
	

Making Time Using
Temporal Data

By Joe Celko

Whitepaper
Paper

For Embarcadero Technologies
September, 2015

	

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 2	

Table of Contents

Making Time Using Temporal Data .. 3
The ISO Temporal Model ... 6
SQL Temporal Data Types ... 7
Tips for Handling Dates, Timestamps and Times 8
Date Format Standards .. 9
Time Format Standards .. 11
Time in a Database ... 11
Time Zones ... 12
INTERVAL Data Types ... 14
Queries with Date Arithmetic .. 16
Use of NULL for "Eternity" .. 17
The OVERLAPS() Predicate ... 18
Calendar Tables ... 21
Report Period Tables .. 22
State Transition Constraints ... 23
About The Author .. 27

	

	

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 3	

	

Making Time Using Temporal Data

SQL is the first programming language to have temporal data types in it. If COBOL had
done this, we would never have had the "Y2K Crisis" we survived a few years ago. SQL-
92 added temporal data to the language, acknowledging most of what was already in
most SQL product by that time. The problem is that each vendor made a trade-off
internally. We will get into SQL code later, but since this is an area where people do not
have a good understanding, it is better to start with foundations.

The current calendar is known as the Common Era Calender, and not the Western,
Christian or Gregorian Calendar. We want to use a universal, non-ethnic, non-religious
name for it. The abbreviations for postfixes on dates are CE and BCE for “Common
Era” and “Before Common Era” respectively. The abbreviations A.D. (Anno Domini -
Latin for "in the year of Our Lord") and B.C. ("Before Christ") were dropped to avoid
religious references.

Unfortunately, the solar year is not an even number of days; there are 365.2422 days in a
year and the fractional day adds up over time. This is why we have leap year in the
Common Era Calendar. Leap years did not exist in the Roman or Egyptian solar
calendars prior to the year 708 AUC ("ab urbe condita", Latin for "from the founding of
the City [Rome]"). As a result, they became useless for agriculture, so the Egyptians
relied on the stars to predict the flooding of the Nile. To realign the calendar with the
seasons, Julius Caesar decreed that the year 708 (that is the year 46 BCE to us) would
have 445 days. Caesar, on the advice of Sosigenes, also introduced leap years (known as
bissextile years) at this time. Many Romans simply referred to 708 AUC as the "year of
confusion" and thus began the Julian Calendar that was the standard for the world from
that point forward.

The Julian calendar had a leap year day every four years and was reasonably accurate in
the short or medium range, but it drifted by approximately three days every 400 years.
This is a result of the 0.0022 fraction of a day adding up.

It had gotten 10 days out of step with the seasons by 1582. (A calendar without a leap
year would have drifted completely around slightly more than once between 708 AUC
and 2335 AUC -- that is, 1582 CE to us. The Summer Solstice, so important to planting
crops, had no relationship to 21 June. Scientists finally convinced Pope Gregory to

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 4	

realign the calendar by dropping almost two weeks from the month of October in 1582
CE. The years 800 CE and 1200 CE were leap years anywhere in the Christian world. But
whether 1600 CE was a leap year depended on where you lived. European countries did
not move to the new Calendar at the same time or follow the same pattern of adoption.

The calendar corrections had economic and social ramifications. In Great Britain and its
colonies, 1752 September 02 was followed by 1752 September 14. The calendar reform
bill of 1751 was entitled "An Act for Regulating the Commencement of the Year and For
Correcting the Calendar Now in Use". The bill included provisions to adjust the amount
of money owed or collected from rents, leases, mortgages and similar legal
arrangements, so that rents and so forth were prorated by the number of actual elapsed
days in the time period affected by the calendar change. Nobody had to pay the full
monthly rate for the short month of September in 1752 and nobody had to pay the full
yearly rate for the short year.

The serious, widespread and persistent rioting was not due to the commercial problems
that resulted, but to the common belief that each person's days were "numbered" and
that everyone was preordained to be born and die at a divinely determined time that no
human agency could alter in any way.

Thus the removal of 11 days from the month of September shortened the lives of
everyone on Earth by 11 days. And there was also the matter of the missing 83 days due
to the change of the New Year's Day from March 25 to January 01, which was believed
to have a similar effect.

If you think this behavior is insane, consider the number of people today who get upset
about the yearly one-hour clock adjustments for Daylight Saving Time.

To complicate matters, the beginning of the year also varied from country to country.
Great Britain preferred to begin the year on March 25, while other countries began at
Easter, December 25, or perhaps March 01 and January 01 -- all important details for
historians to keep in mind.

In Great Britain and its colonies, the calendar year 1750 began on March 25 and ended
on March 25 -- that is, the day after 1750 March 24 was 1751 March 25. The leap year
day was added to the end of the last full month in the year, which was then February.
The extra leap year day comes at the end of February, since this part of the calendar
structure was not changed.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 5	

In Latin, "septem" means seventh, from which we derived September. Likewise,
"octem" means eighth, "novem" means ninth and "decem" means tenth. Thus,
September should be the seventh month, October should be the eighth, November
should be the ninth and December should be the tenth.

So, how come September is the ninth month? September was the seventh month until
1752 when the New Year was changed from March 25 to January 01.

Until fairly recently, nobody agreed on the proper display format for dates. Every nation
seems to have its own commercial conventions. Most of us know that Americans put the
month before the day and the British do the reverse, but do you know any other
national conventions? National date formats may be confusing when used in an
international environment. When it was '12/16/95' in Boston, it was '16/12/95' in
London, '16.95' in Berlin and '95-12-16' in Stockholm. Then there are conventions within
industries within each country that complicate matters further.

Today, we have a standard for this: ISO-8601 "Data Elements and Interchange Formats -
Information Interchange — Representation of Dates and Times" that is part of Standard
SQL and other ISO standards.

The full ISO-8601 timestamp can be either a local time or UTC time. UTC is the code for
"Universal Coordinated Time," which replaced the older GMT, which was the code for
"Greenwich Mean Time", which is still improperly used in popular media.

In 1970 the Coordinated Universal Time system was devised by an international advisory
group of technical experts within the International Telecommunication Union (ITU). The
ITU felt it was best to designate a single abbreviation for use in all languages in order to
minimize confusion. The two alternative original abbreviation proposals for the
"Universal Coordinated Time" were CUT (English: Coordinated Universal Time) and
TUC (French: Temps Universel Coordonné). UTC was selected both as a compromise
between the French and English proposals and because the C at the end looks more
like an index in UT0, UT1, UT2 and a mathematical-style notation is always the most
international approach.

Universal Coordinated Time is not quite the same thing as astronomical time. The Earth
wobbles a bit and the UTC had to be adjusted to the solar year with a leap second
added or removed once a year to keep them in synch. As of this writing, Universal
Coordinated Time will be based on an atomic clock without a leap second adjustment
in the near future.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 6	

This extra second has screwed up software. In 1998, the leap second caused a mobile-
phone blackout across the southern United States because different regions were
suddenly operating with time differences outside the error tolerances. Then in 2012 an
airline’s booking system went belly-up for hours after a leap second insertion. Most
nations want to move to an atomic clock, (International Atomic Time, TAI) standard, but
it has not happened yet. Here is a short history of the leap second:

TAI vs. UTC after the leap seconds have been added

UTC Date UTC Time Difference

1998-12-31 23:59:60 32 secs

2005-12-31 23:59:60 33 secs

2008-12-31 23:59:60 34 secs

2012-06-30 23:59:60 35 secs

2015-06-30 23:59:60 36 secs

Further leap seconds not yet announced.

Another problem is the use of local time zones (four of them in the United States) and
"lawful time" to worry about. This is the technical term for time required by law for
commerce. Usually, this means whether or not you use Daylight Saving Time (DST) and
how it is defined locally. A date without a time zone is ambiguous in a distributed
system. A transaction created with DATE '1995-12-17' in London may be physically
younger than a transaction created with DATE '1995-12-16' in Boston.

The ISO Temporal Model

The ISO model for temporal values is based on half-open intervals. This means there is
a starting point, but the interval never gets to the ending point. For example, the day
begins at '2016-01-01 00:00:00' exactly, but it does not end at '2016-01-02 00:00:00';
instead it approaches the start of the next day as limit. Depending on how much
decimal precision we have, '2016-01-01 23:59:59.999..' as the end point approximation. I
just need to have at least one more fractional part than my data in my DDL.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 7	

Half-open intervals can be abutted to each other to produce another half-open interval.
Two overlapping half-open intervals produce a half-open interval. Likewise, if you
remove a half-open interval from another half-open interval, you get one or two half-
open intervals. This is called closure and it is a nice mathematical property to have.

SQL Temporal Data Types

Standard SQL has a very complete description of its temporal data types. There are
rules for converting from numeric and character strings into these data types and there
is a schema table for global time-zone information that is used to make sure that
temporal data types are synchronized. It is so complete and elaborate that smaller SQLs
have not implemented it yet. As an international standard, SQL has to handle time for
the whole world and most of us work with only local time. If you have ever tried to figure
out the time in a foreign city to place a telephone call, you have some idea of what is
involved.

T1

T2

T1 + T2

Overlap

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 8	

The common terms and conventions related to time are also confusing. We talk about
"an hour" and use the term to mean a particular point within the cycle of a day ("The
train arrives at 13:00 Hrs") or to mean an interval of time ("The train takes three hours to
get there"); the number of days in a month is not uniform; the number of days in a year
is not uniform; weeks are not easily related to months; and so on.

Standard SQL has a set of date, time (DATE, TIME and TIMESTAMP) and INTERVALs
(DAY, HOUR, MINUTE and SECOND with decimal fraction) data types. They are made
up of fields which are ordered within the value; they are YEAR, MONTH, DAY HOUR,
MINUTE and SECOND. This is the only place in SQL that we use the term “field”; new
SQL programmers too often confuse the term field as used in file systems with the
column concept in RDBMS. They are very different.

Both of these are temporal data types, but datetimes represent points in the time line,
while the interval data types are durations of time, not anchored at a point on the
timeline. Standard SQL also has a full set of operators for these data types. But you will
still find vendor syntax in most SQL implementations today.

Tips for Handling Dates, Timestamps and Times

The syntax and power of date, timestamp and time features vary so much from product
to product that it is impossible to give anything but general advice. This chapter will
assume that you have simple date arithmetic in your SQL, but you might find that some
library functions would let you do a better job than what you see here. Please continue
to check your manuals until the Standard SQL operators are implemented.

As a general statement, there are two ways of representing temporal data internally.
The "UNIX representation" is based on keeping a single binary string of 64 or more bits
that counts the computer clock ticks from a base starting date and time. The other
representation I will call the "COBOL method", since it uses separate fields for the year,
month, day, hours, minutes and seconds. These fields can be characters, BCD or other
another internal format.

The UNIX method is very good for calculations, but the engine must convert from the
external ISO-8601 format to the internal format and vice versa. The COBOL format is
the opposite; good for display purposes, but weaker on calculations.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 9	

Do not write code that depends on any internal format. You want portable code and
you want to do any display formatting in a presentation layer, not the database. To give
you an idea just how different something as simple as the names of the months can be,
here is a comparison of Czech and Slovak; they used to be in the country, but Slovak
uses Latin names and Czech uses old Slavic.

 Czech Slovak

1 leden Január

2 únor Február

3 březen Marec

4 duben Apríl

5 květen Máj

6 červen Jún

7 červenec Júl

8 srpen August

9 září September

10 říjen Október

11 listopad November

12 prosinec December

Want to ADD Chinese to this?

Date Format Standards

There are three basic display formats in the ISO standards. They are all digits separated
by punctuation of some kind. You do not want to use language dependent names. They
will not alphabetize or machine sort easily.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 10	

Calender date: It is a string of digits that are made up of the four digit year, a dash,
two digit month, dash and a two digit day within the month. Example: '2015-06-25' for
June 25th of 2015. This is the only date display format allowed in ANSI/ISO Standard
SQL. However, the full ISO-8601 standards allow you to drop the dashes and write the
data as a string of all digits.

There is a nice cartoon about the ISO-8601 Standard at https://xkcd.com/1179/ that
people ought to use as a poster to keep the developers in line. Always avoid dialect in
favor of ANSI/ISO Standard SQL.

Ordinal date: It is a string of digits that are made up of the four digit year, a dash, and
the three digit ordinal number of the day within the year expressed as '001' thru '365' or
'366' as appropriate. Example: '2015-176' for June 25th of 2015. You will have to
implement this as a string with a CHECK() constraint that enforces the regular expression.

Week date: It is a string of digits that are made up of the four digit year, a 'W', the two
digit ordinal number of the week within the year expressed as '01' thru '52' or '53' as
appropriate, a dash and a single digit from 1 to 7 for day within the week (1= Monday,
7= Sunday). Very often the week day is not used. Example: '2015W26' is the entire week
from '2015-06-22' to '2015-06-28', which includes '2015W26-5' for June 25th of 2015.

Weeks do not align to calendar dates, so a week can cross over year boundaries. The
first week of the year is the week that contains that year's first Thursday (first four day
week of the year). The highest week number in a year is either 52 or 53. Again, you will
have to implement this as a string with a CHECK() constraint that enforces the regular
expression.

Both the ordinal and week dates can be downloaded from the Internet or built in
spreadsheet using their functions.

Time Periods: Longer periods can modeled by truncating the finer fields in these
display formats. Thus a whole year can be shown with four digits, the year-month period
with “yyyy-mm” and we also ready showed a whole week. But there are no conventions
for quarters and other fiscal periods. I like the MySQL convention of using double
zeroes for months and years, That is 'yyyy-mm-00' for a month within a year and 'yyyy-
00-00' for the whole year. The advantages are that it will sort with the ISO-8601 date
format and it is language independent. The regular expression patterns for validation
are '[12][0-9][0-9][0-9]-00-00' and '[12][0-9][0-9][0-9]-[01][0-9]-00' respectively. You will
need to create a look-up table with the time period name and the start and end
timestamps for it.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 11	

Time Format Standards

TIME(n) is made up of a two digit hour between '00' and '23', colon, a two digit minute
between '00' and '59', colon, and a two digit second between '00' and '59' or '60', if the
leap second is still in use. Seconds can also have decimal places shown by (n) from zero
to an implementation defined accuracy. The FIPS-127 standard requires at least five
decimal places after the second and modern products typically go to seven decimal
places.

We do not use the old AM and PM postfixes any ISO Standards. There is no such time
as 24:00:00; this 00:00:00 of the next day. Remember the half-open interval model?
However, some SQLs will accept 24:00:00 as input and put it in the proper format.

TIMESTAMP(n) values is made up of a date, a space and a time. The ISO standards
allow the space to be replaced by the letter 'T' to put the timestamp into a single
unbroken string and for the punctuation to be removed. The SQL standard does not.

Remember that a CURRENT_TIMESTAMP will read the system clock once and use that
same time on all the items involved in a transaction. It does not matter if the actual time
it took to complete the transaction was days; a transaction in SQL is done as a whole
unit or is not done at all. This is not usually a problem for small transactions, but it can
be in large batched ones where very complex updates have to be done.

Time in a Database

You should use a "24-hour" time format, which is less prone to errors than 12-hour
(AM/PM) time, since it is less likely to be misread or miswritten. This format can be
manually sorted more easily and is less prone to computational errors. Americans use a
colon as a field separator between hours, minutes and seconds just SQL, but some
Europeans use a period in their local display format.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 12	

Time Zones

Older, smaller databases live and work in one time zone. The system clock is set to local
time and the DBA ignores the complications like leap seconds, DST and time zones.
Standard SQL uses only UTC and converts it to local time with TIMEZONE_HOUR and
TIMEZONE_MINUTE fields at the end. These fields give the timezone displacement for
local times in that column or temporal variable.

There are also three-letter and four-letter codes for the time zones of the world, such as
EST, for Eastern Standard Time, in the United States. But these codes are not universal.
For example, all of these time zones are UTC-3 hours

Time Zone Code Time Zone Name Where used

ADT Atlantic Daylight Time Atlantic

BRT Brasília time South America

CLST Chile Summer Time South America

GFT French Guiana Time South America

WGT West Greenland Time North America

The closest thing to a universal naming convention for time zones is the Military
alphabet code.

Time Zone Code Time Zone Name Displacement from UTC

A Alpha Time Zone + 1 hour

B Bravo Time Zone + 2 hours

C Charlie Time Zone + 3 hours

D Delta Time Zone + 4 hours

E Echo Time Zone + 5 hours

F Foxtrot Time Zone + 6 hours

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 13	

G Golf Time Zone + 7 hours

H Hotel Time Zone + 8 hours

I India Time Zone + 9 hours

K Kilo Time Zone + 10 hours

L Lima Time Zone + 11 hours

M Mike Time Zone + 12 hours

N November Time Zone - 1 hour

O Oscar Time Zone - 2 hours

P Papa Time Zone - 3 hours

Q Quebec Time Zone - 4 hours

R Romeo Time Zone - 5 hours

S Sierra Time Zone - 6 hours

T Tango Time Zone - 7 hours

U Uniform Time Zone - 8 hours

V Victor Time Zone - 9 hours

W Whiskey Time Zone - 10 hours

X X-ray Time Zone - 11 hours

Y Yankee Time Zone - 12 hours

Z Zulu Time Zone UTC

This is why UTC is sometimes called “Zulu time” and the letter Z is used as punctuation
between the timestamp and the displacement in parts of the full ISO-8601.

The offset is usually a positive or negative number of hours, but there are still a few odd
zones that differ by 15 or 30 minutes from the expected pattern.

The TIMESTAMP data type is a DATE and a TIME put together in one values (e.g. '2017-
05-03 05:30:06.123'). There are some variations from DBMS to DBMS though. For
example, the time component of DB2 TIMESTAMP data is configurable and can be
more precise than DB2 TIME data. This is what CURRENT_TIMESTAMP returns from the
system clock in a program, query or statement. However SQL dialects will still use NOW,
getdate() and other proprietary reserved words.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 14	

TIMESTAMP WITH TIME ZONE or TIMESTAMPTZ data types are a TIMESTAMP, but
include the time zone's displacement from UTC. The standards allow for TZD (time zone
designator), 'Z' or a positive or negative hour to minute interval (+hh:mm or -hh:mm).
Standard SQL uses the last option.

CURRENT_TIMESTAMP is a representation of the current date and time with time zone.
LOCALTIMESTAMP is a representation of the current date and time but without a time
zone.

Now you have to factor in Daylight Saving Time on top of that to get what is call "lawful
time" which it is the basis for legal agreements. The US government uses DST on
federal lands inside of states that do not use DST. You can get a mix of gaps and
duplicate times in the local lawful time display over a year. This is why Standard SQL
uses UTC internally.

Vendors often have a system configuration parameter to set the local time zone, and
other options. You need to know your SQL and not get caught in this. My advice for
multi-national users is to keep the databases in UTC and handle local time in the
presentation layers.

INTERVAL Data Types

INTERVAL data types are used to represent temporal duration. They come in two basic
types. Intervals that deal with the calendar and those that deal with the clock. The year-
month intervals have an express or implied precision that includes no fields other than
YEAR and MONTH, though it is not necessary to use both. The other class, called day-
time intervals, has an express or implied interval precision that can include any fields
other than YEAR or MONTH — that is, DAY, HOUR, MINUTE and SECOND (with
decimal places).

SECOND are integers and have precision 2 when not the first. field. SECOND, however,
can be defined to have an <interval fractional seconds precision> that indicates the
number of decimal digits maintained following the decimal point in the seconds value.
When not the first field, SECOND has a precision of 2 places before the decimal point.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 15	

The fields in the interval have to be in high to low order without missing fields.

Field Inclusive value limit

YEAR '0001' to '9999'; follows the ISO-8601 Standard

MONTH '01' to '12'; the value 12 might be rounded to one year

DAY '01' to '31'; must be valid for month and year

HOUR '00' to '23'; value 24 might be rounded to the next day

MINUTE '00' to '59'; watch for leap seconds!

SECOND '00' to '59.999..' ; precision is implementation defined

The datetime literals are not surprising in that they follow the syntax used by ISO-8601
Standards with the dashes between the fields in dates and colons between the fields
times. The strings are always quoted. The interval qualifier follows the keyword
INTERVAL when specifying an INTERVAL data type.

The following table lists the valid interval qualifiers for YEAR-MONTH intervals:

Interval Qualifier Description

YEAR An interval class describing a number of years

MONTH An interval class describing a number of months

YEAR TO MONTH An interval class describing a number of years and months

The following table lists the valid interval qualifiers for DAY-TIME intervals:

Interval Qualifier Description

DAY Plus or minus a number of days

HOUR Plus or minus a number of hours

MINUTE Plus or minus a number of minutes

SECOND(s) Plus or minus a number of seconds (decimals are allowed)

DAY TO HOUR Plus or minus a number of days and hours

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 16	

DAY TO MINUTE Plus or minus a number of days, hours and minutes

DAY TO SECOND(s) Plus or minus a number of days, hours, minutes and seconds

HOUR TO MINUTE Plus or minus a number of hours and minutes

HOUR TO SECOND(s) Plus or minus a number of hours, minutes and seconds

MINUTE TO SECOND(s) Plus or minus a number of minutes and seconds,

Here is a sample query that shows all of the INTERVAL types in use:

	
	
SELECT CURRENT_TIMESTAMP + INTERVAL '+7' YEAR,
 CURRENT_TIMESTAMP + INTERVAL '-3' MONTH,
 CURRENT_TIMESTAMP + INTERVAL '0007 03' YEAR TO MONTH,
 CURRENT_TIMESTAMP + INTERVAL '+5' DAY,
 CURRENT_TIMESTAMP + INTERVAL '-5' HOUR,
 CURRENT_TIMESTAMP + INTERVAL '12' MINUTE,
 CURRENT_TIMESTAMP + INTERVAL '3' SECOND,
 CURRENT_TIMESTAMP + INTERVAL '1 12' DAY TO HOUR,
 CURRENT_TIMESTAMP + INTERVAL '1 12:35' DAY TO MINUTE,
 CURRENT_TIMESTAMP + INTERVAL '1 12:35:45' DAY TO SECOND,
 CURRENT_TIMESTAMP + INTERVAL '01:12' HOUR TO MINUTE,
 CURRENT_TIMESTAMP + INTERVAL '01:12:35' HOUR TO SECOND,
 CURRENT_TIMESTAMP + INTERVAL '01:12' MINUTE TO SECOND
 FROM Dummy; 	

Notice that the quoted strings in the HOUR TO MINUTE and MINUTE TO SECOND
example are the same, but have different meanings. A timestamp literal can also
include a time zone interval to change it from a UTC time to a local time.

Queries with Date Arithmetic

Almost every SQL implementation has a DATE data type, but the proprietary functions
available for them vary quite a bit. The most common ones are a constructor that builds
a date from integers or strings; extractors to pull out the month, day, or year; and some
display options to format output.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 17	

You can assume that your SQL implementation has simple date arithmetic functions,
although with different syntax from product to product, such as

1. A date plus or minus a number of days yields a new date.

2. A date minus a second date yields an integer number of days between the dates.

Here is a table of the valid combinations of <datetime> and <interval> data types in
the Standard SQL standard:

<datetime> - <datetime> = <interval>

<datetime> + <interval> = <datetime>

<interval> (* or/) <numeric> = <interval>

<interval> + <datetime> = <datetime>

<interval> + <interval> = <interval>

<numeric> * <interval> = <interval>

There are other rules, which deal with time zones and the relative precision of the two
operands, that are intuitively obvious.

Use of NULL for "Eternity"

The temporal model in SQL does not have a symbol for "eternity in the future" or
"eternity in the past", so you have to work around it for some applications. The IEEE
floating point standard does have both a "-inf" and "+inf" symbol to handle this
problem in the continuum model for real numbers. In fact, SQL can "only" represent
timestamps in the range of years from 0001 CE up to 9999 CE. Usually this range is
good enough for most applications outside of archeology.

For example, when someone checks into a hotel, we know their arrival data, but we not
know their departure date (an expected departure date is not the same thing as an
actual one). All we know for certain is that it has to be after their arrival date. A NULL will
act as a "place holder" until we get the actual departure date. The skeleton DDL for
such a table would look like this:

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 18	

	
	
CREATE TABLE Hotel_Register
	 (patron_id INTEGER NOT NULL
REFERENCES Patrons (patron_id),
arrival_date TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP NOT NULL,
departure_date TIMESTAMP(0), -- null means guest still here
CONSTRAINT arrive_before_depart
CHECK (arrival_date <= departure_date),
..);

When getting reports, you will need to use the current timestamp in place of the NULL
to accurately report the current billing.

	
SELECT patron_id, arrival_date,
 COALESCE (CURRENT_TIMESTAMP, departure_date)
 AS departure_date
 FROM HotelRegister
WHERE ..;

The OVERLAPS() Predicate

The OVERLAPS() predicate is a feature still not available in most SQL implementations
because it requires more of the Standard SQL temporal data features than most
implementations have. You can "fake it" in many products with the BETWEEN
predicate and careful use of constraints.

The result of the <OVERLAPS predicate> is formally defined as the result of the
following expression:

(S1 > S2 AND NOT (S1 >= T2 AND T1 >= T2))
OR (S2 > S1 AND NOT (S2 >= T1 AND T2 >= T1))
OR (S1 = S2 AND (T1 <> T2 OR T1 = T2))

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 19	

where S1 and S2 are the starting times of the two time periods and T1 and T2 are their
termination times. The rules for the OVERLAPS() predicate sound like they should be
intuitive, but they are not. The principles that we wanted in the Standard were:

1. A time period includes its starting point, but does not include its end point. We
have already discussed this model and its closure properties.

2. If the time periods are not "instantaneous", they overlap when they share a
common time period.

3. If the first term of the predicate is an INTERVAL and the second term is an
instantaneous event (a <datetime> data type), they overlap when the second
term is in the time period (but is not the end point of the time period). That
follows the half-open model.

4. If the first and second terms are both instantaneous events, they overlap only
when they are equal.

5. If the starting time is NULL and the finishing time is a <datetime> value, the
finishing time becomes the starting time and we have an event. If the starting
time is NULL and the finishing time is an INTERVAL value, then both the
finishing and starting times are NULL.

Please consider how your intuition reacts to these results, when the granularity is at the
YEAR-MONTH-DAY level. Remember that a day begins at 00:00:00 Hrs.

(today, today) OVERLAPS (today, today) = TRUE
(today, tomorrow) OVERLAPS (today, today) = TRUE
(today, tomorrow) OVERLAPS (tomorrow, tomorrow) = FALSE
(yesterday, today) OVERLAPS (today, tomorrow) = FALSE

Alexander Kuznetsov wrote this idiom for History Tables in T-SQL, but it generalizes to
any SQL. It builds a temporal chain from the current row to the previous row. With a
self-reference. This is easier to show with code:

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 20	

	
	
CREATE TABLE Tasks
(task_id INTEGER NOT NULL,
 task_score CHAR(1) NOT NULL,
 previous_end_date DATE, -- null means first task
 current_start_date DATE DEFAULT CURRENT_TIMESTAMP NOT NULL,
 CONSTRAINT previous_end_date_and_current_start_in_sequence
 CHECK (prev_end_date <= current_start_date)
 DEFERRABLE INITIALLY IMMEDIATE,
 current_end_date DATE, -- null means unfinished current task
 CONSTRAINT current_start_and_end_dates_in_sequence
 CHECK (current_start_date <= current_end_date),
 CONSTRAINT end_dates_in_sequence
 CHECK (previous_end_date <> current_end_date),
 PRIMARY KEY (task_id, current_start_date),
 UNIQUE (task_id, previous_end_date), -- null first task
 UNIQUE (task_id, current_end_date), -- one null current task
 FOREIGN KEY (task_id, previous_end_date) -- self-reference
 REFERENCES Tasks (task_id, current_end_date));

Well, that looks complicated! Let's look at it column by column. Task_id explains itself.
The previous_end_date will not have a value for the first task in the chain, so it is NULL-
able. The current_start_date and current_end_date are the same data elements,
temporal sequence and PRIMARY KEY constraints we had in the simple history table
schema.

The two UNIQUE constraints will allow one NULL in their pairs of columns and prevent
duplicates. Remember that UNIQUE is NULL-able, not like PRIMARY KEY, which implies
UNIQUE NOT NULL.

Finally, the FOREIGN KEY is the real trick. Obviously, the previous task has to end when
the current task started for them to abut, so there is another constraint. This constraint
is a self-reference that makes sure this is true. Modifying data in this type of table is easy,
but requires some thought.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 21	

Just one little problem with that FOREIGN KEY constraint. It will not let you put the first
task into the table. There is nothing for the constraint to reference. In Standard SQL, we
can declare constraints to be DEFERABLE with some other options. The idea is that you
can turn a constraint ON or OFF during a session so the database can be in state that
would otherwise be illegal. But at the end of the session all constraints have to be TRUE
or UNKNOWN.

Calendar Tables

Because the calendar and temporal math are so irregular, build axillary tables for
various single day calendars and for period calendars. one column for the calendar date
and other columns to show whatever your business needs in the way of temporal
information. Do not try to calculate holidays in SQL -- Easter alone requires too much
math. Oh, which Easter? Catholic or Orthodox?

A calendar table for US Secular holidays can be built from the data at
http://www.smart.net/~mmontes/ushols.html

You will probably want a fiscal calendar in this table. Which fiscal calendar? The GAAP
(General Accepted Accounting Practices) lists over a hundred of them.

I would add the ordinal date and week date, which we discussed earlier. They make
temporal math much easier.

The Julian business day is a good trick. Number the days from whenever your calendar
starts and repeat a number for a weekend or company holiday. This counts business
days.

	
CREATE TABLE Calendar
(cal_date DATE NOT NULL PRIMARY KEY,
 julian_business_nbr INTEGER NOT NULL,
 ...);
INSERT INTO Calendar
VALUES ('2007-04-05', 42),
 ('2007-04-06', 43), -- good Friday
 ('2007-04-07', 43),
 ('2007-04-08', 43), -- Easter Sunday
 ('2007-04-09', 44),
 ('2007-04-10', 45); --Tuesday

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 22	

To compute the business days from Thursday of this week to next Tuesdays:

	
SELECT (C2.julian_business_nbr - C1.julian_business_nbr)
 FROM Calendar AS C1, Calendar AS C2
 WHERE C1.cal_date = '2007-04-05',
 AND C2.cal_date = '2007-04-10';

Report Period Tables
Since SQL is a database language, we prefer to do look ups and not calculations. They
can be optimized while temporal math messes up optimization. A useful idiom is a
report period calendar that everyone uses so there is no way to get disagreements in
the DML.

The report period table gives a name to a range of dates that is common to the entire
enterprise.

	
CREATE TABLE Something_Report_Periods
(something_report_name CHAR(10) NOT NULL PRIMARY KEY
 CHECK (something_report_name LIKE <pattern>),
 something_report_start_date DATE NOT NULL,
 something_report_end_date DATE NOT NULL,
 CONSTRAINT date_ordering
 CHECK (something_report_start_date <=
something_report_end_date),
etc);

These report periods can overlap or have gaps. Avoid period names that are language
dependent; they will have trouble porting. If possible the periods name should sort in
temporal order. Again, I like the MySQL convention of using double zeroes for months
and years, That is 'yyyy-mm-00' for a month within a year and 'yyyy-00-00' for the whole
year. The advantages are that it will sort with the ISO-8601 date format and will go to
the top of each year and month within the year.

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 23	

State Transition Constraints

Transition constraints force status changes to occur in a particular order over time. A
state-transition diagram is the best to show the rules. There is at least one initial state,
flow lines that show what are the next legal states, and one or more termination states.
Here is a simple state change diagram of possible marital states:

This state transition diagram was deliberately simplified, but it is good enough to
explain principles. To keep the discussion as simple as possible, my table is for only one
person's marital status over his life. Here is a skeleton DDL with the needed FOREIGN
KEY reference to valid state changes and the date that the current state started.

	
CREATE TABLE MyLife
(previous_state VARCHAR(10) NOT NULL,
 current_state VARCHAR(10) NOT NULL,
 CONSTRAINT Improper_State_Change
 FOREIGN KEY (previous_state, current_state)
 REFERENCES StateChanges (previous_state, current_state),
 start_date DATE NOT NULL PRIMARY KEY,
 --etc.
);

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 24	

What is not shown on it are which nodes are initial states (in this case "Born") and which
are terminal or final states (in this case "Dead", a very terminal state of being). A
terminal node can be the current state of a middle node, but not a prior state. Likewise,
an initial node can be the prior state of a middle node, but not the current state. I did
not write any CHECK() constraints for those conditions. It is easy enough to write a quick
query with an EXISTS() predicate to do this and I will leave that as an exercise for the
reader. Let's load the diagram into an auxiliary table with some more constraints.

	
CREATE TABLE StateChanges
(previous_state VARCHAR(10) NOT NULL,
 current_state VARCHAR(10) NOT NULL,
 PRIMARY KEY (previous_state, current_state),
 state_type CHAR(1) DEFAULT 'M' NOT NULL
 CHECK (state_type IN ('I', 'T', 'M')), -- initial, terminal,
middle
 CONSTRAINT Node_Type_Violations
 CHECK (CASE WHEN state_type IN ('I', 'T')
 AND previous_state = current_state
 THEN 'T'
 WHEN state_type = 'M'
 AND previous_state <> current_state
 THEN 'T' ELSE 'F' END = 'T'));

INSERT INTO StateChanges
 VALUES ('Born', 'Born', 'I'), -- initial state
 ('Born', 'Married', 'M'),
 ('Born', 'Dead', 'M'),
 ('Married', 'Divorced', 'M'),
 ('Married', 'Dead', 'M'),
 ('Divorced', 'Married', 'M'),
 ('Divorced', 'Dead', 'M'),
 ('Dead', 'Dead', 'T'); -- a very terminal state

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 25	

We want to see a temporal path from an initial state to a terminal state. State changes
do not happen all at once, but are spread over time. Some of the changes are
controlled by time, some by an agent. I cannot get married immediately after being
born, but have to wait to be of legal age. Then I have to consent.

For a real production system, you would need a more state pairs, but it is easy to
expand the table.

	
CREATE PROCEDURE Change_State
(IN change_date DATE,
 IN change_state VARCHAR(10))
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE most_recent_state VARCHAR(10);
SET most_recent_state
 = (SELECT current_state
 FROM MyLife
 WHERE start_date
 = (SELECT MAX(start_date) FROM MyLife));

-- insert initial state if empty
IF NOT EXISTS (SELECT * FROM MyLife)
 AND in_change_state
 IN (SELECT previous_state
 FROM StateChanges
 WHERE state_type = 'I')
THEN
INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES (in_change_state, change_state, change_date);
END IF;

-- must be a real state change
IF change_state = most_recent_state
THEN SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'This does not change the state.';

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 26	

END IF;

-- must move forward in time
IF change_date <= (SELECT MAX(start_date) FROM MyLife)
THEN SIGNAL SQLSTATE '75003'
 SET MESSAGE_TEXT = 'Violates time sequence.';
END IF;
END;

INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES (most_recent_state, change_state, change_date);
END;

The first block of code locates the most recent state of my life, based on the date. The
second block of code will insert an initial state if the table is empty. This is a safety
feature but there probably ought to be a separate procedure to create the set of initial
states. The new state has to be an actual change, so there is a block of code to be sure.
The changes have to move forward in time. Finally, we build a row using the most
recent state as the new previous state, the input change state and the date. If the state
change is illegal, the FOREIGN KEY is violated and we get an error.

If you had other business rules, you could also add them to the code in the same way.
You should have noticed that if someone makes changes directly to the MyLife Table,
they are pretty much free to screw up the data. The first question is where to check for
temporal violations; during insertion or with validation procedures? My answer is both.
Whenever possible, do not knowingly put bad data into a schema so this should be
done in the ChangeState() procedure. But someone or something will subvert the
schema and you have to be able to find and repair the damage.

A lot of commercial situations have a fixed lifespan. Warranties, commercial offers and
bids expire in a known number of days. This means adding another column to the
StateChanges table that tells the insertion program if the expiration date is optional
(shown with a NULL) or mandatory (computed from the duration).

ºººººººººººº	

	
	

	

Making Time Using Temporal Data

Fsd

fsdfds

	
	 	

	
Embarcadero	 Technologies,	 Inc.	 27	

Overlapping periods are useful for reporting things like sales promotions. You can
quickly see if the overlap between your “Bikini Madness Week” and “Three Day Suntan
Lotion Promotion” helped increase total sales.

About The Author
Mr. Joe Celko serves as Member of Technical Advisory Board of Cogito, Inc. Mr. Celko
joined the ANSI X3H2 Database Standards Committee in 1987 and helped write the
ANSI/ISO SQL-89 and SQL-92 standards. He is one of the top SQL experts in the world,
writing over 700 articles primarily on SQL and database topics in the computer trade
and academic press. The author of six books on databases and SQL, Mr. Celko also
contributes his time as a speaker and instructor at universities, trade conferences and
local user groups.

	

Download a Free Trial at www.embarcadero.com
Corporate Headquarters | Embarcadero Technologies | 275 Battery Street, Suite 1000 | San Francisco, CA 94111 | www.embarcadero.com | sales@embarcadero.com	

© 2015 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and all other Embarcadero Technologies product or service names are trademarks or registered trademarks of Embarcadero Technologies, Inc.

All other trademarks are property of their respective owners 093015

