White Paper

Delphi and Unicode

By Marco Cantu, Delphi Product Manager

Embarcadero Technologies

Updated December 2013 (Original November 2008)

Americas Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor York House 100 Clarence Street
San Francisco, California 94111 18 York Road Sydney, N 000

Maidenhead, Berkshire Australia

SL6 1SF, United Kingdom

@ White Pa p@r Delphi and Unicode

INTRODUCTION: DELPHI AND UNICODE

This white paper has been written to help developers that are using versions of Delphi or
RAD Studio that were released previous to the launch of Delphi 2009. If you are looking for
more information on why and how to Unicode-enable a codebase that has been developed
using a pre-Unicode enabled version, please read on.

A significant new feature introduced in 2008 with the release of Delphi 2009 was the
complete support for the Unicode character set. While Delphi applications written exclusively
for the English language and based on a 26-character alphabet were already working fine
and will keep working fine in versions that have arrived since Delphi 2009, applications written
for most other languages spoken around the world will have a distinct benefit by this change.

This is true for applications written in Western Europe or South America, that used to work
fine only within a specific locale, but it is a large benefit for applications written in other parts
of the world. Even if you are writing an application in English, consider it is now easier to
translate and localize, and that it can now operate on textual data written in any language,
including database memo fields with texts in Arabic, Chinese, Japanese, Cyrillic, to name just
a few of the world languages supported by Unicode with a simple, uniform, and easy to use
character set.

With the Windows operating system providing extensive support for Unicode at the API level,
the introduction of Unicode support for Delphi opened up new markets for developers to
both sell programs and to develop new specific applications.

As we will see in this white paper, for developers that have not yet adopted Unicode in their
applications, there are some new concepts to learn and a few caveats, but the changes open
up many opportunities. And in case you need to improve compatibility, you can still keep
part of your code to use the traditional string format. But let’s not rush through the various
topics, and rather start from the beginning. One final word of caution: the concepts behind
Unicode and some of the new features introduced here take some time to learn, but you can
certainly start using Delphi to convert your existing pre-Delphi 2009 applications right away,
without needing the gory details. Unicode enabling is much easier than it might look!

WHAT IS UNICODE?

Unicode is the name of an international character set, encompassing the symbols of all
written alphabets of the world, of today and of the past, plus a few more. Unicode includes
also technical symbols, punctuations, and many other characters used in writing text, even if
not part of any alphabet. The Unicode standard (formally referenced as “ISO/IEC 10646") is
defined and documented by the Unicode Consortium, and contains over 100,000 characters.
Their main web site is located at: http://www.unicode.org.

Embarcadero Technologies, Inc. -2-

http://www.unicode.org/

@ White Pa p@r Delphi and Unicode

As the adoption of Unicode was a central element of the Delphi 2009 release there are many
points to consider.

The idea behind Unicode (which is what makes it simple) is that every single character has its
own unique number (or code point, to use the proper Unicode term). | don't want to delve
into the complete theory of Unicode here, but only highlight its key points.

UNICODE TRANSFORMATION FORMATS

The confusion behind Unicode (what makes it complex) is that there are multiple ways to
represent the same code point (or Unicode character numerical value) in terms of actual
storage, or of physical bytes. If the only way to represent all Unicode code points in a simple
and uniform way was to use four bytes for each code point (in Delphi the Unicode Code
Points can be represented using the UCS4Char data type) most developers would perceive
this as too expensive in memory and processing terms.

Few people know that the very common “UTF"” term is the acronym of Unicode
Transformation Format. These are algorithmic mappings, part of the Unicode standard, that
map each code point (the absolute numeric representation of a character) to a unique
sequence of bytes representing the given character. Notice that the mappings can be used in
both directions, converting back and forth different representations.

The standard define three of these encodings or formats, depending on how many bits are
used to represent the initial part of the set (the initial 128 characters): 8, 16, or 32. It is
interesting to notice that all three forms of encodings need at most 4 bytes of data for each
code point.

f UTF-8 transforms characters into a variable-length encoding of 1 to 4 bytes. UTF-8 is
Qoopular for HTML and similar protocols, because it is quite compact when most
characters (like markers in HTML) fall within the ASCII subset.

1 UTF-16 is popular in many operating systems (including Windows) and development
environments (like Java and .NET). It is quite convenient as most characters fit in two
bytes, Qeasonably compact, and fast to process.

I UTF-32 makes a lot of sense for processing (all code points have the same length), but it
is memory consuming and has limited practical usage. Another problem relates with
multi-byte representations (UTF-16 and UTF-32) is which of the bytes comes first.
According to the standard, all forms are allowed, so you can have a UTF-16 BE (big-
endian) or LE (little-endian), and the same for UTF-32.

Embarcadero Technologies, Inc. -3-

@ White Pa p@r Delphi and Unicode

BYTE ORDER MARK

Files storing Unicode characters often use an initial header, called Byte Order Mark (BOM) as
a signature indicating the Unicode format being used and the byte order form (BE or LE). The
following table provides a summary of the various BOM, which can be 2, 3, or 4 bytes long:

00 00 FE FF UTF-32, big-endian
FF FE 00 00 UTF-32, little-endian
FE FF UTF-16, big-endian
FF FE UTF-16, little-endian
EF BB BF UTF-8

UNICODE IN WIN32

Since the early days, the Win32 API (which dates back to Windows NT) has included support
for Unicode characters. Most Windows AP| functions have two versions available, an ASCI|
version marked with the letter A and a wide-string version marked with the letter W. As an
example, the following is a small snippet of Windows.pas from Delphi 2009 onwards:

function GetWindowText(hwWnd: HWND; IpString: PWideChar;
nMaxCount: Integer): Integer; stdcall ;

function GetWindowTextA(hWnd: HWND; IpString: PAnsiChar;
nMaxCount: Integer): Integer; stdcall ;

function GetWindowTextW(hwWnd: H WND; IpString: PWideChar;
nMaxCount: Integer): Integer; stdcall

function GetWindowText; external user32
name 'GetWindowTextW";

function GetWindowTextA; external user32
name 'GetWindowTextA';

function GetWindowTextW; external user32
name 'GetW indowTextW';

The declarations are identical but use either PAnsiChar or PWideChar to refer to strings.
Notice that the plain version with no string format indication is just a placeholder for one of
them, in past versions of Delphi invariably the 'A' version, while in Delphi 2009 the default
became the '"W' version, as you can see above.

CHAR IS Now WIDECHAR

For some time, Delphi included two separate data types representing characters:

Embarcadero Technologies, Inc. -4

@ White Pa p@r Delphi and Unicode

AnsiChar, with an 8-bit representation (accounting for 256 different symbols), interpreted
depending on your code page;

WideChar, with a 16-bit representation (accounting for 64K different symbols).

In this respect, nothing changed with Delphi 2009. What is different is that the Char type
used to be an alias of AnsiChar and is now an alias of WideChar. Every time the compiler
sees Char in your code, it reads WideChar. Notice that there is no way to change this new
compiler default. (As with the string type, the Char type is mapped to a specific data type in a
fixed and hard- coded way. Developers have asked for a compiler directive to be able to
switch, but this would cause a nightmare in terms of QA, support, package compatibility, and

much more. You still have a choice, as you can convert your code to use a specific type, such
as AnsiChar))

This is quite a change, impacting a lot of source code and with many ramifications. For
example, the PChar pointer is now an alias of PwideChar, rather than PAnsiChar, as it used to
be.

CHAR AS AN ORDINAL TYPE

The new large Char type is still an ordinal type, so you can use Inc and Dec on it, write for
loops with a Char counter, and the like.

var

ch: Char;
begin

ch:="a’

Inc (ch, 100);

for ch:=#32 to High(Char) do
str := str + ch;

The only thing that might get you into some (limited) trouble is when you are declaring a set
based on the entire Char type:

var

CharSet = set of Char;
begin

charSet :=['a', 'b', 'cT;

if 'a" in charSet then

Embarcadero Technologies, Inc. -5-

@ White Paper Delphi and Unicode

In this case the compiler will assume you are porting existing code to Unicode, decide to
consider that Char as an AnsiChar (as a set can only have 256 elements at most) and issue a
warning message:

W1050 WideChar reduced to byte char in set expressions. Consider
using 'CharInSet' function in 'SysuUltils' unit.

The code will probably work as expected, but not all existing code will easily map, as it is not
possible to obtain a set of all the characters any more. If this is what you need, you'll have to
change your algorithm (possibly following what's suggested by the warning).

If what you are looking for, instead, is to suppress the warnings (compiling the five lines of
code above causes two of them) you can write:

var
charSet: setof AnsiChar; // suppress warning
begin
charSet:=[a', 'b', 'cT;
if AnsiChar('a") in charSet then // suppress warning

CONVERTING WITH CHR

Notice also that you can convert a numeric value to a character using a type cast to AnsiChar
or WideChar, but also relying on the classic Pascal technique, the use of the Chr compiler
magic function (which can be considered as the opposite of Ord). This standard magic
function has been expanded to take a word as parameter, rather than a byte.

Although, unlike character literals, calls to Chr are now always interpreted in the Unicode
realm. So if you port code like:

| Chr (128)

from Delphi 2007 you might be in for a surprise. If you use #128, instead, you may get a
different result, depending on your code page.

32-BIT CHARACTERS

Although the default Char type is now mapped to WideChar, it is worth noticing that Delphi
defines also a 4-byes character type, UCS4Char, defined in the System unit as:

| type

Embarcadero Technologies, Inc. -6-

@ White Paper Delphi and Unicode

| UCS4Char= type LongWord;

While this type definition and the corresponding one for UCS4String (defined as an array of
UCS4Char) were already in Delphi 2007, the relevance of the UCS4Char data type in Delphi
2009 onwards comes from the fact it is now significantly used in several RTL routines,
including those of the new Character unit discussed next.

THE NEW CHARACTER UNIT
To better | NG

Embarcadero Technologies, Inc. -7 -

