

Americas Headquarters

EMEA Headquarters

Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

DataSnap in Action!

Bob Swart

January 2011

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 1 -

DATASNAP IN ACTION!
Last year, a RAD in Action technical paper was published about DataSnap as supported in
Delphi 2010 Enterprise and higher (see the link at the end of this paper). That particular
paper provides a good introduction into the basics of DataSnap and multi-tier
development. However, there have been a number of significant improvements and
enhancements. Rather than rewriting the original white paper, it felt more useful to
describe how to use DataSnap in a practical way, illustrating existing but especially the
new and enhanced functionality along the way.

The new DataSnap XE functionality that will be covered in this new white paper, include
the following features:

- DataSnap Server Wizards
- HTTPS support for ISAPI DLLs
- Encryption filters (when you don’t use HTTPS)
- Enhanced TAuthenticationManager component
- Role-based Authentication capabilities for server methods
- Role-based Authentication for TDataSetProvider
- TDSSessionManager
- Deployment using HTTPS/SSL (on IIS)

I will also cover features and functionality that were present already in the previous version
of DataSnap, but which were not covered in the white paper (although they are covered in
my more detailed DataSnap Development courseware manual – see the link at the end of
this paper). These topics include:

- How to “hide” Server Module methods from being exposed
- Autoincrement key fields
- Master-detail relationships using DBX and DataSnap
- Passing parameter values from client to server
- Assigning parameter values at the server side

In this new paper, I will describe a small but real-world DataSnap application which was
developed in a matter of hours and put in production the same day.

The application is an issue monitoring and tracking system, called D.I.R.T. which stands for
Development Issue Report Tool. The system is already being used by developers (in
different locations) to enter issue reports for a project of one of my customers, and the

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 2 -

developers often joke that they need to “clean some dirt” if an issue is reported and
requires a fix.

DATA MODEL
Before we start to build the application, we need to design a data model to describe the
issues and developers that will report and work on these issues. The process of designing
this data model usually involves a brainstorm session with (end)users, and a white board,
producing in this case the following result:

USER
The User table contains the list of developers as well as testers and other users that need
to access the application. Required information are a username and (hashed) password, as
well as the e-mail address. Other fields, like address or phone number, can be added later
when necessary. In our example, a user can have a role, like “developer”, “tester” or
“manager”. The system will use these role names plus a special “admin” role. This
technique can be extended by using commas to separate multiple roles for a user when
needed.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 3 -

CREATE TABLE [dbo].[User](
 [UserID] [int] IDENTITY(1,1) NOT NULL,
 [Name] [nvarchar](50) NOT NULL,
 [PasswordHASH] [nvarchar](50) NOT NULL,
 [Role] [nvarchar](32) NOT NULL,
 [Email] [nvarchar](50) NOT NULL
)

We should not store the real password of the user, but only the HASH value of the
password. This also means that only the hashed version of the password is sent over the
(secure) connection from the client to the server part of the application. We’ll see how to
generate the hash shortly, and how to ensure that the connection is secure.

REPORT
The Report table is the most detailed dataset. Here, we should be able to enter a new
report (and brief summary of 140 characters – ready to be tweeted as well), describing the
Project, Version (optional), Module (optional), Type of issue, as well as Priority. A special
field is used to contain the Status of the issue (like reported, assigned, opened, solved,
tested, deployed, closed). Also important are the date of the report, the user who
reported it, and the user who is assigned to the issue, although the latter is optional, since
it may not be known right from the start who should solve the issue.

CREATE TABLE [dbo].[Report](
 [ReportID] [int] IDENTITY(1,1) NOT NULL,
 [Project] [nvarchar](50) NOT NULL,
 [Version] [nvarchar](20) NULL,
 [Module] [nvarchar](50) NULL,
 [IssueType] [int] NOT NULL,
 [Priority] [int] NOT NULL,
 [Status] [int] NOT NULL,
 [ReportDate] [datetime] NOT NULL,
 [ReporterID] [int] NOT NULL,
 [AssignedTo] [int] NULL,
 [Summary] [nvarchar](140) NOT NULL,
 [Report] [nvarchar](4000) NOT NULL
)

Note that the ReportedID and AssignedTo fields are actually foreign keys to the User table
(as depicted in the diagram of the data module). Also note that the IssueType, Priority and
Status fields are integers. The actual meaning of these values, which can for example
range from 1 to 10, will have to be defined elsewhere. We could have used additional
look-up tables to store the meaning as strings, but we’ve decided to let the GUI worry
about the representation, and just use the integer values in our system.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 4 -

We only have to agree on one rule: the IssueType and Priority range from 1 to 10, and 1 is
lower than 10, so a Type of 10 and Priority of 10 is more urgent than a Type 1 issue with
Priority 1.

For the Status, we’ve defined an initial list of potential status values that an issue can have:

Status Meaning
1 Reported
2 Assigned
3 Opened

6 Solved
7 Tested
8 Deployed

10 Closed

Note that we’ve left some deliberate gaps, to extend the system in the future with states
like ”in progress”, ‘need more info”, and “verified” (after deployment), which we do not
need right now, but may want to add in the future.

Although we can add a look-up table with the translation of the status values and the
string representation, we’ve again decided to let the GUI handle that.

COMMENT
The Comment table is the one that will actually contain the workflow or logbook of what’s
being reported and done about the issue. This means that for each issue report, we can
have a user placing a comment (at a certain date, to see the actual progress).

CREATE TABLE [dbo].[Comment](
 [CommentID] [int] IDENTITY(1,1) NOT NULL,
 [ReportID] [int] NOT NULL,
 [UserID] [int] NOT NULL,
 [CommentDate] [datetime] NOT NULL,
 [Comment] [nvarchar](4000) NOT NULL,
)

These three tables, linked together by the different ReportID, ReporterID, AssignedTo and
UserID fields, are all we need to build the DataSnap Server application for the D.I.R.T.
project. Obviously, we could have added more tables, but the goal was to get the
optimum functionality as simple as possible (but not simpler).

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 5 -

DATASNAP SERVER
Delphi XE Enterprise (or Architect) provides no less than three new Wizards in the Object
Repository to help us create DataSnap Servers.

For the D.I.R.T. application, we need a DataSnap Server type that can be accessed from all
over the world in a secure and safe way (some of the issue reports may contain internal
details that we do not want to expose to everybody). To allow access from different mobile
devices and wireless connections, the use of only the HTTPS (HTTP Secure) protocol was
chosen, using an SSL/TLS certificate to provide an encrypted communication and secure
identification of the server. HTTPS is more secure than HTTP, which is why we picked
HTTPS. Also, while TCP/IP has proven to be faster than HTTP and HTTPS, speed is not a
concern for this application. If you need more raw speed, then a choice for TCP/IP as
communication protocol may be better.

The choice for HTTPS means that there are two DataSnap Server project targets that the
wizards can produce: an ISAPI DLL produced by the DataSnap WebBroker or DataSnap
REST Application wizards. The difference between the two is the generation of additional
files (JavaScript, templates, style sheets and images) for the REST application. These
additional files are not needed at this time, so the choice was made to use the DataSnap

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 6 -

WebBroker Application wizard, producing an ISAPI dynamic link library. This ISAPI DLL will
be deployed on Microsoft Internet Information Services (IIS), as discussed later in this
paper.

In the second page of the DataSnap WebBroker Application wizard, we can specify if we
want to use Authentication and Authorization, and if we want a Server Methods Class with
optionally some Sample Methods. Authentication means checking if a user is who he or
she claims he is (using a username and password combination), while authorization
controls which functionality is explicitly allowed or forbidden based on a user role.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 7 -

In our case, we want both Authentication and Authorization, as well as a Server Methods
Class, but we don’t need any Sample Methods, since we can easily add our own custom
server methods:

During the last step of the DataSnap WebBroker Application wizard, we can specify the
ancestor class for the Server Methods Class. Since we want to export both server methods
and datasets (using TDataSetProviders), we need to choose TDSServerModule. Using a
TComponent ancestor class, we could define server methods to expose, and using a
TDataModule we could add non-visual components, but the TDSServerModule is the
ancestor class that also implements and exposes the IAppServerFastClass interface
methods using a TDSProviderDataModuleAdapter class behind the scenes.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 8 -

If we now click on Finish, a new project is generated with two source files: a
ServerMethods unit and a unit with a web module inside. Save the project as DirtServer (or
any other name you want to give your D.I.R.T. project), the server methods unit as
DirtServerMethods.pas and the web module as DirtWebMod.pas.

Note that by renaming the Server Methods unit, the project won’t compile anymore. We
need to adjust the uses clause in the web module unit, changing ServerMethodsUnit1 to
DirtServerMethods.

We also need to adjust the assignment to PersistentClass in the OnGetClass event handler
in the same web module:

procedure TWebModule1.DSServerClass1GetClass(
 DSServerClass: TDSServerClass;

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 9 -

 var PersistentClass: TPersistentClass);
begin
 PersistentClass := DirtServerMethods.TServerMethods1;
end;

With these two amendments we should be able to compile the DirtServer DataSnap
Server project, producing an ISAPI DLL. This means it’s time to start adding the real
functionality, starting with the authentication checks.

LOGIN AND AUTHENTICATION
The Web Module that we modified earlier is also the place where we can control the
authentication and authorization for the DataSnap Server. The new
TDSAuthenticationManager component is our key for this task.

The TDSAuthenticationManager component has an OnUserAuthenticate event handler
where we can verify the User, Password (against the User table in the DIRT database) as
well as the used protocol (to make sure it’s HTTS and not HTTP). The initial
implementation can start as follows, to ensure we’re using the secure HTTPS as
communication protocol:

procedure TWebModule1.DSAuthenticationManager1UserAuthenticate(
 Sender: TObject; const Protocol, Context, User, Password: string;
 var valid: Boolean; UserRoles: TStrings);
begin
 valid := LowerCase(Protocol) = 'https';
 // now also validate User and Hashed password…
end;

The next step involves the verification of the User and Password (which should actually
contain the hashed value of the password), making sure a corresponding record for this
combination exists in the User table.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 10 -

For this, we can use a local TSQLConnection component with the sole purpose to perform
a direct execute on the User table. Alternately, we can store the user names and hashed
password values in a configuration file or passwd.ini file for example at the server machine,
and read that file when the user tries to login.

Assuming we want to use a direct connection to the database, place a TSQLConnection
component on the web module, set its Driver property to MSSQL, and specify the
Hostname, Database, UserName and Password in order to make a valid connection to the
database. Make sure to set the LoginPrompt property to False, and toggle the Connected
property to see if a successful connection can be made. Apart from the TSQLConnection
to talk to the database, we also need a TSQLDataSet to perform the query to look for the
User and Password in the User table.

LOCAL DB CONNECTION
If you do not want to place the TSQLConnection and TSQLDataSet components on the
web module, you can also create them dynamically. Especially for situations where we only
need the TSQLConnection once (to verify the login), this feels like a “clean” solution.
Especially if you consider that the SQLConnection parameter settings can be read from a
.ini or config file (which is left as exercise for the reader, by the way).

In both cases, the SQL query that we need to perform does a SELECT of the UserID and
Role from the User table, passing the User and (hashed) Password in the WHERE clause.
Note that we do not have to hash the password here, since it will already have been sent in
hashed format (something the client will need to do).

If the SELECT command returns a record, then we can store the UserID value in the current
session, using the TDSSessionManager.GetThreadSession to get the session for the
current thread, calling PutData to put the value of the UserID in a field with the name
“UserID”. The associating Role retrieved by the SELECT command can be used to add to
the UserRoles collection.

procedure TWebModule1.DSAuthenticationManager1UserAuthenticate(
 Sender: TObject; const Protocol, Context, User, Password: string;
 var valid: Boolean; UserRoles: TStrings);
var
 SQLConnection: TSQLConnection;
 SQLQuery: TSQLQuery;
 Role: String;

begin
 valid := LowerCase(Protocol) = 'https';

 if valid then
 begin // validate User and Hashed password
 SQLConnection := TSQLConnection.Create(nil);
 try

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 11 -

 SQLConnection.LoginPrompt := False;
 SQLConnection.DriverName := 'MSSQL';
 SQLConnection.Params.Clear;

 // The following parameters can be read from a config file
 SQLConnection.Params.Add('HostName=.');
 SQLConnection.Params.Add('Database=DIRT');
 SQLConnection.Params.Add('User_Name=sa');
 SQLConnection.Params.Add('Password=********');

 SQLQuery := TSQLQuery.Create(nil);
 SQLQuery.SQLConnection := SQLConnection;
 SQLQuery.CommandText :=
 'SELECT UserID, Role FROM [User] WHERE ' +
 ' (Name = :UserName) AND (PasswordHASH = :Password)';

 SQLQuery.ParamByName('UserName').AsString := User;
 SQLQuery.ParamByName('Password').AsString := Password;
 try
 SQLQuery.Open;
 if not SQLQuery.Eof then
 begin
 valid := True;
 TDSSessionManager.GetThreadSession.PutData('UserID',
 SQLQuery.Fields[0].AsString);
 Role := SQLQuery.Fields[1].AsString;
 if Role <> '' then
 UserRoles.Add(Role)
 end
 else
 valid := False
 finally
 SQLQuery.Close;
 SQLQuery.Free
 end
 finally
 SQLConnection.Connected := False;
 SQLConnection.Free
 end
 end
end;

Note that this implementation only allows one role per user. You can extend this either by
adding more table to the data model (defining Roles as well as the UserRoles connections)
or by separating the roles using commas in the Role field. I leave both extensions as
exercises for the reader (they will be covered in my DataSnap XE Development Essentials
courseware manual).

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 12 -

AUTHORIZATION
Once authenticated, we must handle the authorization as well. DataSnap offers the ability
to connect user roles with server classes and server methods. The OnUserAuthorize event
of the DSAuthenticationManager component can be used to implement the way we want
to deal with authorization. Basically, there are two ways to handle authorization: the
optimistic or the pessimistic approach. Optimistic means that any operation is allowed,
unless explicitly forbidden. While pessimistic means that no operation is allowed, unless
explicitly allowed. The best technique to use depends on the type of application that you
want to build. In this case, security is important (you do not want unauthorized people to
be able to edit or even view the details of issue reports or comments), so we decided to
implement the pessimistic approach.

In short, this means that in the OnUserAuthorize event handler, we should change the
default implementation (which assigns True to valid), and start with False instead. We
should then examine the collection of Authorized Roles to see if our User Role can be
found in the collection of Authorized Roles. This is implemented as follows:

if Assigned(AuthorizeEventObject.AuthorizedRoles) then
 for UserRole in AuthorizeEventObject.UserRoles do
 if AuthorizeEventObject.AuthorizedRoles.IndexOf(UserRole) >= 0
 then valid := True;

However, sometimes there are operations for which no explicit Authorized Roles have
been specified, like the generation of the DataSnap proxy classes for the client side. This
functionality would be unavailable if we implement the OnUserAuthorize with the previous
code snippet. For that reason, we should use an alternative approach: if no Authorized
Roles have been explicitly specified, then we can assume the operation is allowed, except
when the user role is found in the list of explicit Denied Roles (in practice, when the
Authorized Roles are empty, the Denied Roles will most often also be empty).

This leads to the final operational implementation of the OnUserAuthorize event handler
which is as follows:

procedure TWebModule1.DSAuthenticationManager1UserAuthorize(Sender: TObject;
 AuthorizeEventObject: TDSAuthorizeEventObject; var valid: Boolean);
var
 UserRole: String;
begin
 if Assigned(AuthorizeEventObject.AuthorizedRoles) then
 valid := False // assume NOT OK, unless explicitly allowed !!
 else valid := True; // no Authorized Roles?

 if not valid then
 if Assigned(AuthorizeEventObject.AuthorizedRoles) then
 for UserRole in AuthorizeEventObject.UserRoles do

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 13 -

 if AuthorizeEventObject.AuthorizedRoles.IndexOf(UserRole) >= 0
 then valid := True;

 if valid then
 if Assigned(AuthorizeEventObject.DeniedRoles) then
 for UserRole in AuthorizeEventObject.UserRoles do
 if AuthorizeEventObject.DeniedRoles.IndexOf(UserRole) >= 0
 then valid := False;
end;

Note that the above implementation also makes an explicit check to see if a user role was
included in both the Authorized Roles and the Denied Roles (in which case the user ends
up being denied for the requested server method).

The actual assignment of authorizations by role will need to be done at the server
methods level. We’ll make sure that admin has the right add new users, a manager can
view all issues but only in a read-only way, a tester can report new issues, and both the
tester and developer can add comments to issues (as they work to resolve the issues).

SERVER METHODS FOR THE CLIENT
Moving on to the DirtServerMethods unit, we can extend the TServerMethods1 class,
derived from TDSServerModule, to define and implement our server methods. The first
few methods that I’d like to add here are mainly to support the client application by
allowing the right set of options and operations to be enabled (or disabled). Based on the
user role, a user can for example only view all issues, or edit only certain issues (belonging
to the user in one way or another).

For this purpose, I’ve implemented two simple server methods: GetCurrentUserID and
GetCurrentUserRoles.

 public
 { Public declarations }
 function GetCurrentUserID: Integer;
 function GetCurrentUserRoles: String;

The GetCurrentUserID will be useful when we want to add a new issue report (or when we
want to comment on an existing issue), in which case our UserID is needed. The
GetCurrentUserRoles is even more useful, since that function will return the role (or roles)
that the current user belongs to, which we can use to open up functionality at the client
side.

The implementation of GetCurrentUserRoles consists of returning the UserRoles.Text
value from the current session, which is obtained by calling
TDSSessionManager.GetThreadSession, as follows:

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 14 -

function TServerMethods1.GetCurrentUserRoles: String;
begin
 Result := TDSSessionManager.GetThreadSession.UserRoles.Text;
end;

Note that the UserRoles.Text will return zero, one or more roles in a single string,
optionally separated by CRLF pairs if we have more than one role.

The implementation of the GetCurrentUserID server method is only slightly more complex.
Using the same session, we can call the GetData method to return the value of the
‘UserID’ field (the one that we assigned when a user had a successful login). If the UserID
field does not exist or has an invalid value, we return -1 instead.

function TServerMethods1.GetCurrentUserID: Integer;
begin
 Result := StrToIntDef(
 TDSSessionManager.GetThreadSession.GetData('UserID'), -1);
end;

We won’t be using the UserID value for now, but it brings us to an interesting topic:
retrieving the list of users and/or adding new users.

SERVER METHOD TO GET USER NAMES
When adding new issues and especially when assigning an issue to another user, it would
be helpful if the client application could show a list of user names (and associated UserID
values). For this purpose, we can add a third server method to the TServerMethods1 class,
called GetUserNames, returning a dataset with the user names and UserID values.

This server method should only be called by users with the Tester or Developer role, since
these are the only roles that can report new issues or add comments to an existing
reported issue. As a result, the declaration can be decorated with the TRoleAuth custom
attribute, explicitly defining the list of authorized roles as follows:

 [TRoleAuth('Tester,Developer')]
 function GetUserNames: TDataSet;

We could optionally include a second argument to the TRoleAuth custom attribute,
specifying roles for which this server method is explicitly forbidden. However, since we’ve
implemented the pessimistic authorization approach, this is not needed, and only users
with the roles that are explicitly allowed will be able to execute this server method.

For the implementation of this server method, we not only need the TSQLConnection
component, but also a TSQLDataSet component called sqlUser. The TSQLDataSet has its
SQLConnection property connected to the TSQLConnection component, and its

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 15 -

CommandType property set to Dbx.SQL. The CommandText itself consists of the SQL
SELECT command to select the UserID and Name fields from the User table as follows:

SELECT UserID, Name FROM [User]

With this SQL SELECT command specified, we can implement the GetUserNames server
method, which consists of opening the sqlUser table and moving to the First record (in
case it was already opened, but not positioned at the beginning).

function TServerMethods1.GetUserNames: TDataSet;
begin
 try
 sqlUser.Open;
 sqlUser.First;
 Result := sqlUser
 except
 on E: Exception do
 begin
 Result := nil;
 sqlUser.Close;
 SQLConnection1.Close
 end
 end;
end;

Note that we do not have to open the TSQLConnection component, since this will be
opened implicitly as soon as we open the TSQLDataSet. We do need to make sure that
the sqlUser is not closed before the function ends, since the “open” TSQLDataSet must
be passed as function result of this server method.

Getting a list of existing users is nice, but initially there will be no users. It’s time to explore
the server method to add a new user with a specific password and role to the database.

SERVER METHOD TO ADD NEW USER
Only a user with the Admin role is explicitly allowed to add new users. We can implement
this by adding a 4th server method called AddUser to the TServerMethods1 class, using the
TRoleAuth custom attribute again to explicitly specifying that only the Admin role is
allowed to call this server method:

 [TRoleAuth('Admin')]
 procedure AddUser(const User,Password,Role,Email: String);

The parameters for the AddUser procedure are the new user name, the password
(unencrypted, it will be hashed by the AddUser server method itself, although you are free
to change this and pass the already hashed version of the password along), the role and
the e-mail address.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 16 -

The AddUser method will require a TSQLConnection component, connected to the DIRT
database. Once that component is placed on the Server Methods unit, we can implement
the AddUser server method as follows:

procedure TServerMethods1.AddUser(const User, Password, Role, Email: String);
var
 SQLQuery: TSQLQuery;
begin
 SQLQuery := TSQLQuery.Create(nil);
 SQLQuery.SQLConnection := SQLConnection1;
 SQLQuery.CommandText := 'INSERT INTO [User] ' +
 ' (Name, PasswordHASH, Role, Email) ' +
 ' VALUES (:Name, :PasswordHASH, :Role, :Email)';
 SQLQuery.ParamByName('Name').AsString := User;
 SQLQuery.ParamByName('PasswordHASH').AsString := HashMD5(Password);
 SQLQuery.ParamByName('Role').AsString := Role;
 SQLQuery.ParamByName('Email').AsString := Email;
 SQLConnection1.Open;
 try
 SQLQuery.ExecSQL;
 finally
 SQLConnection1.Close;
 end;
end;

The HashMD5 support function is a private function defined in the TServerMethods1 class,
which can be implemented as follows, using the Indy IdHashMessageDigest unit with the
TIdHashMessageDigest5 type:

function TServerMethods1.HashMD5(const Str: String): String;
var
 MD5: TIdHashMessageDigest5;
begin
 MD5 := TIdHashMessageDigest5.Create;
 try
 Result := LowerCase(MD5.HashStringAsHex(Str, TEncoding.UTF8))
 finally
 MD5.Free
 end
end;

Note that you may want to make the function HashMD5 private (or protected) to ensure
that it’s not exported as server method if you do not want to share the MD5 hashing as a
server method.

Finally, note that you will also need to enter at least one user in the database with the
Admin role in order to be able to add other users (and the first user either needs to be
added by hand, or without the explicit custom attribute that defines that only users with

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 17 -

the Admin role can add users, otherwise you’re faced with a chicken-and-the-egg problem
and will not be able to login to add new users in the first place).

SERVER METHOD TO GET ALL ISSUES
After all this administration, it’s finally time to do some real functional work. In this case,
presenting the list of all reported issues. With a filter on the status, so we can retrieve
issues between a MinStatus and MaxStatus value, with the result value being a dataset so
we can connect it to a grid or other data-aware controls at the client.

The 5th server method is a function called GetIssues and should only be available to users
with the Manager role, defined as follows:

 [TRoleAuth('Manager')]
 // Return all issues (read-only) between MinStatus..MaxStatus
 function GetIssues(MinStatus,MaxStatus: Integer): TDataSet;

For the implementation of this server method, we not only need the TSQLConnection
component, but also a TSQLDataSet component called sqlReports.

The TSQLDataSet has its SQLConnection property connected to the TSQLConnection
component, and its CommandType property set to Dbx.SQL. The CommandText itself
consists of the SQL SELECT command to select all fields from the Report, and specifying
in the WHERE clause the minimum and maximum values for the Status field, as follows:

SELECT "ReportID", "Project", "Version", "Module", "IssueType",
 "Priority", "Status", "ReportDate", "ReporterID", "AssignedTo",
 "Summary", "Report"
 FROM "Report"
 WHERE Status >= :MinStatus AND Status <= :MaxStatus
 ORDER BY Status

A potential downside of using this simple SQL command is that we need to translate some
of the field values at the client side. For IssueType, Priority and Status, that is not a big
problem. But for the ReporterID and AssignedTo values, we would have to have a list of
usernames to substitute for these UserID values. This list is available by calling the
GetUserNames, but only for a user with the Tester or Developer role right now.

Since the SQL query should result in a read-only list anyway, we can extend it by joining
with the User table and replacing the ReporterID and AssignedTo fields with the actual
names of these users, as follows:

SELECT "ReportID", "Project", "Version", "Module", "IssueType",
 "Priority", "Status", "ReportDate",
 UReporterID.Name AS "Reporter", UAssignedTO.Name AS Assigned,
 "Summary", "Report"

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 18 -

 FROM "Report"
 LEFT OUTER JOIN [User] UReporterID ON UReporterID.UserID = ReporterID
 LEFT OUTER JOIN [User] UAssignedTO ON UAssignedTO.UserID = AssignedTO
 WHERE Status >= :MinStatus AND Status <= :MaxStatus
 ORDER BY Status

Note that I’ve used LEFT OUTER JOIN commands because the AssignedTo field of the
User table is not required (i.e. it can be a NULL value, in which case a normal LEFT JOIN
would not yield a result).

With this TSQLDataSet, we can implement the server method GetIssues as follows,
passing the MinStatus and MaxStatus integer argument values to the MinStatus and
MaxStatus query parameters:

function TServerMethods1.GetIssues(MinStatus,MaxStatus: Integer): TDataSet;
begin
 try
 SQLConnection1.Open;
 sqlReports.Close;
 sqlReports.ParamByName('MinStatus').Value := MinStatus;
 sqlReports.ParamByName('MaxStatus').Value := MaxStatus;
 sqlReports.Open;
 Result := sqlReports
 except
 on E: Exception do
 begin
 Result := nil;
 sqlReports.Close;
 SQLConnection1.Close
 end
 end;
end;

Note that we must not close the sqlReports, but allow the TSQLDataSet to remain open
while the function is executed. At the client side, we’ll be able to work with the resulting
dataset, as we’ll see shortly.

SERVER METHOD REPORT NEW ISSUE
While the user with the Manager role can get a read-only overview of all reported issues,
the user with Tester role can actually submit new issues. For this, we need a 6th server
method, ReportNewIssue, with the following declaration:

 [TRoleAuth('Tester'}]
 function ReportNewIssue(Project, Version, Module: String;
 IssueType, Priority: Integer; // Status = 1
 Summary, Report: String;
 AssignedTo: Integer = -1): Boolean;

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 19 -

Note that we pass all fields of the Report table, except for the ReportID (which is an
identity or autoincrement field), the ReporterID, and the Status fields. The ReporterID can
be determined by the server method based on the logged in UserID, and the status field
will automatically get the value 1 for “reported”. The AssignedTo field is optional, with a
default parameter value of -1. This value means that the reported issues is not yet assigned
to a user. Based on the value of AssignedTo, the SQL INSERT command will be slightly
different (either with or without the AssignedTo field and parameter).

The implementation of the ReportNewIssue server method is as follows:

function TServerMethods1.ReportNewIssue(Project, Version, Module: String;
 IssueType, Priority: Integer; // Status = 1
 Summary, Report: String;
 AssignedTo: Integer = -1): Boolean;
var
 InsertSQL: TSQLQuery;
begin
 Result := False;
 InsertSQL := TSQLQuery.Create(nil);
 try
 InsertSQL.SQLConnection := SQLConnection1;
 if AssignedTo >= 0 then
 InsertSQL.CommandText := 'INSERT INTO [Report] ([Project], ' +
 ' [Version],[Module],[IssueType],[Priority],[Status], ' +
 ' [ReportDate],[ReporterID],[AssignedTo],[Summary],[Report]) ' +
 ' VALUES (:Project,:Version,:Module,: IssueType,:Priority, ' +
 ' 1, @Date, :ReporterID,:AssignedTo,:Summary,:Report) '
 else // No AssignedTo
 InsertSQL.CommandText := 'INSERT INTO [Report] ([Project], ' +
 ' [Version],[Module],[IssueType],[Priority],[Status], ' +
 ' [ReportDate],[ReporterID],[Summary],[Report]) ' +
 ' VALUES (:Project,:Version,:Module,:IssueType,:Priority, ' +
 ' 1, @Date, :ReporterID,:Summary,:Report) ';

 try
 InsertSQL.ParamByName('Project').AsString := Project;
 InsertSQL.ParamByName('Version').AsString := Version;
 InsertSQL.ParamByName('Module').AsString := Module;
 InsertSQL.ParamByName('IssueType').AsInteger := issueType;
 InsertSQL.ParamByName('Priority').AsInteger := Priority;
 InsertSQL.ParamByName('ReporterID').AsInteger :=
 StrToIntDef(TDSSessionManager.GetThreadSession.GetData('UserID'),0);
 if AssignedTo >= 0 then
 InsertSQL.ParamByName('AssignedTo').AsInteger := AssignedTo;
 InsertSQL.ParamByName('Summary').AsString := Summary;
 InsertSQL.ParamByName('Report').AsString := Report;
 Result := InsertSQL.ExecSQL = 1
 except
 on E: Exception do
 CodeSite.SendException(E)

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 20 -

 end
 finally
 InsertSQL.Free;
 SQLConnection1.Close
 end;
end;

The function will return True in case the new record has been inserted correctly. Note that
the error handling only consists of sending the exception to CodeSite at this time. Feel
free to re-raise the exception or add your own error handling.

At this point, we’ve added no less than 6 server methods to retrieve information
(GetCurrentUserID, GetCurrentUserRoles, GetUserNames, GetIssues) or add new users
(AddUser) or reports (ReportNewIssue). Two methods, GetUserNames and GetIssues,
return datasets, but as read-only dataset that cannot be modified.

In order to allow users with the Developer role to retrieve reports and add comments, we
need to add functionality to the server module that goes beyond that which the server
methods can offer.

EXPORTING DATA: OPEN ISSUES
In order to not only view but also edit the reported issues for a developer, we need to
export a TDataSetProvider that can be used at the client side to make changes to the data
(insert, update and/or delete), and apply the updates back to the server.

A developer working on an issue report should see not just the initial issue report, but also
all comments that have been posted for that particular issue. As a result, the
TDataSetProvider should export not only records from the Reports table, but also from the
Comments table, in a master-detail relationship.

To implement this, we need to add two new TSQLDataSet components, called
sqlReportUser and sqlComments, and a TDataSource component called dsReportUser
that points its DataSet property to the sqlReportUser, and is used in turn as DataSource for
the sqlComments component.

Finally, we need a TDataSetProvider component, called dspReportUserWithComments
connecting its DataSet property to the master sqlReportUser dataset.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 21 -

Both TSQLDataSet components must point their SQLConnection property to the
TSQLConnection component of course. The SQL property for the sqlReportUser is defined
as follows, retrieving the records from the Report table within the specified minimum and
maximum status values, where either the ReporterID or the AssignedTo fields are equal to
the current user:

SELECT "ReportID", "Project", "Version", "Module", "IssueType",
 "Priority", "Status", "ReportDate", "ReporterID", "AssignedTo",
 "Summary", "Report"
FROM "Report"
WHERE (Status >= :MinStatus) AND (Status <= :MaxStatus)
 AND ((AssignedTo = :AssignedTo) OR (ReporterID = :ReporterID))

Note that this will return both the issues reported by the current user, and the issues
assigned to the current user. Which can both be considered issues “belonging” to the
current user.

This SQL command returns 12 fields. We can double-click on the sqlReportUser
component to start the Fields Editor. Next, we can right-click in the Fields Editor and
select “Add all fields”. This will produce a list of the 12 fields that the query will produce:

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 22 -

Some of these fields require special treatment. The ReportID field for example, is an
autoincrement field. This means that we should modify the ProviderFlags property for this
field. The pfInUpdate subproperty must be set to False (since we cannot assign an initial
value to this primary key, and should never update it anyway), but the pfInKey should be
set to True. The pfInWhere should already be set to True.

Note that the SQL command has four parameters: MinStatus, MaxStatus, AssignedTo and
ReporterID. However, only two of them will be provided by the client, and two will be
automatically filled by the server itself (and as a consequence need to be removed from
the list).

The MinStatus and MaxStatus input parameters are of type ftInteger and should be kept.
The AssignedTo and ReportedID parameters should be removed from the Params
collection, so they will not show up at the client side (and can be filled in by the server side
itself, based on the UserID value in the session of the current user).

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 23 -

Moving on to the detail: the sqlComments dataset should point its DataSource property to
dsReportUser, pointing to the master sqlReportUser. The actual SQL command for the
comments details is as follows, using a parameter called ReportID that connects the
comments to the reports:

SELECT CommentID, ReportID, UserID, CommentDate, Comment
 FROM Comment
 WHERE (ReportID = :ReportID)

This time, we must again modify the ProviderFlags for the primary key CommentID. So,
double-click on the sqlComments component to start the Fields Editor, right-click in the
Fields Editor and select “Add all fields”.

Select the CommentID field, and in the Object Inspector, expand the ProviderFlags
property of the CommentID field. Set the pfInUpdate subproperty to False, and the
pfInKey subproperty to True (while pfInWhere should already be True as well). This should
ensure that the primary key CommentID is never sent to the server as assignment, but is
used in the WHERE clause to locate a record.

Since the sqlComments dataset is connected to the master sqlReportUser dataset, the
TDataSetProvider will export them both as so-called nested datasets, with the report
being the master and the comments (if any) as nested detail dataset. We’ll see that in the
client application in more detail.

There is one more property of the dspReportUserWithComments TDataSetProvider that
you may want to change: the value of the UpdateMode. By default, this property is set to
upWhereAll. Which means that for UPDATE and DELETE commands, all fields will be part
of the WHERE clause (with the exception of Blob fields), to locate the correct record. This
is especially required if a table has no primary key. However, when a primary key is

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 24 -

present, which is our case, then we can change the upWhereAll to the more efficient
upWhereChanged. Using that setting, the WHERE clause will only contain the primary key
as well as the fields that have been changed (and not the fields that remained unchanged).
This allows us to actually merge records – in our case modified issue reports – as long as
two people do not modify the same field at the same time.

Finally, note that there is also an upWhereKeyOnly option, but that’s dangerous, since it
only passes the primary key in the WHERE clause of UPDATE and DELETE commands,
ignoring any changes that other users may have done.

Since both datasets are read-only unidirectional datasets, we need to perform one final
task to allow the master-detail relationship to work. While stepping through the result set
of the master, each time we move one record further next in the master record set, we
must “reset” the detail. This does not happen automatically, because the detail is also a
unidirectional dataset. In the AfterScroll event of the sqlReportUser we can close and re-
open the sqlComments dataset, and also pass the new value of the ReportID parameter.

This is implemented as follows:

procedure TServerMethods1.AS_sqlReportUserAfterScroll(DataSet: TDataSet);
begin
 sqlComments.Close;
 sqlComments.ParamByName('ReportID').AsInteger :=
 sqlReportUser.FieldByName('ReportID').AsInteger;
 sqlComments.Open;
end;

This will, in effect, ensure that the detail query is re-executed for every master record as
soon as we scroll to that master record, filling the entire nested dataset at the server side
before it’s exported by the TDataSetProvider to the client.

Note that the event was named AS_sqlReportUserAfterScroll and not the default name
sqlReportUserAfterScroll. This is done on purpose. The reason is as follows: any public
method of a server method class, will be exposed. And this includes public event handlers.
However, there is one exception to this rule: methods that start with the AS_ prefix will be
hidden and not exposed from the server methods class. We can use this knowledge to
hide event handlers, so they won’t resurface in the server methods proxy unit at the client
side (since they are quite useless to call from the client anyway).

While the client side will supply the value for the MinStatus and MaxStatus parameters of
the master query, we have to enter the values for the AssignedTo and ReporterID
parameters by ourselves at the server side. This can be done by implementing the
BeforeGetRecords event handler of the TDataSetProvider. Here, we can fill the parameters
of the sqlReportUser TSQLDataSet before it is opened. Both the ReporterID and

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 25 -

AssignedTo parameter values can be assigned to the value of the UserID for the current
user that we stored in the current thread for the user right after the login. This is
implemented as follows:

procedure TServerMethods1.AS_dspReportUserWithCommentsBeforeGetRecords(
 Sender: TObject; var OwnerData: OleVariant);
var
 UserID: Integer;
begin
 UserID := StrToIntDef(TDSSessionManager.GetThreadSession.GetData('UserID'),0);
 if sqlReportUser.Params.FindParam('ReporterID') = nil then
 begin
 with sqlReportUser.Params.AddParameter do
 begin
 DataType := ftInteger;
 ParamType := ptInput;
 Name := 'ReporterID';
 AsInteger := UserID
 end
 end
 else
 sqlReportUser.Params.FindParam('ReporterID').AsInteger := UserID;

 if sqlReportUser.Params.FindParam('AssignedTo') = nil then
 begin
 with sqlReportUser.Params.AddParameter do
 begin
 DataType := ftInteger;
 ParamType := ptInput;
 Name := 'AssignedTo';
 AsInteger := UserID
 end
 end
 else
 sqlReportUser.Params.FindParam('AssignedTo').AsInteger := UserID;
end;

This will ensure that all parameters of the sqlReportUser are filled before the query is
opened, and, as a consequence, any user who requests the Report and Comments records
from the dspReportUserWithComments will only get the reports where the current user
was either the reporter (i.e. ReporterID) or the one assigned to it (i.e. AssignedTo), or both.
But you can only see “your reports”, and not reports that belong to someone else. For
that, you need to have the Manager role and call the GetIssues server method that will
return an overview of all reported issues (but without the comments).

TDATASETPROVIDER ROLE BASED AUTHORIZATION
There’s one final thing missing for the DataSnap Server: the role based authorization for
the TDataSetProvider. Unlike the server methods, we cannot just add a custom attribute to

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 26 -

the component in the server module. Instead, we have to switch to the DirtWebMod and
use the TDSAuthenticationManager component.

This component has a property called Roles, where we can defines a collection of Roles
with ApplyTo, AuthorizedRoles and DeniedRoles properties. The ApplyTo property is the
place where we can specify a method name, a class name, or a class name followed by a
dot followed by a method name. In our case, I want to specify that only users with the
Developer role should be allowed to call the 7 pre-defined IAppServerFastCall methods.
So in the Apply property we need to add these 7 methods as follows:

Note that we could prefix them with TServerMethods1. in order to indicate that we only
want to secure the 7 methods from that specific server methods class.

Once the Apply property has been specified, we can enter Developer as role for the
AuthorizedRoles property, specifying that only a user with the Developer role is allowed to
use the exported TDataSetProvider.

You may feel that it’s a bit too strict to allow only the developer to edit existing issue
reports and add comments. Feel free to add the Tester and even the Manager roles to this
list as well (although it depends on the manager if you really want to give this user the
ability to modify reports and/or add comments).

SERVER DEPLOYMENT
For the DataSnap D.I.R.T. Server to be safely and securely deployed, we either need to
deploy the ISAPI DLL in Microsoft’s Internet Information Services using the HTTPS

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 27 -

protocol, or we should deploy it as stand-alone DataSnap server with the RSA and PC1
filters to encrypt the transport channels. In the latter case, it’s recommended to use TCP/IP
as transport protocol and not HTTP, since TCP/IP is a lot faster. So the real-world
deployment options that we’ve used are:

- ISAPI DLL using HTTPS on IIS
- Stand-alone using TCP/IP with PC1 and RSA filters

IIS has the additional benefit of allowing us to configure application pools that support
automatic load balancing, recycling, and limitation of the CPU and memory usage of the
server. For this reason, the D.I.R.T. DataSnap Server has been deployed as an ISAPI DLL on
IIS on a web server that has an SSL certificate installed for the domain. We will use
www.bobswart.nl for the purpose of this paper. A virtual directory DataSnapXE has been
created, and a special application pool configured for the applications in this virtual
directory. Finally, the DirtServer.dll has been placed inside this virtual directory, resulting in
the following URL: https://www.bobswart.nl/DataSnapXE/DirtServer.dll

Calling this URL will only present us with the “DataSnap XE Server” text, but at least that is
confirmation enough that the server is deployed. Of course, we should also ensure that
the DirtServer.dll can connect to the database. For that purpose, the required database
driver should also be deployed to the server machine. For SQL Server 2008, this means the
dbxmss.dll which should be placed in the search path (like the Windows\System32
directory, to ensure that the ISAPI DLL can load it).

Note that apart from the DirtServer.dll and the dbxmss.dll we do not have to deploy any
other files to the web server. The MIDAS.dll is not needed either, since we can add the
MidasLib unit to the uses clause of the project, which will link in the MIDAS.dll inside the
server project itself.

If you deploy the DataSnap standalone server, using TCP/IP and the RSA and PC1 filters,
then you must also deploy two Indy specific SSL DLLs: libeay32.dll and ssleay32.dll – or
make sure they already exist at the server machine. These DLLs are needed for the RSA
filter (which encrypts the password used by the PC1 filter). Without these two DLLs, any
client who wants to connect to the server will get a “Connection Closed Gracefuly”
message, because the server was unable to load the two DLLs to start the RSA filter to
encrypt the PC1 keys, etc.

By the way, the same two DLLs will be required for any DataSnap client, whether
connected to the TCP/IP server using the RSA and PC1 filters, or whether connected to the
ISAPI filter using HTTPS. But let’s first build the client, and worry about deployment later.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 28 -

DATASNAP CLIENT
With the D.I.R.T. DataSnap Server deployed and available for testing, we can start to write
the DataSnap Client. This will be a smart client; a standalone executable that we can put
on a USB stick or place anywhere and can run from any Windows machine (provided we
have an internet connection to the https://www.bobswart.nl server to access the DirtServer
project).

Create a new VCL Forms application, and add a Data Module to centralize the data access
components to the DataSnap Server. As first step, we should place a TSQLConnection
component on the Data Module. Set the Driver property to Datasnap, and then expand
the Driver node to view the DataSnap specific properties in the Object Inspector. We
should first set the CommunicationProtocol to https, the Port to 443 and the HostName to
www.bobswart.nl (feel free to connect to your own server, of course). The URLPath
property should be set to /DataSnapXE/DirtServer.dll which specifies the location of the
DirtServer on the web server. Don’t forget to set the LoginPrompt property to False, or
you will be presented with a login dialog when you try to connect to the server. And that’s
not useful, since we need to pass the hashed password (instead of the real password) from
the client to the server.

There is one catch here… without a valid value for the DSAuthUser and DSAuthPassword
properties, we are not allowed to connect to the server, and, as a consequence, the
generation of the DataSnap Client Classes will fail. For the DirtServer on my machine, that
will be a problem (but you can use the pre-generated client classes unit
DBXClientClasses.pas from the project archive if you want). For your own DataSnap server,
you could temporarily disable the OnUserAuthenticate event handler of course, assigning
True to valid at least for as long as you need to generate your client classes, and then
enable the authentication checks again.

Once the client classes have been generated, you’ll see the TServerMethods1Client class
which consists of the following public server methods (among others):

type
 TServerMethods1Client = class(TDSAdminClient)
 private

 public
 constructor Create(ADBXConnection: TDBXConnection); overload;
 constructor Create(ADBXConnection: TDBXConnection;
 AInstanceOwner: Boolean); overload;
 destructor Destroy; override;

 function GetCurrentUserID: Integer;
 function GetCurrentUserRoles: string;
 function GetUserNames: TDataSet;

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 29 -

 procedure AddUser(User: string; Password: string;
 Role: string; Email: string);
 function ReportNewIssue(Project: string; Version: string;
 Module: string; IssueType: Integer; Priority: Integer;
 Summary: string; Report: string; AssignedTo: Integer): Boolean;
 function GetIssues(MinStatus: Integer; MaxStatus: Integer): TDataSet;
 end;

But before we can create an instance of the TServerMethods1Client and call the server
methods, we should first ensure we can make a connection.

LOGIN
We can add a new form to the project and design it to be our custom login form, for
example as follows:

Make sure to set the PasswordChar property of the TEdit (called edPassword) used to
enter the password.

This dialog can be displayed as a modal dialog, and the resulting username and password
can be assigned to the TSQLConnection’s Params, adding or replacing the existing values.
We should hash the password the same way we did in the server application, leading to
the following code for a Login event:

procedure TFormClient.Login1Click(Sender: TObject);
var
 MD5: TIdHashMessageDigest5;
 Server: TServerMethods1Client;
 UserRoles: String;

begin
 DataModule1.SQLConnection1.Connected := False;
 UserID := -1;

 with TFormLogin.Create(Self) do
 try
 if ShowModal = mrOK then
 begin
 SQLConnection1.Params.Values['DSAuthenticationUser'] := Username;

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 30 -

 MD5 := TIdHashMessageDigest5.Create;
 try
 SQLConnection1.Params.Values['DSAuthenticationPassword'] :=
 LowerCase(MD5.HashStringAsHex(Password, TEncoding.UTF8));

 SQLConnection1.Connected := True; // try to login...
 Server := TServerMethods1Client.Create(SQLConnection1.DBXConnection);
 try
 UserID := Server.GetCurrentUserID;
 UserRoles := Server.GetCurrentUserRoles;

 // Adjust GUI capabilities based on UserRoles...

 finally
 Server.Free
 end
 finally
 MD5.Free
 end
 end
 finally
 Free // TFormLogin
 end
end;

Note that I haven’t shown my actual code to disable and/or hide portions of the GUI
based on the user roles. This is left as exercise for the reader. You can, of course,
download the example DirtServer and DirtCleaner client projects and examine the source
code in more detail.

The Login form will close the existing connection to the DataSnap Server and assign new
values to the DSAuthenticationUser and DSAuthenticationPassword parameters of the
TSQLConnection component. Whether or not the login was successful can be seen if the
connection is re-established, followed by the call to the GetCurrentUserID and
GetCurrentUserRoles server methods.

DATA MODULE AND SERVER METHODS
Although we already generated the DataSnap client classes using the TSQLConnection
component on the data module, in practice, we will seldom need to call the server
methods directly. The Login code showed two calls already: to GetCurrentUserID and to
GetCurrentUserRoles, but the other server methods are typically used to retrieve a
dataset, read-only or modifiable. There’s one exception, the server method
ReportNewIssue, but that one will be covered later.

For now, return to the data module, and place four more components on the data module:
a TSqlServerMethod component, called SqlServerMethodGetIssues, a TDataSetProvider

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 31 -

component called dspIssues, a TClientDataSet component called cdsIssues, and finally a
TDataSource component named dsIssues.

The SqlServerMethodGetIssues component needs to connect its SQLConnection property
to the SQLConnection1 component, so it can talk to the DataSnap Server. We can then
use the drop-down list for the ServerMethodName to select the server method we want to
execute. Note that the TSQLConnection component must be connected to the (running)
DataSnap Server in order to display the list of Server Methods.

For our example here, we need to call the TServerMethods1.GetIssues server method.
This method can only be called by a user in the “Manager” role, and will return a read-only
dataset with all issues (within a certain range of Status values).

As soon as we’ve selected this server method in the drop-down list, we can also look at the
Params property of the SqlServerMethodGetIssues. This will show three parameters:
MinStatus, MaxStatus and the ReturnParameter (a dataset):

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 32 -

You can define a default value for the MinStatus and MaxStatus parameters, or assign their
values in code (which is what the next code snippet will show).

The dspIssues TDataSetProvider needs to connect his DataSet property to the
SqlServerMethodGetIssues.

Next, we need to point the ProviderName property of the cdsIssues TClientDataSet to
dspIssues. Since the resulting dataset cannot be modified, it is a good idea to set the
ReadOnly property of the cdsIssues to True, so any data-aware controls connecting to this
dataset will not allow the user to make any changes (which is frustrated if you find out later
that the changes cannot be saved or send back to the server).

Finally, the dsIssues TDataSource needs its DataSet property assigned to the cdsIssues
TClientDataSet, so we can connect data-aware controls to the dsIssues.

Now, on the client main form, we can place a TDBGrid and name it TDBGridReports, to be
filled with the reports from this or other server method. In order to put the result of the
GetIssues server method, passing explicit values for the MinStatus and MaxStatus filters,
we can write the following code:

procedure TFormClient.ViewAllIssues1Click(Sender: TObject);
// Manager - all reports (read-only)
begin
 DBGridReports.DataSource := nil;
 DataModule1.SQLConnection1.Connected := True;
 try
 DataModule1.cdsIssues.Close;
 DataModule1.SqlServerMethodGetIssues.Params.
 ParamByName('MinStatus').AsInteger := MinStatus;
 DataModule1.SqlServerMethodGetIssues.Params.
 ParamByName('MaxStatus').AsInteger := MaxStatus;

 DataModule1.cdsIssues.Open;
 DBGridReports.DataSource := DataModule1.dsIssues;
 finally
 DataModule1.SQLConnection1.Connected := False
 end

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 33 -

end;

Note that we open the connection to the DataSnap Server using the TSQLConnection
component on the data module, we fill the SqlServerMethodGetIssues parameters, call
the server method, assign the datasource to the DBGridReport’s datasource so we can see
the result, and finally we close the connection to the DataSnap Server again. Although you
can keep the connection open, disconnecting right after your request will help make the
client a bit more robust (you will always start with a fresh connection) although also a bit
slower (you always need to open that connection), but the server a bit more scalable (only
active connections need to be maintained).

The resulting dataset will contain fields like IssueType, Priority and Status, presenting
themselves as integer values. We can map these integer values into more human-friendly
string values. For this, we need to double-click on the cdsIssues TClientDataSet on the
data module, to start the Fields Editor. Right-click inside the Fields Editor and “Add all
fields”.

For the IssueType, Priority and Status fields, we can implement the OnGetText event
handler to change the simple integer values into more human readable string values, as
follows:

procedure TDataModule1.IssueTypeGetText(Sender: TField;
 var Text: string; DisplayText: Boolean);
begin
 case Sender.AsInteger of
 1..4: Text := 'Minor ' + Sender.AsString;
 5..8: Text := 'Major ' + Sender.AsString;
 9..10: Text := 'Critical ' + Sender.AsString;
 end;
end;

procedure TDataModule1.PriorityGetText(Sender: TField;
 var Text: string; DisplayText: Boolean);
begin
 case Sender.AsInteger of
 1..3: Text := 'Low ' + Sender.AsString;
 4..7: Text := 'Medium ' + Sender.AsString;
 8..10: Text := 'High ' + Sender.AsString;
 end;
end;

procedure TDataModule1.StatusGetText(Sender: TField; var Text: string;
 DisplayText: Boolean);
begin
 case Sender.AsInteger of
 1: Text := 'Reported';
 2: Text := 'Assigned';
 3: Text := 'Opened';

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 34 -

 6: Text := 'Solved';
 7: Text := 'Tested';
 8: Text := 'Deployed';
 10: Text := 'Closed';
 end;
end;

Feel free to add your own translations to these fields, but for our purpose it was enough.
Note that the original integer value is still presented in the IssueType and Priority field
values as well, as a little reminder what the actual value was.

USERNAMES SERVER METHOD
In a similar way, we can place a TSqlServerMethod component with the sole purpose to
call the GetUserNames server method. We should also place a TDataSetProvider
component called cdsUserNames and a TClientDataSet component called cdsUserNames
to hold the list of user names and UserID values.

The SqlServerMethodGetUserNames should be connected to the TSQLConnection
component and pointing to the TServerMethods1.GetUserNames server method. The
cdsUserNames is the connecting TDataSetProvider that is used by the cdsUserName
TClientDataSet to get all these records.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 35 -

Using the Fields Editor, we can verify that cdsUserNames has two fields: Name and UserID.
This dataset will be used as “support” dataset to provide a list of names, or to change a
UserID value (for example from the AssignedTo or ReportedID fields) from an ID to a
readable name.

DSPROVIDERCONNECTION
Let’s now move to the reported issues for a user with the Developer or Tester role. In that
case, we cannot call the GetIssues server method, but we should use the exported
TDataSetProvider called dspReportUserWithComments from the server.

For this, we need to add a TDSProviderConnection component on the data module, as
well as two TClientDataSets – called cdsReports and cdsComments, and one TDataSource
component called dsReports connected to the cdsReports.

The DSProviderConnection component is the one connecting to a server methods class of
the DataSnap Server. In our case, there is only one class: TServerMethods1. We must point
the SQLConnection property of the DSProviderConnection component to the
TSQLConnection, and then specify the exact name of the server methods class in the
ServerClassName property. This name is TServerMethods1 (obviously, you may want to
check in your case if the server methods class is called the same).

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 36 -

As next step, we should connect the cdsReports TClientDataSet component to the
DSProviderConnection, by assigning the later to the RemoteServer property of
cdsReports. When everything is setup correct, and the DataSnap Server is running and
accepting connections, we can open up the drop-down list for the ProviderName property
of the cdsReports and select the dspReportUserWithComments.

As a result, the complete master-detail dataset exported by the
dspReportUserWithComments will now be contained in the cdsReports. We now need to
configure the fields as well as the parameters. First of all, right-click on the cdsReports and
select Fetch Params. This will fill the Params collection of the cdsReports, where we can
expect the exported parameters MinStatus and MaxStatus (but not the AssignedTo and
ReportedID parameters that we removed from the parameter collection at the server).

You can assign a default value to these parameters, but we’ll assign an explicit value to
them in code shortly.

We also need to double-click on cdsReports to start the Fields Editor, and right-click
inside the Fields Editor to “Add all fields”. This will result in a list of 13 fields with one
special field at the end: sqlComments.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 37 -

This particular field contains the nested detail records, in this case “comment” records,
that belong to the master Report record. We can use this field of type TDataSetField to
feed the second TClientDataSet called cdsComments.

Select the cdsComments TClientDataSet, and using the Object Inspector, assign
cdsReportssqlComments to the DataSetField property. The cdsComments dataset will
now automatically contain the detail records for the current master record in the
cdsReports dataset.

We should also double-click on the cdsComments TClientDataSet to start the Fields
Editor and right-click in it to “Add all fields”.

Both TClientDataSets need a little modification with regards to their first field; the primary
key. Since we’ve specified the ReportID (in the Reports table) and the CommentID (in the
Comments table) to be autoincrement fields, we should not write these values to the
database. The DBMS itself will generate these values for us. As a consequence, for both
the cdsReportsReportID field and the cdsCommentsCommentID field, we must edit the
ProviderFlags and set the pfInUpdate subflag to False but the pfInKey subflag to True.
This will ensure that the TClientDataSets know that the primary key is in fact the key, but
that it should not be updated or written to the server.

ADDING LOOKUP FIELDS
Now, go back to the cdsReports and look at the list of fields again. There are a number of
fields that need to be translated, like we did earlier for the cdsIssues that were returned for
the Manager user. These fields are IssueType, Priority and Status, for which we can share
the same OnGetText event handlers as shown before (it’s the same data module).

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 38 -

Two other fields may also require translation: the ReportedID and AssignedTo fields,
which only contain a UserID value, but not the name of the user. We can use the
cdsUserNames table as lookup source to add two lookup fields to cdsReports: one for
ReporterName and one for AssignedName. Right-click in the Fields Editor, select “New
field…”, and define a new lookup field, for example for ReporterName as follows:

We can do the same thing for an AssignedName lookup field for the AssignedTo field in
the cdsReports. And don’t forget the UserID field in the cdsComments, which could also
benefit from a lookup field called UserName.

AUTOINCREMENT FIELDS
A few more steps are required to make the autoincrement fields work, especially in a
master-detail relationship. Although we cannot write a value for the ReportID and
CommentID primary keys back to the server, we still need to assign a value at the client
side to allow us to create new issues or new comments. For these new records, we should
use negative key values, starting to count down from -1. This can be implemented using
the AfterInsert event of the two TClientDataSets as follows:

procedure TDataModule1.cdsReportsAfterInsert(DataSet: TDataSet);
begin
 cdsReportsReportID.AsInteger := -1;
end;

procedure TDataModule1.cdsReportsOrCommentsAfterPostOrDelete(DataSet: TDataSet);
begin
 cdsReports.ApplyUpdates(-1)
end;

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 39 -

Note that the code here simply assigns -1 and does not attempt to count further down.
Counting further down is not needed, since the client application will send all updates
back to the server right after a post or delete. This means that we will never have more
than one (currently being edited) record with a possible negative key value. Right after the
post (after insert or edit), the new record will be send to the server, and all we need to do
is refresh the contents of the cdsReports and cdsComments in order to retrieve the actual
autoincrement values from the server.

For that purpose, we need to implement the AfterDelete and AfterPost event handlers of
both TClientDataSets. The good news is that all four event handlers can be shared in one,
since in all cases there’s just one thing that we need to do:

procedure TDataModule1.cdsReportsOrCommentsAfterPostOrDelete(DataSet: TDataSet);
begin
 cdsReports.ApplyUpdates(0);
 cdsReports.Refresh
end;

This will ensure that we call the ApplyUpdates to send any changes to the server, and right
after that call the Refresh method to refresh the data from the server.

Refresh will not just refresh the primary key values, but will actually refresh all data in the
records that we have selected. This may sound like a bad idea, and it may certainly be
unwise if you select a large number of records, but in this case, the exported
DataSetProvider will only return the Reports (with Comments) that belong to the current
user, within the specified MinStatus and MaxStatus ranges, so if that produces thousands
and thousands of records, then perhaps this user is either a fanatic when it comes to
testing, or a developer who has too much work on his or her plate…

Viewing the issues, for a user with the Developer or Tester role, can now be implemented
as follows:

procedure TFormClient.ViewMyIssues1Click(Sender: TObject);
// Developer/Tester personal reports
begin
 DBGridReports.DataSource := nil;
 DataModule1.SQLConnection1.Connected := True;
 try
 DataModule1.cdsReports.Close;
 DataModule1.cdsReports.Params.ParamByName('MinStatus').AsInteger :=
 MinStatus;
 DataModule1.cdsReports.Params.ParamByName('MaxStatus').AsInteger :=
 MaxStatus;
 DataModule1.cdsReports.Open;
 DBGridReports.DataSource := DataModule1.dsReports;

 // nested dataset

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 40 -

 DBGridReports.Columns[DBGridReports.Columns.Count-1].Visible := False;
 finally
 DataModule1.SQLConnection1.Connected := False
 end
end;

The last column in the TDBGrid is the nested dataset. We can either set the Visible
property of that field to false in the Fields Editor of the cdsReports, or set Visible to false
for the last column in the TDBGrid. The code above implements the latter choice.

Note that apart from that nested field column, the code to display the reported issues is
very similar to what was needed for the Manager’s call to the GetIssues server method,
exposed by the SqlServerMethodGetIssues. However, where the Manager’s result is a
read-only dataset (actually set to read-only using the property ReadOnly), the Developer
and Tester’s result is a dataset where we can make modifications.

For these modifications, however, we do not want users to edit data in a grid, so a new
form was designed to allow editing and updating of individual issue reports.

REPORTED ISSUE FORM
Building the Reported Issue Form now consists of nothing more than placing two
TDataSources (called dsComments and dsReports) and a number of data-aware controls
to display the contents of the Report master and Comments detail records. For our
purpose, the form has the following layout, but feel free to add your own look and feel of
course:

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 41 -

The comments are displayed in a TDBGrid, with the current comment details shown in the
second TDBMemo. Adding a comment should not be done in the grid (although this is
possible), but is nicer in a new form. For that, we’ve designed a special form to enter the
new comments, and display it as follows:

procedure TFormIssue.btnNewCommentClick(Sender: TObject);
begin
 with TFormComments.Create(Self) do
 try
 ShowModal;
 finally
 Free
 end
end;

The new form itself also has a very simple layout, using two buttons and a TMemo with the
vertical scrollbar option enabled.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 42 -

Note that only the actual comments are needed to insert a new comment record, since the
client application knows the (current) report we want to comment on, it knows the current
user, as well as the date, so the only field that needs “manual” input is the actual comment
itself.

As a result, the implementation of the OK button is as follows:

procedure TFormComments.BitBtn1Click(Sender: TObject);
begin
 DataModule1.cdsComments.Insert;
 DataModule1.cdsCommentsCommentID.AsInteger := -1;
 DataModule1.cdsCommentsUserID.AsInteger := UserID;
 DataModule1.cdsCommentsCommentDate.AsDateTime := Now;
 DataModule1.cdsCommentsComment.AsString := Memo1.Text;
 DataModule1.cdsComments.Post;
 Close
end;

This will also close the dialog, returning the user back to the overview with refreshed
contents of the reports and comments.

REPORT NEW ISSUE
There is one more action left to explore: reporting new issues. For this feature, we can call
the ReportNewIssue server method manually, passing the Project, Version, Module,
IssueType, Priority, Summary, Report and optionally AssignedTo arguments. This is not
hard to do, using simple input controls and a direct call to the server method.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 43 -

However, we can also use the existing cdsReports TClientDataSet, connected to the
DSProviderConnection to simply insert a new record in the cdsReports table, with -1
assigned to the primary key (automatically), and using data-aware controls to design the
GUI. Thereby ignoring the ReportNewIssue server method (which was only allowed for
Testers anyway), and using the dataset provider functionality which was enabled for both
Testers and Developers.

The data-aware Report New Issue form is defined as follows, with a single TDataSource
connected to the cdsReports on the data module, and a set of data-aware controls.

During the FormCreate, we can do an Insert of the cdsReports dataset, assigning the
UserID to ReporerID, the Status as reported (value 1), as well as the ReportDate (as Now).
The ReporterID, Status and ReportDate fields are made read-only in this form.

The OK button will do a Post and close the form, while the Cancel button will do a Cancel
and close the form. Implemented as follows:

procedure TFormNewIssue.FormCreate(Sender: TObject);
begin
 dsReports.DataSet.Open;
 dsReports.DataSet.Insert;
 dsReports.DataSet.FieldByName('ReporterID').AsInteger := UserID;
 dsReports.DataSet.FieldByName('Status').AsInteger := 1;
 dsReports.DataSet.FieldByName('ReportDate').AsDateTime := Date;
end;

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 44 -

procedure TFormNewIssue.btnOKClick(Sender: TObject);
begin
 dsReports.DataSet.Post;
 Close
end;

procedure TFormNewIssue.btnCancelClick(Sender: TObject);
begin
 dsReports.DataSet.Cancel;
 Close
end;

Note that the IssueType, Priority, and AssignedTo fields are assigned using simple
TDBEdit controls. It would be a good idea to use a numerical spinedit control for the
IssueTypes and Priorities (limiting the input to a range of 1..10), and a drop-down
combobox showing the known users for the AssignedTo field. Since the AssignedTo field
is not required, we cannot use a TDBLookupComboBox component (which would force us
to always make a choice, even if we do not want to assign the issue report to a user, yet).
So, instead I’ve used a regular TCombobox filled with the names of the users in the
FormCreate event, with the following additional code:

 DataModule1.cdsUserNames.Open; // in case it was closed
 DataModule1.cdsUserNames.First;
 cbAssignedTo.Items.Clear;
 cbAssignedTo.Items.Add('Nobody');

 while not DataModule1.cdsUserNames.Eof do
 begin
 // current user name
 if DataModule1.cdsUserNamesUserID.AsInteger = UserID then
 edReporter.Text := DataModule1.cdsUserNamesName.AsString;

 cbAssignedTo.Items.AddObject(
 DataModule1.cdsUserNamesName.AsString,
 TUserID.Create(DataModule1.cdsUserNamesUserID.AsInteger));

 DataModule1.cdsUserNames.Next;
 end;

The TUserID class is a special support class that I’ve created to hold the UserID so we can
add this object as second argument to the AddObject method of the ComboBox’s Items.

type
 TUserID = class
 UserID: Integer;
 constructor Create(const NewUserID: Integer);
 end;

constructor TUserID.Create(const NewUserID: Integer);
begin

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 45 -

 inherited Create;
 UserID := NewUserID
end;

To avoid a memory leak, we should also cleanup the objects from the TComboBox again
when the form is closed, which can be done as follows in the FormClose:

procedure TFormNewIssue.FormClose(Sender: TObject;
 var Action: TCloseAction);
var
 i: Integer;
begin
 for i:=0 to cbAssignedTo.Items.Count-1 do
 if Assigned(cbAssignedTo.Items.Objects[i]) then
 cbAssignedTo.Items.Objects[i].Free
end;

Note that we’re also assigning the current user’s name to the Text property of a TEdit
called edReporter, so we see the name of the person who submitted the report (which
should be our own name).

This results in the following design of the Report New Issue form:

Note that the IssueType and Priority TSpinEdit controls have a default value of 1, and a
MinValue of 1 and MaxValue of 10. Feel free to change the default Value to, for example, 5
if you want, to make it easier to report more urgent issues.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 46 -

As final optional extension, we could also add TComboBox controls for the Project,
Version and Module input fields, retrieving a list of existing values for the Project, Version
and Module fields in the current dataset. That, however, is left as a final exercise for the
reader.

CLIENT DEPLOYMENT
If we add the MidasLib unit to the uses clause of the DataSnap Client project, then we end
up with an almost stand-alone executable. No database drivers are needed. However,
since the ISAPI DLL uses HTTPS, and the TCP/IP stand-alone server uses the RSA and PC1
filters, we must also deploy the libeay32.dll and ssleay32.dll files with our DataSnap Client–
or make sure they already exist at the client machine.

The DirtCleaner executable and two SSL support DLLs require an internet connection to
connect to the DirtServer, but apart from that, nothing else is needed. A valid user name
and password is all that’s needed to connect to the server and participate in the role of
Manager, Developer or Tester. The source code for the DirtServer and DirtCleaner
projects is available for download. A more refined version will be made available and
described in my DataSnap XE courseware manual (and can be used to report omissions or
typo/bug reports in my courseware manuals for registered readers).

SUMMARY
In this DataSnap XE in Action paper, I’ve described how to design and implement a small
but real-world secure DataSnap Server application, and deployed it on Microsoft’s Internet
Information Services as an ISAPI DLL. Security was implemented using authentication and
authorization as well as HTTPS (or RSA/PC1 filters for a stand-alone server) for a secure
transport channel. I also showed how to connect to the DataSnap Server from a DataSnap
Client in order to call server methods and work with exported DataSetProviders.

Among the technical issues covered when working with datasets, I explained how to work
with autoincrement fields, especially in combination with master-detail and nested
datasets.

This application would not have been possible without the many new features and
enhancements in found in DataSnap XE. With the release of Delphi XE, DataSnap was
again substantially expanded and enhanced compared to DataSnap 2010 or 2009, and a
lot improved since the COM-based original versions of DataSnap and MIDAS.

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 47 -

REFERENCES
RAD Studio in Action – DataSnap 2010 white paper

http://www.embarcadero.com/rad-in-action/datasnap

Delphi XE DataSnap Development courseware manual

http://www.ebob42.com/courseware/

DataSnap in Action!

Copyright © 2011 Bob Swart. All Rights Reserved.
Embarcadero Technologies - 48 -

ABOUT THE AUTHOR
Bob Swart (aka Dr.Bob) is an IT consultant, developer, reseller, author, trainer and
webmaster for his company Bob Swart Training & Consultancy (eBob42) based in
Helmond, The Netherlands. Bob has spoken at Delphi Conferences since 1993. Bob is co-
author of several books and contributing author for numerous computer magazines. His
courseware manuals are sold word-wide from Lulu.com or via his own website (including e-
mail support and free updates). Bob leads the Delphi section of the Dutch Software
Development Network, and is webmaster and member of the UK Developers Group.

Website: http://www.drbob42.com
Email: Bob@eBob42.com
LinkedIN: http://www.linkedin.com/in/drbob42

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of
the Fortune 100 and an active community of more than three million users worldwide rely
on Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered
in San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

