConnection: TDBXConnection);
begin
 inherited Create;
 if ADBXConnection = nil then
 raise
 EInvalidOperation.Create('Connection cannot be nil. '
 + 'Make sure the connection has been opened.');
 FDBXConnection := ADBXConnection;
end;

destructor TDSServerMethodsClient.Destroy;
begin
 FreeAndNil(FGetServerDateTimeCommand);
 FreeAndNil(FExecuteJobCommand);
 inherited;
end;

How do you access the DataSetProvider from the server, from a remote data module, or
from a conventional data module? That’s simple: on the client-side you use the new
DSProviderConnection component, which is connected to your SQLConnection
(DataSnap). The ServerClassName property indicates the class name (DataModule/RDM,
usually) where the providers are located in the server. The ClientDataSet then can use the
DSProviderConnection as its ProviderName.

The new DataSnap and dbExpress Framework provide greater flexibility, not limited by
what’s presented in this section. It’s possible to dynamically access a list of methods along
with their parameters, which allows developers to create components that control user
access to the server and define access rights specific to each of the server’s methods and
classes. You can take a look at a more complete DataSnap application samples by visiting

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 90 -

my blog at http://www.andreanolanusse.com/blogen/tag/datasnap/ and
http://www.andreanolanusse.com/blogen/tag/dbexpress.

DATASNAP – SENDING AND RECEIVING OBJECTS
If you start to use, or migrate your application to, the new DataSnap one of the questions
you’ll have is “how do I transfer objects between my DataSnap clients and servers”? In
DataSnap 2009, only dbExpress data types could be transferred. In DataSnap 2010 you
can transfer any kind of object between clients and servers.

DataSnap 2010 adds support for JSON (JavaScript Object Notation), which is a lightweight
data-interchange format, easy for humans to read/write and easy for machines to parse
and generate. JSON is also independent of the programming language and platform.
Let’s define the object we would like to transfer between a DataSnap client and server,
class TCustomer.

unit Customer;

interface

uses
 DBXJSON, DBXJSONReflect, SysUtils;

type
 TMaritalStatus = (msMarried, msEngaged, msEligible);

TCustomer = class
 private
 FName: string;
 FAge: integer;
 FMaritalStatus: TMaritalStatus;
 public
 property Name: string read FName write FName;
 property Age: integer read FAge write FAge;
 property MaritalStatus: TMaritalStatus read FMaritalStatus write
FMaritalStatus;

 function toString : string;override;
 end;

In DataSnap 2010, only objects that descend from TJSONObject can be transferred
between client and server without any transformation. If your object does not descend
from TJSONObject, then you have to use the TJSONMarshal and TJSONUnMarshal
classes to convert those objects. The example below shows how to make this conversion.

unit Customer;

 function CustomerToJSON(customer: TCustomer): TJSONValue;
 var
 m: TJSONMarshal;

http://www.andreanolanusse.com/blogen/tag/datasnap/
http://www.andreanolanusse.com/blogen/tag/dbexpress

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 91 -

 begin
 if Assigned(customer) then
 begin
 m := TJSONMarshal.Create(TJSONConverter.Create);
 try
 exit(m.Marshal(customer))
 finally
 m.Free;
 end;
 end
 else
 exit(TJSONNull.Create);
 end;

 function JSONToCustomer(json: TJSONValue): TCustomer;
 var
 unm: TJSONUnMarshal;
 begin
 if json is TJSONNull then
 exit(nil);
 unm := TJSONUnMarshal.Create;
 try
 exit(unm.Unmarshal(json) as TCustomer)
 finally
 unm.Free;
 end;
 end;

You don’t need to implement two transformation methods for every class. You can
implement a generic method for a class that uses simple data types, strings, numbers,
boolean. Due to the fact that some support classes can be quite complex and some types
are fully supported by the current RTTI runtime converters can be added.

The TCustomer class is now ready to cross between client and server. We just need to
implement a Server Method which will return a TJSONValue after the TCustomer
transformation.

// protected
function TServerMethods.GetCustomer: TCustomer;
begin
 Result := TCustomer.Create;
 Result.Name := 'Pedro';
 Result.Age := 30;
 Result.MaritalStatus := msEligible;
end;

// public
function TServerMethods.GetJSONCustomer(): TJSONValue;
var
 myCustomer: TCustomer;
begin
 myCustomer := GetCustomer;

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 92 -

 Result := CustomerToJSON(myCustomer);
 myCustomer.Free;
end;

Executing the method GetJSONCustomer from the client side will be necessary to convert
the method return from TJSONValue to TCustomer, using the method JSONToCustomer.

var
 proxy: TServerMethodsClient;
 myJSONCustomer: TCustomer;
begin

 try
 proxy := TServerMethodsClient.Create(SQLConnection1.DBXConnection);
 myJSONCustomer := JSONToCustomer(proxy.myJSONCustomer);

 Button1.Caption := myJSONCustomer.ToString;
 myJSONCustomer.Free;
 finally
 SQLConnection1.CloneConnection;
 proxy.Free;
 end;
end;

Much more can be done, for example return an Array of objects, complex classes, etc. You
can download this sample source code at http://cc.embarcadero.com/Item/27361.

http://cc.embarcadero.com/Item/27361

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 93 -

DELPHI TRANSLATION TOOLS – LOCALIZING YOUR

APPLICATIONS
The IDE-integrated translation tool is now standalone. This means the professional
responsible for translating your project can now use the same tool you do, without having
to install Delphi himself/herself. For each new language a translation project is generated.
It’s then much easier to edit language-specific DFM files.

Figure 39. Translation Tool

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 94 -

UML MODELING, AUDITS, METRICS, AND

DOCUMENTATION

UML MODELING
Any final product is expected to be first-class. Quality concerns are no different when it
comes to software (especially considering they’re a core element in supporting a
company’s growth efforts). Keep in mind that whenever you deliver low-quality software
you are compromising your client’s success.

Since Delphi 2006 you can use UML and all of its diagrams. In addition, you can also use
LiveSource, which allows you to synchronize class diagrams and code.

Below you see a list of all diagrams available, along with their functionality:

• Use Case it is a way to describe the interaction between a system and the real world.
In this case, the actors (either persons or systems) represent the real world.

• Class Diagram represents the classes of the system and the relationships they
establish.

• Collaboration used for modeling the dynamic aspects of a system or subsystem.
• Activity allows you to represent dynamic situations by means of flows (using it you

can represent the flow between different objects).
• Component used in higher-level modeling, in cases where more complex structures

are present. This diagram illustrates systems, embedded controls, etc.
• State specifies the sequence of events of a given object.

Figure 40. Use Case Diagram

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 95 -

Visualizing a class diagram makes it much easier for you to understand the classes in it (as
compared with doing the same with code).

Let’s see an example in Delphi: the Buttons.pas unit has many components - TBitBtn,
TSpeedButton, among others. Now imagine how hard it would be to decipher 1946 lines
of code to learn which components are there and which relationships they established.
Using reverse-engineering it’s not a big deal...

Let's check the following figure:

Figure 41. Class Diagram

The Sequence Diagram can be generated directly from the source code. Sequence
diagrams detail how methods are implemented in the source code: what messages are
sent to which objects and when. Sequence diagrams are organized according to time. The
objects involved in the method are listed from left to right according to when they take
part in the message sequence.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 96 -

Delphi has full reverse engineering capabilities. Embarcadero is committed to helping
developers evolve legacy code; a commitment that is reinforced by our efforts toward
continuously providing technology that allows applications to move on.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 97 -

AUDITS
When it comes to quality, people are always concerned about delivering high-
performance software. Many even tell us they do not care about the way software is
written, rather with its ability to work and meet their needs. In fact, this is a mistake with
the potential to impact you in the not-so-distant future. When you write unstructured code
you’re impairing your ability to extend the application in the future. It’s then all pieced
together, and your application does not grow in a structured manner. Delphi’s audits and
metrics help you locate flaws in your application while you’re still developing it.

How many times have you defined best-practice guidelines for coding, hoping it would
prevent your staff from making the kind of programming mistakes that turns your
application into code that no one understands?

Assuming your team uses a best-practices manual, the second question that comes to
mind is: how can you ensure that the practices are being followed?

The answer, again: code review. Now, think of a context where your project is coded in no
less than thousands of lines. What you have here is a scheduled catastrophe.

Using Delphi’s code audits (QA Audits), you can select from a group of best coding
practices, making sure your team is following them. Audits can help you detect flaws in
your code throughout the development process.

• Arrays and References
• Duplicated code
• Superfluous content
• Performance
• Branches and Loops
• Coding style
• Naming style
• Expressions
• Design flaws
• Possible Errors

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 98 -

Each of the audits includes a descriptive note explaining the correct and incorrect ways of
using it helping developers understand how to use each audit. You can set the audit
severity level set to Info, Warning, or Error.

LOOP BODY IS NEVER EXECUTED (LBNE)
You often see routines that involve many loops, requiring you to us a debugger to make
sure all of the loops are executed. The LBNE audit helps detect this type of coding style.
The following code is a simple example of something LBNE would detect. Complex
examples, which involve more conditions, are also easily detected.

var
 x: boolean;
begin
 x := false;
 while s do
 begin

 end;
end;

Categories

Parameters

Description

of the selected
item

Items

Figure 42. QA Audits

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 99 -

INDEX OUT OF BOUNDS (IOB)
This is a common message for when you try to access an array position that does not exist.
The snippet below generates this warning.

var
 nloops,
 i,
 j :integer;
 matriz : array of integer;
 somatorio : double;
begin
 for i := 0 to nloops do
 begin
 somatorio := 0;
 for j := 0 to High(matriz) do
 somatorio := somatorio + matriz[i];

 end;
end;

Figure 43. Audits

The audit has located the error, informing you that the code in line 25 tries to access a
variable that is not part of the 2nd loop. Drilling down a little:

In variable J’s ‘for’ statement I’m trying to access one of the positions in array ARR, aiming
at position I of the previous loop, while variable J’s ‘for’ statement is the place where array
ARR is being read.

Delphi XE allows you to execute audits through command line, making easy the
integration with automated build process.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 100 -

METRICS
Metrics help identify coding styles that might be violating defined best practices in object
oriented design and programming. Who hasn’t come across code that has 10 constructors
for a class, if statements nested 10 deep, methods with 20 parameters, and other practices
that make code incomprehensible? Metrics can help you define standards, best practices
and limits for your company to follow. An example: a class must not have more than 4
constructors and having no more than 400 lines of code.

Each metric has defined lower and upper limits for a class, method and namespace. Each
limit can be customized:

Figure 44. QA Metrics

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 101 -

After metrics are executed, their results can be analyzed with the assistance of the Kiviat
chart. In a Kiviat chart, the red circle represents the predefined limits for the metrics. Points
outside of this boundary denote code that is breaking one or more metric rules.

Figure 45. Metrics Analysis

You can analyze each of the classes separately. This way it’s easier to identify any metrics
violations. Using audits and metrics, developers are able to deliver higher-quality
applications, just as good externally as they are in their core.

Like audits, you can execute the metrics using the command line as well.

These are the things you are able to perform when your code is migrated from Delphi 7 to
the most recent Delphi release.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 102 -

DOCUMENTATION
Few things are as difficult as getting developers to document their applications.
Developers develop, that’s what they do best. With the assistance of Delphi’s diagrams,
developers, analysts, and architects learn how easy it can be to write code and document
the entire application. It’s as simple as getting into the diagram and documenting. Taking
a class diagram, as an example, you simply click on the class, variable, method, and other
class attributes, then right mouse click and choose the Generate Documentation menu
item. You can also generate documentation for the model from the Project Manager and
from the command line.

The documentation is generated as HTML, separated as project overview, diagram view
and documentation details.

Figure 46. Thorough Documentation

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 103 -

THIRD-PARTY TOOLS AND COMPONENTS
Many of the third-party tools and components packaged with Delphi have been updated
and bring new resources and compatibility with existing applications. If you have any
additional questions about specific third-party tools and components that you use, the
Delphi product page has a list of many third tools and components available today
(http://www.embarcadero.com/products/delphi/tools-and-components).

AQTIME – PERFORMANCE PROFILING
AQtime is an award-winning performance profiling, and memory/resource debugger.
AQtime standard edition is integrated into the IDE giving you the power to optimize your
code without leaving the IDE.

As you optimize and improve your code, AQtime provides an exact and accurate “picture”
of your application’s execution. Using AQtime you can profile your code to see how long
each method takes to execute. You can use AQtime for code coverage analysis. AQtime
will also detect memory leaks and resource allocation errors, With AQtime you can
eliminate guesswork during development and deliver rock solid software products.

Figure 47. AQtime results by method

AQtime Pro helps you completely understand how your program performs during
execution.

http://www.embarcadero.com/products/delphi/tools-and-components

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 104 -

FINALBUILDER – BUILD AUTOMATION
Delphi XE Enterprise and Architect Edition includes FinalBuilder automated build and
release management toolset to define and manage repeatable build processes

Traditionally, batch files, XML and script have been used to automate builds. These
methods create a build script that is difficult to maintain, difficult to understand and which
suffers from a lack of proper error handling.

A visual build tool with the breadth of functionality of FinalBuilder makes it easy to define,
debug, maintain and run a reliable build process.

FinalBuilder will:

• Save you time - for any substantial software project, automated builds are much
quicker than manual builds.

• Allow anyone in the team to run a build - FinalBuilder is so easy to use, you'll no
longer need a single build guru to create, maintain and run your builds.

• Improve the quality of your releases - FinalBuilder cuts the human error factor
substantially by automating tasks and running your tests every time your source
code is built.

• Record what was built and when - FinalBuilder logs the output from every action it
performs and tools it calls. Logs from previous builds are archived and can be
exported for better record keeping.

Figure 48. FinalBuilder build automation in action

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 105 -

CODESITE – ADVANCED LOGGING SYSTEM
The CodeSite Logging System gives developers deeper insight into how their code is
executing. This enables you to locate problems more quickly and ensure that your
application is running correctly. CodeSite's logging classes let developers capture all kinds
of information while their code executes and send that information to a live display or to a
log file.

Figure 49. CodeSite Live Viewer

IP*WORKS
IP*Works! is a comprehensive framework for Internet , it eliminates the complexity of
Internet development providing easy-to-use, programmable components that facilitate
tasks such as sending email, transferring files, managing networks, browsing the web,
consuming web services, etc.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 106 -

TEECHART 2010
One of the components Delphi developers use the most, TeeChart, has been updated to
version 2010. It now includes new resources aimed at working with Charts in Delphi.

RAVE REPORTS 9
Delphi XE comes with Rave Reports, the famous report generator, now update to version 9

BEYOND COMPARE
Beyond Compare allows developers to quickly and easily compare files and merge
changes. By using simple, powerful commands you can focus on the differences you're
interested in and ignore those you're not. Beyond Compare is integrated with Delphi XE
IDE.

VCL FOR THE WEB
VCL for the Web - previously called IntraWeb - allows you to create Web 2.0 applications,
with transparent AJAX integration in many VCL components, and the newly added
Silverlight support.

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 107 -

DELPHI XE EDITIONS – PROFESSIONAL,
ENTERPRISE AND ARCHITECT

Delphi XE is offered in three editions: Professional, Enterprise and Architect. You can
check the list of features available in each edition and other product information at:
http://www.embarcadero.com/products/delphi/product-editions.

The Architect edition includes ER/Studio Developer Edition data modeling tool. Database
modeling is vital for developers working with applications that rely on databases.
ER/Studio includes support for reverse-engineering existing database and working with
logical and physical database models.

ER/Studio supports the following databases: DB2 LUW V9, Hitachi HiRDB, IBM® DB/2®,
Informix, InterBase®, Microsoft® Access, SQL Server, Visual FoxPro, MySQL, NCR Teradata,
Oracle, PostgreSQL, Sybase, SQL Anywhere. Other databases can also be accessed
through ODBC.

ER/Studio provides resources as reverse-engineering, logical and physical modeling.

CONCLUSION
Delphi’s IDE has been continually improved over the years. Delphi XE is no exception. The
new IDE, Version Control integration, VCL components, Touch and Gesture support, RTL,
Cloud support, generics, anonymous methods and the new DataSnap are sure to improve
developers’ productivity, allowing you not only to evolve existing applications but also
develop new ones with next-generation technologies.

For additional detail drill down into what’s new in Delphi XE, please visit:
http://www.embarcadero.com/products/delphi/whats-new.

http://www.embarcadero.com/products/delphi/product-editions
http://www.embarcadero.com/products/delphi/whats-new

Reasons to Migrate to Delphi XE – What you might have missed since Delphi 7

Embarcadero Technologies - 108 -

ABOUT THE AUTHOR
Andreano Lanusse is a software development expert and industry enthusiast. As a
technical lead evangelist for Embarcadero worldwide, he spends a great deal of his time
with developers, both onsite and at conferences and user groups, to ensure the
company’s tools meet the expectations of customers. Prior to Embarcadero, Andreano
worked at Borland for thirteen years in numerous roles including, support coordinator,
engineer, product manager, and product line sales manager. He has also worked as a
principal consultant for Borland Consulting Services on the development and
management of critical applications. Previously, he served as chief architect for USS
Tempo (formerly USS Soluções Gerenciadas). Andreano holds a bachelors degree in
business administration from Sumare Institute and MBA in project management from FGV,
and Certificate for Product Management Course from University of California, Berkeley.
Andreano is also a certified SCRUM Master. You can read more about Andreano Lanusse
on his blog, http://www.andreanolanusse.com/ and reach him at his e-mail address:
andreano.lanusse@embarcadero.com.

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of
the Fortune 100 and an active community of more than three million users worldwide rely
on Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered
in San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

http://www.andreanolanusse.com/
mailto:andreano.lanusse@embarcadero.com
http://www.embarcadero.com/

	Introduction
	What’s new in the IDE
	Subversion Integration – Version Insight
	Project Manager
	Gallery
	New Project Options
	Build Configurations
	IDE Insight
	Component Creation Wizard
	COM
	New Resource Manager
	Managing the menu Reopen Files
	Use Unit – Interface/Header
	Class Explorer
	Component Search in the Tool Palette
	The old Component Toolbar is back
	Code Editor
	Source Code Formatter
	Source Code Editor SEARCH
	Search in File
	Change History
	Refactoring
	Unit Testing
	Data Explorer
	/

	SQL Window - Query Builder
	Background Compilation
	Debugger

	What’s new in the VCL and RTL
	VCL Direct2D and Windows 7
	Touch and Gestures
	Ribbon Controls
	Windows Vista and Windows 7 support
	New and enchanced VCL Components
	TActionManager
	PNG Support
	TBitMap
	TButtonGroup
	TButtonEdit
	TLinkLabel
	TPopupActionBar
	THeaderControl and THeaderSection
	TButton
	TListView and TTreeView
	TBalloonHints
	TCategoryPanelGroup
	New Panels
	TCategoryButtons
	TDrawGrid, TStringGrid, TDBGrid
	TTrayIcon
	VCL – margins and padding
	Transparent Controls
	IntelliMouse Support
	TObject

	New memory manager and new RTL functions
	SOAP 1.2 client support
	Regular Expression
	Object-oriented file and directory I/O classes
	100% Unicode

	New language features and compiler resources
	Enhanced RTTI
	Attributes
	Exit Function
	Inline Directive
	Operator Overloading
	Class Helpers
	Strict private and Strict protected
	Records support methods
	Class abstract, Class sealed, Class const, Class type, Class var, Class property
	Nested classes
	Final methods
	Static class method
	For … in
	Generics
	Anonymous Methods
	Virtual Method Interception
	New $POINTERMATH {ON – OFF } Directive
	New Warnings

	dbExpress
	Framework
	dbExpress Metadata
	dbExpress Drivers

	Cloud Computing
	Microsoft Windows Azure
	Amazon EC2

	DataSnap
	Concepts
	DataSnap Server – Server Container
	DataSnap Server – Server Module
	DataSnap Server – Filters
	DataSnap Server – HTTP Tunneling
	DataSnap – Security
	DataSnap REST Server
	DataSnap Client – dbExpress
	DataSnap – Sending and Receiving objects

	Delphi translation tools – Localizing your Applications
	UML modeling, audits, metrics, and documentation
	UML Modeling
	Audits
	Loop Body is Never Executed (LBNE)
	Index Out of Bounds (IOB)

	Metrics
	Documentation

	Third-party Tools and components
	AQtime – Performance Profiling
	FinalBuilder – Build Automation
	CodeSite – advanced Logging System
	IP*Works
	TeeChart 2010
	Rave Reports 9
	Beyond Compare
	VCL for the Web

	Delphi XE Editions – Professional, Enterprise and Architect
	Conclusion
	About The Author

