

Relational
Division

 Whitepaper

Paper

For Embarcadero Technologies
September, 2015

By Joe Celko

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 2

Table of Contents

 Relational Division ... 3

Division with Remainder ... 6

Exact Division ... 8

Note on Performance .. 9

Todd’s Division ... 9

Division with Set Operators .. 14

Romley’s Division ... 14

Conclusion & a Programming Problem 18

About the Author ... 20

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 3

Dr. Codd’s original relational algebra had eight basic operations. Since RDBMS is

based on set theory the first four are traditional set operations: intersection, set

difference, union and product These operations are available in SQL,

respectively, as INTERSECT, EXCEPT, UNION, and CROSS JOIN respectively.

The next four are row-oriented; restriction, projection, (natural) join and divide.

These operations are available in SQL, respectively, as rows picked with a WHERE

or ON clause, the column list in a SELECT list, a simple INNER JOIN..ON operator

and, well, we do not have a simple divide it in SQL!

SQL also has several OUTER JOINs, OUTER UNION, variants of the ON clause and

the multi-set INTERSECT ALL, EXCEPT ALL and UNION ALL extensions. But we never

added relational division. It can be written with the other operators and it turns

out that it is not so simple after all.

The idea of relational division is that a divisor table is used to partition a dividend

table and produce a quotient or results table. The quotient table is made up of

those values of one column for which a second column had all of the values in

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 4

the divisor.

When I teach this operator, I use colored foam shape tiles used in elementary

school to teach naive set theory and counting. You can get them at any school

supply house. Pull out a set of tiles and draw and outline of several of them.

In this diagram, I have a set with squares, circles, triangles and pentagons in red,

yellow, green, blue and purple. I then make a “divisor” with the set of {square,

circle, triangle}; it is just a piece of paper with outlines on it.

CREATE TABLE Colored_Shapes --dividend

(color_name CHAR(10) NOT NULL,

 shape_name CHAR(10) NOT NULL,

 PRIMARY KEY (color_name, shape_name));

Colored_Shapes

Color Name Shape Name

Green Triangle

Red Triangle

Green Square

Green Pentagon

Purple Triangle

Red Circle

Blue Triangle

Purple Circle

Yellow Square

Green Circle

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 5

 CREATE TABLE Shapes --divisor

 (shape_name CHAR(10) NOT NULL PRIMARY KEY);

Shapes

 Colored Shapes DIVIDED BY Shapes --quotient

I first put the tiles into piles by colors. I pick up each such pile and see if I can

match a tile to the outlines on the divisor paper. And I can do this for Red and

Green tiles; pick them up and physically try it.

The important characteristic of a relational division is that the CROSS JOIN of the

divisor and the quotient produces a valid subset of rows from the dividend. This is

Red Square

Shape_name

Trinagle

Square

Circle

Color_name

Red

Green

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 6

where the name comes from, since the CROSS JOIN acts “kinda like” a

multiplication operator and the symbol in relational algebra is the simple cross

that is also used for multiplication.

Division with Remainder

There are two kinds of relational division. Division with a remainder allows the

dividend table to have more values than the divisor, which was Dr. Codd's

original definition. For example, if a color pile has more tiles than just those we

have in the divisor, such as the green pentagon, this is fine with us. This is the

remainder. See the analogy to simple division from grade school?

The query can be written as

SELECT DISTINCT color_name

 FROM Colored_Shapes AS CS1

 WHERE NOT EXISTS

 (SELECT *

 FROM Shapes

 WHERE NOT EXISTS

 (SELECT *

 FROM Colored_Shapes AS CS2

 WHERE (CS1.color_name = CS2.color_name)

 AND (CS2.shape_name = Shapes.shape_name)));

In English, this says "There is no shape in the divisor that I can not match in the

dividend!", a sort of double negative. Not great English, but good logic. The use

of the NOT EXISTS() predicates is for speed. Most SQL implementations will look

up a value in an index rather than scan the whole table. This query for relational

division was made popular by Chris Date in his textbooks, but it is neither the only

method nor always the fastest. Another version of the division can be written so

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 7

as to avoid three levels of nesting. While it is not original with me, I have made it

popular in my books.

SELECT CS1.color_name

 FROM Colored_Shapes AS CS1, Shapes AS S1

 WHERE CS1.shape_name = S1.shape_name

 GROUP BY CS1.color_name

 HAVING COUNT(CS1.shape_name)

 = (SELECT COUNT(shape_name) FROM Shapes);

In English, this is a one-to-one mapping. The inner join puts each element of my

divisor with an element of the dividend (if it exists). If the count of elements in the

divisor is the same as the count of matched elements, then this color is in the

quotient. Think about an aborigine putting arrowheads and sea shells in pairs. If

he has arrowheads left over, then he know he has more arrowheads. If he has

sea shells left over, then he know he has more sea shells. If there is no surplus of

either, then the sets have the same cardinality. Notice there is no concept of a

number in this operation; that is, his math is so limited he cannot say anything

like “I have 34 more sea shells than arrows heads” with this mapping concept.

There is a serious difference in the two methods. Burn the paper with the Shapes,

so that the divisor is empty. Because of the NOT EXISTS() predicates in Date's

query, all colors are returned from a division by an empty set. Because of the

COUNT() functions in my query, no colors are returned from a division by an

empty set.

In the sixth edition of his book, INTRODUCTION TO DATABASE SYSTEMS (Addison-

Wesley; 1995; ISBN 0-191-82458-2), Chris Date defined another operator

(DIVIDEBY ... PER) which produces the same results as my query, but with more

complexity. The philosophical question is should a relational division by an empty

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 8

set mimic the behavior of a numeric division by zero in some way, or be more

“set-oriented” in its outcome.

Exact Division

The second kind of relational division is exact relational division. The dividend

table must match exactly to the values of the divisor without any extra values.

SELECT CS1.color_name

 FROM Colored_Shapes AS CS1

 LEFT OUTER JOIN

 Shapes AS S1

 ON CS1.shape_name = S1.shape_name

 GROUP BY CS1.color_name

HAVING COUNT(CS1.shape_name)

 = (SELECT COUNT(shape_name) FROM Shapes)

 AND COUNT(S1.shape_name)

 = (SELECT COUNT(shape_name) FROM Shapes);

The LEFT OUTER JOIN will create NULL-padded rows if the Colored_Shapes

dividend is larger than the Shapes divisor. If there are no extra tiles, then both

the dividend and the divisor are equal in size. Please do not make the mistake of

trying to reduce the HAVING clause with a little algebra to:

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 9

HAVING COUNT(CS1.shape_name) = COUNT(S1.shape_name)

because it does not work; it will tell you that the Shapes has (n) shape_name in it

and the color_name is certified for (n) shape_name, but not that those two sets

of shape_name are equal to each other.

Note on Performance

The nested EXISTS() predicates version of relational division was made popular

by Chris Date's textbooks, while the author is associated with popularizing the

COUNT(*) version of relational division. The Winter 1996 edition of DB2 ON-LINE

MAGAZINE (http://www.db2mag.com/96011ar:htm) had an article entitled

"Powerful SQL:Beyond the Basics" by Sheryl Larsen which gave the results of

testing both methods. Her conclusion for the then current version of DB2 was

that the nested EXISTS() version is better when the quotient has less than 25% of

the dividend table's rows and the COUNT(*) version is better when the quotient is

more than 25% of the dividend table.

On the other hand, Matthew W. Spaulding at SnapOn Tools reported his test on

SQL Server 2000 with the opposite results. He had a table with two million rows for

the dividend and around 1,000 rows in the divisor, yielding a quotient of around

1,000 rows as well. The COUNT method completed in well under one second,

where as the nested NOT EXISTS query took roughly five seconds to run. The

moral to the story is to test both methods on your particular release of your

product.

Todd's Division

A relational division operator proposed by Stephen Todd is defined on two

tables with common columns that are joined together, dropping the JOIN

column and retaining only those non-JOIN columns that meet a criterion.

We are given a table, JobParts(job_nbr_nbr, part_nbr), and another table,

SupParts(sup_nbr, part_nbr), of suppliers and the parts that they provide. We

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 10

want to get the supplier-and-job_nbr pairs such that supplier sn supplies all of the

parts needed for job_nbr jn. This is not quite the same thing as getting the

supplier-and-job_nbr pairs such that job_nbr jn requires all of the parts provided

by supplier sn.

You want to divide the JobParts table by the SupParts table. A rule of thumb:

The remainder comes from the dividend, but all values in the divisor are present.

Job Parts

Sub Parts

job_nbr Part_nbr

j1 p1

j1 p2

j2 p2

j2 p4

j2 p5

j3 p2

sub_nbr part_nbr

s1 p1

s1 p2

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 11

Result = JobSups

Pierre Mullin submitted the following query to carry out the Todd division:

s1 p3

s1 p4

s1 p5

s1 p6

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

s4 p5

job_nbr sup_nbr

j1 s1

j1 s2

j2 s1

j2 s4

j3 s1

j3 s2

j3 s3

j3 s4

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 12

SELECT DISTINCT JP1.job_nbr, CS1.supplier

 FROM JobParts AS JP1, SupParts AS CS1

 WHERE NOT EXISTS

 (SELECT *

 FROM JobParts AS JP2

 WHERE JP2.job_nbr = JP1.job_nbr

 AND JP2.part

 NOT IN (SELECT SP2.part

 FROM SupParts AS SP2

 WHERE SP2.supplier = CS1.supplier));

This is really a modification of the query for Codd's division, extended to use a

JOIN on both tables in the outermost SELECT statement. The IN predicate for the

second subquery can be replaced with a NOT EXISTS predicate; it might run a

bit faster, depending on the optimizer.

Another related query is finding the pairs of suppliers who sell the same parts. In

this data, that would be the pairs (s1, p2), (s3, p1), (s4, p1), (s5, p1)

SELECT S1.sup, S2.sup

 FROM SupParts AS S1, SupParts AS S2

 WHERE S1.sup < S2.sup -- different suppliers

 AND S1.part = S2.part -- same parts

 GROUP BY S1.sup, S2.sup

HAVING COUNT(*)

 = (SELECT COUNT (*) -- same count of parts

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 13

 FROM SupParts AS S3

 WHERE S3.sup = S1.sup)

 AND COUNT(*)

 = (SELECT COUNT (*)

 FROM SupParts AS S4

 WHERE S4.sup = S2.sup);

This can be modified into Todd's division easily be adding the restriction that the

parts must also belong to a common job.

Steve Kass came up with a specialized version that depends on using a numeric

code. Assume we have a table that tells us which players are on which teams.

CREATE TABLE Team_Assignments

(player_id INTEGER NOT NULL

 REFERENCES Players(player_id)

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 team_id CHAR(5) NOT NULL

 REFERENCES Teams(team_id)

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 PRIMARY KEY (player_id, team_id));

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 14

To get pairs of Players on the same team:

SELECT P1.player_id, P2.player_id

 FROM Players AS P1, Players AS P2

 WHERE P1.player_id < P2.player_id

 GROUP BY P1.player_id, P2.player_id

HAVING P1.player_id + P2.player_id

 = ALL (SELECT SUM(P3.player_id)

 FROM Team_Assignments AS P3

 WHERE P3.player_id

 IN (P1.player_id, P2.player_id)

 GROUP BY P3.team_id);

Division with Set Operators

The Standard SQL set difference operator, EXCEPT, can be used to write a very

compact version of Dr. Codd's relational division. The EXCEPT operator removes

the divisor set from the dividend set. If the result is empty, we have a match; if

there is anything left over, it has failed. Using the Colored_Shapes table example,

we would write

SELECT DISTINCT color_name

 FROM Colored_Shapes AS CS1

 WHERE (SELECT shape_name FROM Shapes

 EXCEPT

 SELECT shape_name

 FROM Colored_Shapes AS CS2

 WHERE CS1.color_name = CS2.color_name) IS NULL;

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 15

Again, informally, you can imagine that we got a l list from each color_name,

walked over to the Shapes, and crossed off each shape_name he could march.

If we marked off all the shape_name in the Shapes, we would keep this guy.

Another trick is that an empty subquery expression returns a NULL, which is how

we can test for an empty set. The WHERE clause could just as well have used a

NOT EXISTS() predicate instead of the IS NULL predicate.

Romley's Division

This somewhat complicated relational division is due to Richard Romley, a DBA

retired from Salomon Smith Barney. The original problem deals with two tables.

The first table has a list of managers and the projects they can manage. The

second table has a list of Personnel, their departments and the project to which

they are assigned. Each employee is assigned to one and only one department

and each employee works on one and only one project at a time. But a

department can have several different projects at the same time, so a single

project can span several departments.

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 16

CREATE TABLE Mgr_Projects

(mgr_name CHAR(10) NOT NULL,

 project_id CHAR(2) NOT NULL,

 PRIMARY KEY(mgr_name, project_id));

INSERT INTO Mgr_Project

VALUES ('M1', 'P1'), ('M1', 'P3'),

 ('M2', 'P2'), ('M2', 'P3'),

 ('M3', 'P2'),

 ('M4', 'P1'), ('M4', 'P2'), ('M4', 'P3');

CREATE TABLE Personnel

(emp_id CHAR(10) NOT NULL,

 dept_id CHAR(2) NOT NULL,

 project_id CHAR(2) NOT NULL,

 UNIQUE (emp_id, project_id),

 UNIQUE (emp_id, dept_id),

 PRIMARY KEY (emp_id, dept_id, project_id));

-- load department #1 data

INSERT INTO Personnel

VALUES ('Al', 'D1', 'P1'),

 ('Bob', 'D1', 'P1'),

 ('Carl', 'D1', 'P1'),

 ('Don', 'D1', 'P2'),

 ('Ed', 'D1', 'P2'),

 ('Frank', 'D1', 'P2'),

 ('George', 'D1', 'P2');

-- load department #2 data

INSERT INTO Personnel

VALUES ('Harry', 'D2', 'P2'),

 ('Jack', 'D2', 'P2'),

 ('Larry', 'D2', 'P2'),

 ('Mike', 'D2', 'P2'),

 ('Nat', 'D2', 'P2');

-- load department #3 data

INSERT INTO Personnel

VALUES ('Oscar', 'D3', 'P2'),

 ('Pat', 'D3', 'P2'),

 ('Rich', 'D3', 'P3');

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 17

The problem is to generate a report showing for each manager each

department whether is he qualified to manage none, some or all of the projects

being worked on within the department. To find who can manage some, but

not all, of the projects, use a version of relational division.

SELECT M1.mgr_name, P1.dept_id_name

 FROM Mgr_Projects AS M1

 CROSS JOIN

 Personnel AS P1

 WHERE M1.project_id = P1.project_id

 GROUP BY M1.mgr_name, P1.dept_id_name

HAVING COUNT(*) <> (SELECT COUNT(emp_id)

 FROM Personnel AS P2

 WHERE P2.dept_id_name = P1.dept_id_name);

The query is simply a relational division with a <> instead of an = in the HAVING

clause. Richard came back with a modification of my answer that uses a

characteristic function inside a single aggregate function

SELECT DISTINCT M1.mgr_name, P1.dept_id_name

 FROM (Mgr_Projects AS M1

 INNER JOIN

 Personnel AS P1

 ON M1.project_id = P1.project_id)

 INNER JOIN

 Personnel AS P2

 ON P1.dept_id_name = P2.dept_id_name

 GROUP BY M1.mgr_name, P1.dept_id_name, P2.project_id

HAVING MAX (CASE WHEN M1.project_id = P2.project_id

 THEN 'T' ELSE 'F' END)

 = 'F';

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 18

This query uses a characteristic function while my original version compares a

count of Personnel under each manager to a count of Personnel under each

project_id. The use of "GROUP BY M1.mgr_name, P1.dept_id_name,

P2.project_id" with the "SELECT DISTINCT M1.mgr_name, P1.dept_id_name" is

really the tricky part in this new query. What we have is a three-dimensional

space with the (x, y, z) axis representing (mgr_name, dept_id_name, project_id)

and then we reduce it to two dimensions (mgr_name, dept_id) by seeing if

Personnel on shared project_ids cover the department or not.

That observation lead to the next changes. We can build a table that shows

each combination of manager, department and the level of authority they

have over the projects they have in common. That is the derived table T1 in the

following query; (authority = 1) means the manager is not on the project and

authority = 2 means that he is on the project_id

SELECT T1.mgr_name, T1.dept_id_name,

 CASE SUM(T1.authority)

 WHEN 1 THEN 'None'

 WHEN 2 THEN 'All'

 WHEN 3 THEN 'Some'

 ELSE NULL END AS authority_scope

 FROM (SELECT DISTINCT M1.mgr_name, P1.dept_id_name,

 MAX (CASE WHEN M1.project_id = P1.project_id

 THEN 2 ELSE 1 END) AS authority

 FROM Mgr_Projects AS M1

 CROSS JOIN

 Personnel AS P1

 GROUP BY m.mgr_name, P1.dept_id_name, P1.project_id) AS T1

 GROUP BY T1.mgr_name, T1.dept_id_name;

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 19

We can now sum the authority numbers for all the projects within a department

to determine the power this manager has over the department as a whole. If he

had a total of one, he has no authority over Personnel on any project in the

department. If he had a total of two, he has power over all Personnel on all

projects in the department. If he had a total of three, he has both a 1 and a 2

authority total on some projects within the department. Here is the final answer.

Results

Conclusion & a Programming Problem

As you can see, there are several kinds of relational division. We have not

touched on pulling out subsets based on the counts of various elements in the

divisor and dividend. For example, if we define a widget as a three circles and

two squares, then we need to add a quantity column to both the tables.

Now use what you have seen and write the SQL for this kidn of problem:

mgr_name dept_id Authority_scope

M1 D1 Some

M1 D2 None

M1 D3 Some

M2 D1 Some

M2 D2 All

M2 D3 All

M3 D1 Some

M3 D2 All

M4 D3 Some

M4 D1 All

M4 D2 All

M4 D3 All

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 20

CREATE TABLE Colored_Shapes --dividend

(color_name CHAR(10) NOT NULL,

 shape_name CHAR(10) NOT NULL,

 PRIMARY KEY (color_name, shape_name),

 onhand_qty INTEGER NOT NULL

 CHECK (onhand_qty > 0));

HINT: We know immediately that a color with fewer than three circles or fewer

than two squares is disqualified from the results.

color_name Shape_name Onhand_qty

Blue Triangle 4

Green Triangle 3

Green Square 2

Green Pentagon 1

Green Circle 5

Purple Circle 2

Purple Triangle 1

Red Triangle 2

Red Circle 2

Red Square 2

Yellow Square 23

ºººººººººººº

Relational Division

Fsd

fsdfds

Embarcadero Technologies, Inc. 21

About the Author

Mr. Joe Celko serves as Member of Technical Advisory Board of Cogito, Inc. Mr. Celko

joined the ANSI X3H2 Database Standards Committee in 1987 and helped write the

ANSI/ISO SQL-89 and SQL-92 standards. He is one of the top SQL experts in the world,

writing over 700 articles primarily on SQL and database topics in the computer trade and

academic press. The author of six books on databases and SQL, Mr. Celko also contributes

his time as a speaker and instructor at universities, trade conferences and local user

groups.

Download a Free Trial at www.embarcadero.com

Corporate Headquarters | Embarcadero Technologies | 275 Battery Street, Suite 1000 | San Francisco, CA 94111 | www.embarcadero.com | sales@embarcadero.com

© 2015 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and all other Embarcadero Technologies product or service names are trademarks or registered trademarks of Embarcadero Technologies, Inc.

All other trademarks are property of their respective owners 090315

http://www.embarcadero.com/
http://www.embarcadero.com/
mailto:sales@embarcadero.com

