
 

 

  

 

 

 

 

  

 

 

 

        

  

 

 

Normalization 
Heuristics 

 

 
 
 Whitepaper 

Paper 
 

For Embarcadero Technologies 
December, 2015 

 
 

 

By Joe Celko 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 2 

 

Table of Contents  

 
 Heuristics #0 Schema Should Have Few, If Any, Null-able  Columns………………………………………………….….4 
Functional and Multi-Valued Dependencies…………………………………………………………………………………….....5 

 -First Normal Form (1NF) ......................................................................................................................... 5 

Heuristic #1 Look for things you can touch; they will be entitles. ............................................................ 7 

Heuristic #2 Look for keys ......................................................................................................................... 7 

Heuristic #3 Look for non key attributes. ................................................................................................. 8 

Heuristic #4 Look for multi-columns keys. ................................................................................................ 8 

Heuristic #5 A normalized schema has one fact, in one place,  one way, one time ............................... 10 

     - Third Normal Form (3NF) ..................................................................................................................... 10 

  Heuristics #6: Try not to store computed data; store what you need for the computations….……..…..12 

- Fifth Normal Form (5NF)………………………………………………………………………………………………………………….14 

Heuristics #7: The most important leg on three-legged stool is the leg that is missing ......................... 16 

Heuristics #8: if it is not an entity, is it a relationship? Does the relationship  

have its own attributes?. ........................................................................................................................ 17 

 - Non-Normal Form Redundancy ........................................................................................................... 17 

- Aggregation Level Redundacy. .............................................................................................................. 17 

- Entire Table Redundacy ........................................................................................................................ 18 

- Attribute Splitting ................................................................................................................................. 21 

The Summary .......................................................................................................................................... 21 

 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 3 

 

The dictionary definition of a heuristic is 

“Computers, Mathematics: pertaining to a trial-and-error method of 

problem solving used when an algorithmic approach is impractical.” which 

means this is what you do when you do not know what to do next. 

The term “normalization” comes from Dr. Codd, who borrowed it from the then-

current political climate in which we were trying to normalize relations with the 

Soviet block. The goal is to remove redundancy from a database schema and 

to have the schema maintain some data integrity without procedural code. 

Actually, these are the goals of all databases. When we had file systems, the 

same data was repeated in many different files and there was no reasonable 

way to bring the files together and create a consistent model of the data. Then 

we got the network model and the idea of a consistent, single picture of our 

data. 

Dr. Codd's relational model in 1970 went one step further. The relational model 

could be formalized and we even got Armstrong’s Axioms and math! The goal 

of normal forms is to avoid certain data anomalies that can occur in 

unnormalized tables. Data anomalies are easier to explain with examples. When 

Dr. Codd defined the relational model, he gave 0 to 12 rules for tables (Yes, 

there is a rule zero). Some of them are important for table design heuristics, so it 

is good to get feel for them. 

The most important one for a working programmer is The Information Rule. This 

simply requires all information in the database to be represented in one and 

only one way, namely by scalar values in columns within rows of tables. 

The problem is people do not know what “scalar” means, so they want to use 

structured data in the form of arrays and CSV lists. NO! They did not get a class 

on scales and measurements. It is how they handled data in an old FORTRAN or 

COBOL program, so why should it change now? 

Dr. Codd's third rule is the “Systematic Treatment of NULL Values” in the data 

model. SQL has a NULL that is used for both missing information and inapplicable 

information, but you have to decide what each a NULL means as part of the 

data model. The heuristic is to declare every column as NOT NULL, then go back 

and deliberately decide to make it NULL-able. 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 4 

 

 

 

Heuristic #0:  A Schema Should Have Few, If Any, 

NULL-able Columns. 

This is important because a key cannot have NULLs. It also tells us that we have 

not designed the data carefully. We ought to know as much as possible about 

the model before we started coding. I just had to do a zero in my list because 

Codd had one. 

Rule 8. “Physical Data Independence” This is self-explanatory; users are never 

aware of the physical implementation and deal only with a logical model. Any 

real product is going to have some physical dependence, but SQL is better than 

most programming languages on this point. 

In particular, auto-incrementing row identifiers based on physical insertions into 

a table like the IDENTITY table property in MS SQL Server are in total violation of 

this rule. So are GUIDs used inside the schema (they locate global resources, not 

local schema objects). So are byte and bit operators. Why would you think that 

the physical storage layout is part of a model? Is your hard ware High end? Low 

end? 16 bit? 32 bit? 64 bit ? 

Rule 10.”Integrity Independence” This means Declarative Referential Integrity 

(DRI) constraints must be specified separately from application programs and 

stored in the schema. This means keys, defaults, DRI actions, triggers, and check 

constraints are part of the design, you cannot skip them and expect to have a 

correct schema. I tell students that 85-95% of the real work in SQL is done in the 

DDL, not in the DML. 

Codd also specified 9 structural features, 3 integrity features, and 18 

manipulative features, all of which are required as well. He later extended the 

list from 12 rules to 333 in the second version of the relational model. This section 

is getting too long and you can look them up for yourself. 

Normal forms are an attempt to make sure that you do not destroy true data or 

create false data in your database. One of the ways of avoiding errors is to 

represent a fact only once in the database, since if a fact appears more than 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 5 

once, one of the instances of it is likely to be in error at some time – a man with 

two wrist watches can never be sure what time it is. 

 

 

Functional and Multi-Valued Dependencies 

A normal form is a way of classifying a table based on the functional 

dependencies (FDs for short) in it. A functional dependency means that if I know 

the value of one attribute, I can always determine the value of another. The 

notation used in relational theory is an arrow between the two attributes, for 

example A→ B, which can be read in English as "A determines B". If I know your 

employee number, I can determine your name; if I know a part number, I can 

determine the weight and color of the part; and so forth. 

A multi-valued dependency (MVD) means that if I know the value of one 

attribute, I can always determine the values of a set of another attribute. The 

notation used in relational theory is a double-headed arrow between the two 

attributes, for instance A ↠  B , which can be read in English as "A determines 

many Bs". If I know a teacher's name, I can determine a list of her students; if I 

know a part number, I can determine the part numbers of its components; and 

so forth. 

Okay, so much for abstractions. Let's clean up a file and turn it into an SQL 

database. The Normal forms are numbered and names, each one built on a 

simpler normal form. Just like Dr. Codd’s rules, you do not have to know all of 

them by heart, but some of them are important. 

First Normal Form (1NF) 

Consider a requirement to maintain data about class schedules at a school. We 

are required to keep the course_name, class_section, dept_name, time, 

room_nbr, professor, student, student_major, and student_grade. Suppose that 

we initially set up a Pascal file with records that look like this: 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 6 

 

 
Classes = RECORD 

     course_name: ARRAY [1:7] OF CHAR; 
    class_section: CHAR; 

     time_period: INTEGER; 
      room_nbr: INTEGER; 
      room_size: INTEGER; 
      professor: ARRAY [1:25] OF CHAR; 

      dept_name: ARRAY [1:10] OF CHAR;   
      students: ARRAY [1:class_size] 
         OF RECORD 

           student_name ARRAY [1:25] OF CHAR; 
           student_major ARRAY [1:10] OF CHAR; 
           student_grade CHAR; 
           END; 

     END; 

 

 

If you do not read Pascal, it is easy. Records are read from files in left to right. 

There is no string data type; the language uses an array of characters. Integers 

explain themselves. Records can be structured inside each other as arrays; this is 

like the OCCURS clause in COBOL. 

First Normal Form (1NF) means that the table has no repeating groups. That is, 

every column is a scalar value, not an array or a list or anything with its own 

structure. In SQL, it is impossible not to be in 1NF unless the vendor has added 

array or other extensions to the language. The Pascal record could be "flattened 

out" in SQL and the field names changed to data element names to look like this: 

 

 
  CREATE TABLE Classes 

   (course_name CHAR(7) NOT NULL, 

    class_section CHAR(1) NOT NULL, 

    time_period INTEGER NOT NULL, 
    room_nbr INTEGER NOT NULL, 
    room_size INTEGER NOT NULL, 
    professor_name CHAR(25) NOT NULL, 

    dept_name CHAR(10) NOT NULL, 
    student_name CHAR(25) NOT NULL, 
    student_major CHAR(10) NOT NULL, 

    student_grade CHAR(1) NOT NULL); 

 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 7 

This table is acceptable to SQL. But it has no keys and repeats huge amounts of 

data. In fact, we can locate a row in the table with a combination of 

(course_name, class_section, student_name), so we have an undeclared key. 

But what we are doing is hiding the Students record array, which has not 

changed its nature by being flattened. And this thing has no keys, and no 

constraint declared. But at least there are no NULLs. 

There are problems. 

If Professor 'Jones' of the math department dies, we delete all his rows from the 
Classes table. 

 
 

  DELETE FROM Classes WHERE professor_name = 'Jones'; 

 

This also deletes the information that all his students were taking a math class 

and maybe not all of them wanted to drop out of school just yet. I am deleting 

more than one fact from the database. This is called a deletion anomaly. 

 

If student 'Wilson' decides to change one of his math classes, formerly taught by 

Professor 'Jones', to English, we will show Professor 'Jones' as an instructor in both 

the math and the English departments. 

 

 

   UPDATE Classes 

     SET course_name = 'English' 

   WHERE student_name = 'Wilson'; 

 

 

I could not change a simple fact by itself. This creates false information, and is 

called an update anomaly. 

If the school decides to start a new department, which has no students yet, we 

cannot put in the data about the professor we just hired until we have 

classroom and student data to fill out a row. I cannot insert a simple fact by itself. 

This is called an insertion anomaly. 

There are more problems in this table, but you see the point. Yes, there are some 

ways to get around these problems without changing the tables. We could 

permit NULLs in the table. We could write triggers to check the table for false 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 8 

data. These are tricks that will only get worse as the data and the relationships 

become more complex. The solution is to break the table up into other tables, 

each of which represents one relationship or simple fact. 

At this point I can do some functional and MVD dependencies, apply some 

axioms and split this monster table into more tables with math. But the heuristic is 

that you can now look at each column and decide if it is an attribute or a key. 

You need to find the entities and relationships mashed together in this table. 

 

Heuristic #1 Look for things you can touch; they 
will be entitles. 

In this example, a student is a thing that can be touched. We want nouns that 

are the classic “person, place or thing” we were taught in grade school. 

Heuristic #2 Look for keys. 

How do you identify that entity? Remember a key has to be subset of attributes; 

not a GUID, not an IDENTITY, not some other physical locator. This is the a direct 

application  

 

of the Law of Identity from formal logic. “To be is to be something in particular; 

to be nothing in particular or everything in general is to be nothing at all” This 

was first used in Plato's dialogue “Theaetetus” and it is wrongly attributed to 

Aristotle. 

Heuristic #3 Look for non key attributes. 

This is actually trickier. Think about an author; to be an author, her has to have 

written book, right? Well, yes. But is the book an attribute? Does it grow out of his 

chest? We have “authorship” as a relationship between a book and an author. 

These basic relationships can be one to one (1:1), one to many (1:m) or many to 

many (n:m). They can be enforces with constraints, but do not worry about this 

for now. 

We now get our first table: 

https://en.wikipedia.org/wiki/Plato


ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 9 

 

 
   CREATE TABLE Students 
   (student_name CHAR(25) NOT NULL PRIMARY KEY, 

    student_major CHAR(10) NOT NULL); 

 

 

Not much to this table, is there? As a generalization, files will have lots of fields in 

a few records while an SQL schema will have a lot of small tables whose 

columns are interrelated and constrained. For now, just ignore using a student's 

name instead of an identifier number of some kind for the key. 

Let's put the students into their classes and set up a roster with the enrollments. 

The enrollment has to have a student, a class to attend and a grade for that 

work. 

Heuristic #4 Look for multi-columns keys. 

In this example, we identify a class by the course name and a section number 

for the courses that overflowed. This is a common pattern, where we have a 

strong attribute (the course) and a weak attribute (the section within the course). 

Weak attributes and exist only with a strong attribute. The most common 

example in business is a document header, say an invoice, and its weak details, 

say invoice line items. In theory there is no limit to how far down the nesting can 

go. 

But there is another kind of multi-column key, where the columns are on an 

equal level. Ever use (longitude, latitude) pairs? Let's set up the grade book for 

the class. 

 

 

 

 
   CREATE TABLE Enrollment 

   (student_name CHAR(25) NOT NULL, 

    course_name CHAR(7) NOT NULL, 
    class_section CHAR(1) NOT NULL, 
    student_grade CHAR(1) NOT NULL, 

   PRIMARY KEY (student_name, course_name, class_section)); 

 

 

 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 10 

Now that we have a grade book, we need a place and person to teach a class. 

 

 

   CREATE TABLE Classes 
   (course_name CHAR(7) NOT NULL, 

    class_section CHAR(1) NOT NULL, 
    time_period INTEGER NOT NULL, 
    room_nbr INTEGER NOT NULL, 
    room_size INTEGER NOT NULL, 

    professor_name CHAR(25) NOT NULL, 
   PRIMARY KEY (course_name, class_section)); 

 

At this point, we are in Second Normal Form (2NF). That means every attribute 

depends on the entire key in its table. Now if a student changes majors, it can 

be done in one place. Furthermore, a student cannot sign up for different 

sections of the same class, because we have changed the key of Enrollment. 

Unfortunately, we still have problems. 

Notice that while room_size depends on the entire key of Classes, it also 

depends on room_nbr. If the room_nbr is changed for a course_name and 

class_section, we may also have to change the room_size, and if the room_nbr 

is modified (we knock down a wall), we may have to change room_size in 

several rows in Classes for that room_nbr. 

This is bad. When we change one fact, we want to do it in place, one time, one 

way.  And this leads to the next heuristic. 

 

This query uses a characteristic function while my original version compares a 

count of Personnel under each manager to a count of Personnel under each 

project_id. The use of "GROUP BY M1.mgr_name, P1.dept_id_name, 

P2.project_id" with the "SELECT DISTINCT M1.mgr_name, P1.dept_id_name" is 

really the tricky part in this new query. What we have is a three-dimensional 

space with the (x, y, z) axis representing  

 

Heuristic #5 a normalized schema has one fact, 
in one place, one way, one time 

If I have to change other things along with the target data element, then I need 

to do some more work. In this example, the room number will determine the size 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 11 

of the room. And this leads use to the most common normalization we want to 

have in a schema! 

Third Normal Form (3NF) 

A table is in Third Normal Form (3NF) if it is in 2NF and for all X→ Y, (the arrow 

reads “determines”) where X and Y are columns of a table, X is a key or Y is part 

of a candidate key. (A candidate key is a unique set of columns that identify 

each row in a table; you cannot remove a column from the candidate key 

without destroying its uniqueness.) This implies that the table is in 2NF, since a 

partial key dependency is a type of transitive dependency. 

 

Informally, all the non-key columns are determined by “the key, the whole key, 

and nothing but the key, so help you Codd!”; this phrase is attributed to Chris 

Date 

 

The usual way that 3NF is explained is that there are no transitive dependencies, 

but this is not quite right. A transitive dependency is a situation where we have a 

table with columns (A, B, C) and (A→  B) and (B→  C), so we know that (A→  C). 

In our case, the situation is that (course_name, class_section)→  room_nbr and 

room_nbr→  room_size. This is not a simple transitive dependency, since only part 

of a key is involved, but the principle still holds. To get our example into 3NF and 

fix the problem with the room_size column, we make the following 

decomposition: 

 

 

   CREATE TABLE Rooms --- another thing I can touch! 

   (room_nbr INTEGER NOT NULL PRIMARY KEY, 

    room_size INTEGER NOT NULL); 
 

 

 

   CREATE TABLE Students 

   (student_name CHAR(25) NOT NULL PRIMARY KEY, 

    student_major CHAR(10) NOT NULL); 

 

 

 

Let's start adding DRI actions to the schema. 

 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 12 

 
 

   CREATE TABLE Classes 

   (course_name CHAR(7) NOT NULL, 

    class_section CHAR(1) NOT NULL, 

    PRIMARY KEY (course_name, class_section), 
    time_period INTEGER NOT NULL, 
    room_nbr INTEGER NOT NULL  –- can find the size in Rooms 

    REFERENCES Rooms(room_nbr)); 
 

 

 

   CREATE TABLE Enrollment 

   (student_name CHAR(25) NOT NULL 

    REFERENCES Students(student_name), 

    course_name CHAR(7) NOT NULL, 
    class_section CHAR(1) NOT NULL, 
    PRIMARY KEY (student_name, course_name, class_section), 
    student_grade CHAR(1) NOT NULL); 

 

A common misunderstanding about relational theory is that 3NF tables have no 

transitive dependencies. As indicated above, if X → Y, X does not have to be a 

key if Y is part of a candidate key. We still have a transitive dependency in the 

example -- (room_nbr, time_period) → (course_name, class_section) -- but since 

the right side of the dependency is a key, it is technically in 3NF. The 

unreasonable behavior that this table structure still has is that several 

course_names can be assigned to the same room_nbr at the same time. 

 

Another form of transitive dependency is a computed column. For example: 

 
 

   CREATE TABLE Boxes 

   (width INTEGER NOT NULL, 

    length INTEGER NOT NULL, 
    height INTEGER NOT NULL, 
    volume INTEGER NOT NULL 

        CHECK (width * length * height = volume), 
    PRIMARY KEY (width, length, height)); 
 

 

The volume column is determined by the other three columns, so any change to 

one of the three columns will require a change to the volume column. You can use 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 13 

a computed column in this example which would look like: 

 

 

(volume INTEGER COMPUTED AS (width * length * height) PERSISTENT) 
 

 

 

Heuristics #6: Try not to store computed data; 
store what you need for the computations. 

 

There are several other normal forms.  Occasionally you will need to worry about 

Boyce-Codd Normal Form (BCNF) and Fifth Normal Form (5NF). Be aware they exists 

and you can handle them. Without the math, just know what they smell like. They 

deal with trying to do loss-less decomposition of the tables. In English, that means 

you can put the new tables back together with joins. 

 

For example, we might give a fountain pen to a beginning salesman with a base 

pay rate between $15,000.00 and $20,000.00 and 100 gift_points, but give a car to a 

master salesman, whose salary is between $30,000.00 and $60,000.00 and who has 

200 gift_points. The functional dependencies are, therefore, 

 

(pay_step, gift_points)→  gift_name 

gift_name →  gift_points 

 

 

Gifts 

 

 

 

Let's start with a table that has all the data in it and normalize it. 

salary_amt gift_points gift_name 

15,000.00  100 ‘Pencil’ 

17,000.00 100 ‘Pen’ 

30,000.00 200 ‘Car’ 

31,000.00 200 ‘Car’ 

32,000.00 200 ‘Car’ 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 14 

 
 

 

   CREATE TABLE Gifts 

   (salary_amt DECIMAL(8,2) NOT NULL 

    gift_points INTEGER NOT NULL, 
    PRIMARY KEY (salary_amt, gift_points), 
    gift_name VARCHAR(10) NOT NULL); 

 

 

This schema is in 3NF, but it has problems. You cannot insert a new gift into our 

offerings and points unless we have a salary to go with it. If you remove any 

sales points, you lose information about the gifts and salaries (e.g., only people 

in the $30,000.00 to $32,000.00 range can win a car). And, finally, a change in 

the gifts for a particular point score would have to affect all the rows within the 

same pay step. This table needs to be broken apart into two tables: 

 

Pay_Gifts 

 

 

 

 

 

 

 

 

   CREATE TABLE Gifts 

   (salary_amt DECIMAL(8,2) NOT NULL, 

    gift_points INTEGER NOT NULL, 
    PRIMARY KEY(salary_amt, gift_points), 
    gift_name VARCHAR(10) NOT NULL); 

 

 

 

Salary_amt Gift_name 

15,000.00 ‘Pencil’ 

17,000.00 ‘Pen’ 

30,000.00 ‘Car’ 

31,000.00 ‘Car’ 

32,000.00 ‘Car’ 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 15 

Gift_points            

 

 

 

 

 

(salary_amt, gift_points) → gift   

gift → gift_points 

 

 

   CREATE TABLE GiftsPoints 

   (gift_name VARCHAR(10) NOT NULL PRIMARY KEY, 

    gift_points INTEGER NOT NULL)); 

 

Fifth Normal Form (5NF) 
 

Fifth Normal Form (5NF), also called the Join-Projection Normal Form or the 

Projection-Join Normal Form, is based on the idea of a lossless JOIN or the lack of a 

join-projection anomaly. This problem occurs when you have an n-way relationship, 

where (n > 2). A quick check for 5NF is to see if the table is in 3NF and all the 

candidate keys are single columns. This is not the only configuration, but it is the 

most common. 

 

As an example of the problems solved by 5NF, consider a table of house notes that 

records the buyer, the seller, and the lender: 

 

 

 
 

 

 

 

 

gift_name gift_points 

‘Pencil’ ‘100’ 

‘Pen’ ‘100’ 

‘Car’ ‘200’ 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 16 

 

 

HouseNotes            

 

 

 

This table is a three-way relationship, but because older diagramming tools 

allow only binary relationships it might have to be expressed in an E-R diagram 

as three binary relationships, which would generate CREATE TABLE statements 

leading to these tables: 

 

BuyerLender 

 

 

 
 

 

 

 

 

SellerLender 

 

 
 

 

 

 

 

 

buyer seller lender 

‘Smith’  ‘Jones’ ‘NationalBank’ 

‘Smith’ ‘Wilson’ ‘HomeBank’ 

‘Nelson’ ‘Jones’ ‘Homebank’ 

buyer lender 

‘Smith’  ‘NationalBank’ 

‘Smith’ ‘HomeBank’ 

‘Nelson’ ‘Homebank’ 

seller lender 

‘Jones’  ‘NationalBank’ 

‘Wilson’ ‘HomeBank’ 

‘Jones’ ‘Homebank’ 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 17 

 

BuyerrLender 

 

 
 

 

 

 

 

The trouble is that when you try to assemble the original information by joining 

pairs of these three tables together, thus: 

 
 

   SELECT BS.buyer, SL.seller, BL.lender   

     FROM BuyerLender AS BL, 
       SellerLender AS SL, 
       BuyerSeller AS BS 
     WHERE BL.buyer = BS.buyer 

     AND BL.lender = SL.lender 
     AND SL.seller = BS.seller; 

 

 

you will recreate all the valid rows in the original table, such as ('Smith', 'Jones', 

'National Bank'), but there will also be false rows, such as ('Smith', 'Jones', 'Home 

Bank'), which were not part of the original table. This is called a join-projection 

anomaly. 

 

Heuristics #7: The most important leg on  
three-legged stool is the leg that is missing 
 
When you are trying to sell your house, you need a lender and a buyer to make a 

sale. You are the third leg. Likewise, banks are looking for buyers and sellers, while 

buyers want to find their bank and their dream house. 

 

Using NULLs for the “missing legs” is not usually a good idea. If we had made all 

three columns NULL-able, we could never have had a key at all. Want to try to write 

buyer seller 

‘Smith’  ‘Jones’  

‘Smith’ ‘Wilson’ 

‘Nelson’ ‘Jones’ 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 18 

a constraint that keeps two of the three columns non-NULL? Now try to write a 

simple query on that  

 

table.  The DDL and DML become more and more complex until it is impossible to 

optimize the SQL or even maintain it.  As God says to the Angles in THE GREEN 

PASTURES (ISBN: 0299079244, page 84), "Dat's always de trouble wid miracles. When 

you pass one you always gotta r'ar back an' pass another." 

 

Heuristics #8: if it is not an entity, is it a 
relationship? Does the relationship have its own 
attributes? 
 
The simple home loan example we just saw is a pure relationship among three 

entities. But in the real world, there would be a loan number, purchase price, 

signature dates, and lot of other stuff. The loan number will be a key, but not the 

only key, as we just saw. 

 

Non-Normal Form Redundancy 
 
Normalization prevents some redundancy in a table. But not all redundancy is 

based on Normal Forms. We saw how a computed column could be used to 

replace a base column when the base column is a redundant computation. The 

computation is done at processor speeds (nanoseconds today) while reading it off 

of a moving disk is done at mechanical speeds (microseconds).   

 

Now, move up a level in the schema. 

 

Aggregation Level Redundacy 
 
A common example is the “Invoices” and “Invoice_Details” idiom which puts detail 

summary data in the order header. This is usually a column for “invoice_total” which 

has to be re-computed when an order item changes. What has happened is a 

confusion in levels of aggregation. 

 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 19 

 

   CREATE TABLE Invoices 

   (invoice_nbr CHAR(15) NOT NULL PRIMARY KEY, 

    customer_name VARCHAR(35) NOT NULL, 
    invoice_terms CHAR(7) NOT NULL 
     CHECK (invoice_terms IN ('cash', 'credit', 'coupon)), 

    invoice_amt_tot DECIMAL(12,2) NOT NULL); 
 

 

 
 

   CREATE TABLE Invoice_Details 

   (invoice_nbr CHAR(15) NOT NULL 

     REFERENCES Invoices (invoice_nbr) 
     ON DELETE CASCADE, 
     line_nbr INTEGER NOT NULL 

     CHECK (line_nbr > 0), 
     item_gtin CHAR(15) NOT NULL, 
    -- PRIMARY KEY (invoice_nbr, line_nbr), 

   -- PRIMARY KEY (invoice_nbr, item_gtin), 

     invoice_qty INTEGER NOT NULL 
    CHECK (invoice_qty > 0), 
    unit_price DECIMAL(12,2) NOT NULL) 

 
There is redundancy in line_ nbr and item_gtin as components in a key. (GTIN = 

Global Trade Item Number (GTIN) can be used by a company to uniquely identify 

all of its trade items.  It is the UPC barcodes on steroids) The invoice line numbers are 

physical locations on paper forms or a screen. A line number lets you place one 
product (item_gtin) in several places on the order form. Line numbers are not part of 

a logical data model. Wrong! 

 

But did you notice that Invoices.invoice_amt_tot = SUM (Invoice_Details.invoice_qty 
* Invoice_Details.unit_price)? 

 

Entire Table Redundacy 
 
Entire tables can be redundant. This often happens when there are two different 

ways to identify the same entity. 

 

 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 20 

 

   CREATE TABLE Map 

   (location_id CHAR(15) NOT NULL PRIMARY KEY, 

    location_name VARCHAR(35) NOT NULL, 
    location_longitude DECIMAL(9,5) NOT NULL), 
    location_latitude DECIMAL(9,5) NOT NULL); 

    CHECK (invoice_qty > 0), 
    unit_price DECIMAL(12,2) NOT NULL) 

 

 

 
location_id is the key, This might be a HTM (Hierarchical Triangular Mesh) number or 

a SAN (Standard Address Number, used in the Book Industry and other places). I 

can use a formula to compute the distance between two locations with this table. 

But I can also build a table of straight line distances directly: 

 
 

   CREATE TABLE Paths 

   (origin_location_id CHAR(15) NOT NULL, 

    dest_location_id CHAR(15) NOT NULL, 

    straight_line_dist DECIMAL(10,3) NOT NULL, 
    PRIMARY KEY (origin_location_id, dest_location_id)); 

 

 
This is an actual case from Tom Johnston. The (longitude, latitude) coordinate pairs 

would get out of alignment with the distance computations because they were 

maintained by two different people. The solution was VIEW to construct Paths when 

needed. 

 

Access Path Redundancy 
 
A more subtle redundancy is in the roles an entity plays in a data model. Try this 

example: A sales team is responsible for every customer that a member of that 

team (a salesperson) is assigned to and not responsible for any other customer. 

 

Draw this and you will see a cycle among 

 

Now look at the redundant relationship. We have options. 

 

1. Eliminate the redundancy: remove the is-responsible-for relationship from 

Sales-Team to Customer. The model is just as expressive as it was before 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 21 

the redundancy was eliminated. 

2. Control the redundancy: add DRI actions. Because the two foreign keys that 

must be kept synchronized are in the same row, only one update is 

required. 

 

Here is the DDL for the possible solutions: 

 
 

CREATE TABLE Sales_Teams 

(sales_team_id INTEGER NOT NULL PRIMARY KEY, 

 sales_team_name CHAR(10) NOT NULL); 
  

 

 
 

    CREATE TABLE Salespersons 

    (sales_person_id INTEGER NOT NULL PRIMARY KEY, 

     sales_person_name CHAR(15) NOT NULL, 
     sales_team_id INTEGER NOT NULL 

          REFERENCES Sales_Teams(sales_team_id) 
          ON UPDATE CASCADE); 
 

 
 

   CREATE TABLE Customers 

    (customer_id INTEGER NOT NULL PRIMARY KEY, 

     sales_team_id INTEGER NOT NULL 

           REFERENCES SalesPerson(sales_team_id) 
           ON UPDATE CASCADE, 
     sales_person_id INTEGER 
        REFERENCES Salespersons(sales_person_id) 

        ON UPDATE CASCADE 
        ON DELETE SET NULL); 

 

 

Another possible schema: 

 
 

    CREATE TABLE Sales_Teams 

     (sales_team_id INTEGER NOT NULL PRIMARY KEY, 

      sales_team_name CHAR(10) NOT NULL); 
  



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 22 

 
 

    CREATE TABLE Salespersons 

     (sales_person_id INTEGER NOT NULL PRIMARY KEY, 

      sales_person_name CHAR(15) NOT NULL, 

      sales_team_id INTEGER NOT NULL 
          REFERENCES Sales_Teams(sales_team_id) 
          ON UPDATE CASCADE, 

      UNIQUE (sales_person_id, sales_team_id)); 
 

 

 

 

 

 

 
 

    CREATE TABLE Customers 

    (customer_id INTEGER NOT NULL PRIMARY KEY, 

     sales_team_id INTEGER NOT NULL , 
     sales_person_id INTEGER 

        REFERENCES Salespersons(sales_person_id) 
        ON UPDATE CASCADE ON DELETE SET NULL, 
      FOREIGN KEY (sales_person_id, sales_team_id) 
     REFERENCES Salespersons (sales_person_id, sales_team_id) 

           ON UPDATE CASCADE); 
 

 

 

Attribute Splitting 
 
Would you have a “Female_Personnel” and a “Male_Personnel” table in a schema? 

No, of course not! We need a “Personnel” table, not two tables constructed by 

using the values in a “sex_code” column as the splitter for table names. Making a 

table per calendar year (or month) is very common because it looks like how we 

did magnetic tapes. Another common split is a physical data source, such as each 

store in an enterprise. 

 

Chris Date calls it “Orthogonal design” and I call it “Attribute Splitting”, but I use this 

for more general errors than just tables. 

 

This is not disk partitioning! That is a physical vendor feature for accessing the data, 

but the table is still one logical unit in the schema. 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 23 

 

Splitting can be at the table level, too. In the school example, you can make a 

design decision to keep course name and class section as separate columns or 

concatenate them into one column. However, you will see clear splits in the case of 

a unit of measure in one column and the measurement in a secodn column. 

 

 

The Summary 
 
Broadly speaking, tables represent either entities, relationships or they are auxiliary 

tables. This is why E-R diagrams work so well as a design tool. The auxiliary tables do 

not show up on the diagrams, since they are functions, translations, and look-ups 

that support a declarative computational model. 

 

The tables that represent entities should have a simple, immediate name suggested 

by their contents -- a table named Students has student data in it, not student data 

and their bowling scores. It is also a good idea to use plural or collective nouns as 

the names of such tables to remind you that a table is a set of entities; the rows are 

the single instances of them. 

 

Tables which represent one or many to one or many relationships should be named 

by their contents and should be as minimal as possible. For example, Students are 

related to Courses by a third (relationship) table for their attendance. These tables 

might represent a pure relationship or they might contain attributes that exist within 

the relationship, such as a student_grade for the class attended. Since the only way 

to get a student_grade is to attend the class, the relationship is going to have a 

compound key made up of references to the entity keys. We will probably name it 

"ReportCards", "Grades" or something similar. Avoid naming entities based on m:m 

relationships by combining the two table names. for example, “Students_Courses” is 

an easy but really bad name for the “Enrollment” entity. 

 

Avoid NULLs whenever possible. If a table has too many NULL-able columns, it is 

probably not normalized properly. Try to use a NULL only for a value which is missing 

now, but which will be resolved later. Even better, put missing values into the 

encoding schemes for that column. I have a whole book on this topic, SQL 

PROGRAMMING STYLE (ISBN 978-0120887972) and mention in other books. 

 

As a gross generalization, normalized databases will tend to have a lot of tables with 

a small number of columns per table. Do not panic when you see that happen. 

People who first worked with file systems (particularly on computers that used 

magnetic tape) tend to design one monster file for an application and do all the 

work against its records. This made sense in the old days, since there was no 



ºººººººººººº 

 
 

 

Normalization Heuristics 
 
 

 
Fsd 

fsdfds 

 

  

 

Embarcadero Technologies, Inc. 24 

reasonable way to JOIN a number of small files together without having the 

computer operator mount and dismount lots of different magnetic tapes. The habit 

of designing this way carried over to disk systems, since the procedural 

programming languages were still the same for the databases as they had been for 

the sequential file systems. 

 

The same non-key attribute in more than one table is probably a normalization 

problem. This is not a certainty, just a guideline. The key that determines that 

attribute should be in only one table, and therefore its attributes should be with it. 

The key attributes will be referenced  and not repeated by related tables. 

 

As a practical matter, you are apt to see the same attribute under different names 

and need to make the names uniform in the entire database. The columns 

"date_of_birth", "birthdate", "birthday", and "dob" are very likely the same attribute of 

an employee. You now have the ISO-11179 for naming guidelines, as discussed in 

SQL PROGRAMMING STYLE (Morgan Kaufmann; 2005 May 01; ISBN: 978-0120887972). 

 

 

 

 

 

 

 

 

 

 

Download a Free Trial at www.embarcadero.com 

Corporate Headquarters | Embarcadero Technologies | 275 Battery Street, Suite 1000 | San Francisco, CA 94111 | www.embarcadero.com | sales@embarcadero.com 

© 2015 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and all other Embarcadero Technologies product or service names are trademarks or registered trademarks of Embarcadero Technologies, Inc. 

All other trademarks are property of their respective owners 090315 
 
 

http://www.embarcadero.com/
http://www.embarcadero.com/
mailto:sales@embarcadero.com

