

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Tech Notes

Building User Interfaces with Delphi 2009
An Improved Visual Component Library Streamlines Modern Windows
Application Development

Marco Cantù

December 2008

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 1 -

INTRODUCTION: THE VISUAL COMPONENT

LIBRARY
The Visual Component Library (VCL) is one of the cornerstones of Delphi and its architecture
has significantly contributed to the success of the tool. Most of the “Delphi experience” relates
to the VCL, and this white paper focuses on the development of the user interface of Delphi
applications.

With four new components (BalloonHint, ButtonedEdit, CategoryPanelGroup, and LinkLabel)
plus Ribbon support and countless small enhancements, the VCL has seen a significant update
in Delphi 2009. Some of these updates are specific for Windows XP or Windows Vista and
further enhance the high-quality support for Vista that's been part of the VCL since Delphi 2007.

CUSTOM HINTS AND BALLOON HINTS
The Tcontrol class introduces a new property, CustomHint, and its parent property,
ParentCustomHint, to let child objects share the value defined by the parent control:

property CustomHint: TCustomHint
 read GetCustomHint write SetCustomHint;
property ParentCustomHint: Boolean
 read FParentCustomHint write SetParentCustomHint
 default True;

CustomHint lets you hook a custom hint object to any visual component that is an object of
any class inheriting from TCustomHint. One such class is the new TballoonHint. It is a
simple and adds little to what the base TCustomHint class already provides, but its
architecture is more flexible than having only balloon hint support, as you can add your own
custom hint classes and use them for any control.

You can the BalloonHint component out-of-the-box. Simply place this non-visual component in
a form and hook it to the CustomHint property of a control to change the way the hint is
displayed. You can see a BalloonHint component in Figure 1:

Here are the related settings from the DFM file of a button and its custom hint:

object btnCustomHint: TButton
 Hint = 'This is a hint for the button'
 CustomHint = BalloonHint1
 ShowHint = True
end
object BalloonHint1: TBalloonHint

Figure 1 BalloonHint Component in Delphi 2009

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 2 -

 Images = ImageList1
end

The BalloonHint component uses the hint provided by the control to which it is hooked. As a
user mouses over the button, the hint displays nicer than in the past as shown in Figure 2:

Using the ParentShowHint and ParentCustomHint properties you can define this
setting on a panel and have balloon hints active on each of the controls hosted by the panel.
You might have noticed in the DFM listing previously that the BalloonHint component has an
Images property, but no image is displayed. One way to set other runtime properties of the
BalloonHint component, including the Title and the ImageIndex, (and have a nicer
looking hint) is to manually invoke the hint.

As this requires a lot of work, there is another easier way to set the title and the image index of
the custom hint object connected with a control. Since the early days of Delphi, the Hint
property allowed you to specify a short hint (used as hint) and a longer version (generally for a
StatusBar message) separated by the pipe character (|). Using the custom hint association, the
Hint property is now interpreted as follows:

title|message|imageindex

For example, I've customized a button as follows (the value of the hint is a single string) and the
display is shown in Figure 3:

object Button3: TButton
 Hint =
 'This is a button|' +
 'This is a longer description for the button, ' +
 'taking some space|2'
 CustomHint = BalloonHint1
 Caption = 'Button3'
end

Figure 2 BalloonHint Display

Figure 3 Custom Button

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 3 -

ENHANCEMENTS TO BUTTONS AND EDITS
Although some new features affect all controls, most of the Delphi 2009 improvements in the
VCL are specific to individual controls. In this section I'll focus on the enhancements of some of
the standard Windows controls, like buttons and edit boxes.

BUTTONS GET NEW FEATURES
You might think that the classic Windows push buttons are well-established, stable controls.
That's actually not true. Since Windows XP, you can hook an image from an image list to a
button, and have a graphical bitmap button without having to derive a custom owner-drawn
control as Delphi did since the early days with the BitBtn (bitmap button) control. With Delphi
2009 you can now have the same graphical effect with a plain and standard TButton. Image
list support comes through a series of properties you can use to determine which image to use
in each of various states of the button. Here is the list of the new image-related properties of
the TCustomButton class, listed with only their types:

property DisabledImageIndex: TImageIndex ...
property HotImageIndex: TImageIndex ...
property ImageAlignment: TImageAlignment ...
property ImageIndex: TImageIndex ...
property ImageMargins: TImageMargins ...
property Images: TCustomImageList ...
property PressedImageIndex: TImageIndex ...
property SelectedImageIndex: TImageIndex ...

Since this feature was introduced in the Win32 API in Windows XP, if your application needs to
run on Windows 2000, you should use it with care or avoid using it altogether.

Similarly, if your program is meant to run on Vista, you can activate more new features, including
the command link style used by many Vista dialogs and split-button styles that let you hook a
drop-down menu to the button, which is activated by pressing the small drop-down arrow. The
overall layout of the button is determined by the value of the new Style property of an
enumerated type defined as a nested type of the TCustomButton class:

type
 TButtonStyle = (bsPushButton, bsCommandLink,
 bsSplitButton);

There are further properties you can use, depending on the selected style:

 With the split button style (in the API, the BS_SPLITBUTTON style value) you can use the
DropDownMenu property (of type TPopupMenu) and customize it in the
OnDropDownClick event.

• With the command link type (in the API, the BS_COMMANDLINK style value) you can use
the default icon (a green arrow) or a specific image (as mentioned earlier) and provide more
information about the action with the new CommandLinkHint string property.

• The ElevationRequired property, applicable both to a standard button and to a
command link one, enables the display of the Windows shield to be used if the button leads

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 4 -

to a UAC-protected operation. The ElevationRequired property sends the
BCM_SETSHIELD message to the button.

Using all of these new properties can affect the layout of your application quite radically,
although you can obtain some of these user interface effects only if the application runs on
Windows Vista (or later versions). These properties are not very complex to use, so rather than
describing an example in detail, I'll simply list its key elements, after showing you the design-
time form in Figure 4:

This is the summary of the DFM file of the project:

object FormButtonsDemo: TFormButtonsDemo
 object Button1: TButton
 ImageIndex = 0
 Images = ImageList1
 PressedImageIndex = 1
 end
 object Button2: TButton
 ImageIndex = 1
 Images = ImageList1
 PressedImageIndex = 2
 end
 object Button3: TButton
 DropDownMenu = PopupMenu1
 Style = bsSplitButton
 end
 object Button4: TButton
 CommandLinkHint = 'This is a command link hint'

Figure 4 New Button Properties

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 5 -

 Style = bsCommandLink
 end
 object Button5: TButton
 CommandLinkHint = 'Another hint'
 ImageIndex = 1
 Images = ImageList1
 Style = bsCommandLink
 end
 object Button6: TButton
 ElevationRequired = True
 Style = bsCommandLink
 end
 object ImageList1: TImageList...
 object PopupMenu1: TPopupMenu...
end

EDITS GET MANY NEW FEATURES
The Edit control is another standard and classic control of Windows that over the years got new
features (particularly in Windows XP), some of which are now easily accessible using new
properties of the TEdit class:

 The Alignment property enables the alignment of the text of the edit control, a feature
that was previously available only for DBEdit controls (and implemented in native VCL code,
as it wasn't available in early versions of the Win32 API). Setting the alignment activates the
ES_LEFT, ES_RIGHT, or ES_CENTER Windows styles, eventually requiring the system to
recreate the Edit window (so you should try to avoid changing this property at runtime once
the Edit box has been displayed).

 The NumbersOnly property sets the ES_NUMBER style of the Edit control, which requires
Windows XP or later. This applies an input filter that prevents user from typing non-digit
keys, but still let's them paste non-numeric text (and lets the program freely set the Text
property).

 The TextHint property supports in-place text hints displayed when the edit box is empty
(again this requires Windows XP or later). The text hint could act as a replacement for a
descriptive label, or reinforce one providing a call to action for the user.

 The PasswordChar property let's you set a custom password char (replacing the default
asterisks, in Windows XP, or round dots, in Windows Vista) with a character or symbol of
your own choice. This feature not only requires Windows XP or later but also a themed
application.

These properties are also available in components that relate to the Edit control, such as
LabeledEdit (a combination of an Edit and a Label) and the classic MaskEdit control of the VCL.
Alternatively, the DBEdit control doesn't provide the new features of other edit controls.
Actually, to be more precise, it inherits the new features from the base TCustomEdit class
but doesn't expose them in published properties.

In Figure 5 , you can see some of these features (and others I'll explain later) in action:

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 6 -

On the left side of the form you can see four edit boxes using some of the new features. The
first has its text right aligned, the second displays a text hint, the third allows only numeric input,
and the fourth uses Unicode CodePoint 25A0 (Black Square) as its password character. (It is nice
that you can use any Unicode symbol for the password character.)

This is the most relevant portion of the DFM file, describing the properties those four controls:

 object edRightAlign: TEdit
 Alignment = taRightJustify
 Text = 'Text on the right'
 end
 object edTextHint: TEdit
 TextHint = 'Your name'
 end
 object edNumber: TEdit
 NumbersOnly = True
 Text = '3'
 end
 object edPassword: TEdit
 PasswordChar = #9632
 Text = 'password'
 end

The button close to the first edit lets you switch the alignment property in a round robin fashion,
by increasing the value of the enumeration and computing the modulus (the rest of the division)
with the highest possible value:

procedure TFormEditFamily.btnAlignClick(Sender: TObject);
begin
 edRightAlign.Alignment := TAlignment (
 (Ord(edRightAlign.Alignment) + 1) mod
 (Ord(High(TAlignment)) + 1));
end;

Figure 5 Runtime Example of Edit Controls

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 7 -

THE NEW BUTTONEDEDIT CONTROL
A new control that extends the behavior of the Edit control is the ButtonedEdit component,
which is a custom VCL control defined in the ExtCtrls unit. This is basically an edit box that can
have small buttons on the left or right side, used to interact with the edit box itself. For
example, you can add a Cancel button that empties the edit box, and a search or lookup button
that validates the input or looks for some related information. (The Delphi IDE uses this
component for the Search option of the Tools Palette.)

This component (which requires Windows XP or later) includes all of the new features of the Edit
control including the modern-looking text hint. Setting up the buttons on the sides of the edit
box is quite simple. The component has a LeftButton and a RightButton property, of
type TEditButton, defined as:

type
 TEditButton = class(TPersistent)
 published
 property DisabledImageIndex: TImageIndex;
 property DropDownMenu: TPopupMenu;
 property Enabled: Boolean;
 property HotImageIndex: TImageIndex;
 property ImageIndex: TImageIndex;
 property PressedImageIndex: TImageIndex;
 property Visible: Boolean;
 end;

All of the image references are to the ImageList component that you can hook to the
ButtonedEdit control. You can attach a method to the click either button using the
OnLeftButtonClick and OnRightButtonClick events of the ButtonedEdit control.
You can also attach a Popup menu to the buttons using the DropDownMenu property of the
TEditButton class.

I've coded some usage scenarios to give you an idea of how to work with this component.
These scenarios also show some of the other new features introduced for edit boxes. The main
form of the example uses three ButtonedEdit controls, two with a single button and one with
two buttons. The controls have also text hints and one of them has a drop-down menu
attached. You can see the form at runtime (with the drop down menu active) in Figure 6:

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 8 -

The first control is a numeric edit box with an undo button. The
edUndoRightButtonClick event handler calls the Undo method of the ButtonedEdit
control:

object edUndo: TButtonedEdit
 Images = ImageList1
 NumbersOnly = True
 RightButton.ImageIndex = 0
 RightButton.Visible = True
 TextHint = 'A number'
 OnRightButtonClick = edUndoRightButtonClick
end

The second edit control provides two buttons, one for pasting from the clipboard and the
second to clear the edit box content (thus restoring the text hint):

object edClear: TButtonedEdit
 Images = ImageList1
 LeftButton.ImageIndex = 3
 LeftButton.Visible = True
 RightButton.ImageIndex = 1
 RightButton.Visible = True
 TextHint = 'Some text'
 OnLeftButtonClick = edClearLeftButtonClick
 OnRightButtonClick = edClearRightButtonClick
end

The third edit box has a history button, and keeps track of the text that is entered in the
window, allowing a user to reselect it:

object edHistory: TButtonedEdit
 Images = ImageList1
 RightButton.DropDownMenu = PopupMenu1

Figure 6 Runtime Example of ButtonEdit

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 9 -

 RightButton.ImageIndex = 2
 RightButton.Visible = True
 TextHint = 'Edit or pick'
 OnExit = edHistoryExit
end

The component works by adding each new text to the popup menu as the user leaves the edit
box, provided this text is not already in the menu:

procedure TFormButtonEdits.edHistoryExit(
 Sender: TObject);
begin
 if (edHistory.Text <> '') and
 (PopupMenu1.Items.Find (edHistory.Text) = nil) then
 begin
 PopupMenu1.Items.Add (NewItem (edHistory.Text, 0,
 False, True, RestoreText, 0, ''));
 end;
end;

The predefined menu items and each new menu item added dynamically are connected with
the RestoreText event handler which takes the caption of the selected menu items, strips
any hot key, and copies it to the edit box:

procedure TFormButtonEdits.RestoreText(Sender: TObject);
begin
 edHistory.Text := StripHotkey (
 (Sender as TMenuItem).Caption);
end;

GROUPING IN A LISTVIEW
One common control worth exploring in some more detail is the ListView. In Delphi 2009, that
ListView control has direct support for grouping. This feature requires Windows XP or Vista, with
the latter providing extended features lacking in the former.

There are three new properties in the ListView control. The Boolean GroupView enables this
new kind of display, the GroupHeaderImages refers to an ImageList containing the images
for the group headers, and the Groups property is a collection of group definitions. Each
group can have a main title (Header), a related icon (TitleImage), a longer description
(Subtitle), a footer line (Footer), plus some more text elements and alignment properties
for headers and footer. A set of options lets you set the group as collapsible, remove the
header, hide the group, and so on.

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 10 -

You can see an example of grouping in a ListView in the main form of the following runtime
example, displayed in Figure 7:

This is the definition of the groups inside the ListView control (in DFM format), in which I've set a
couple of extra descriptions that will show up only if you center the group headers:

object ListView1: TListView
 Groups = <
 item
 Header = 'Arrows'
 Footer = 'Footer: You can pick any of the arrows ' +
 'for the caption'
 GroupID = 0
 State = [lgsNormal, lgsCollapsible]
 HeaderAlign = taLeftJustify
 FooterAlign = taLeftJustify
 Subtitle = 'Subtitle: Arrow group subtitle'
 TopDescription = 'Top Descr: A group of arrows'
 TitleImage = 0
 SubsetTitle = 'Subset title...'
 end
 item
 Header = 'Houses'
 Footer = 'Which house would you prefer?'
 GroupID = 1
 State = [lgsNormal, lgsCollapsible]
 HeaderAlign = taLeftJustify

Figure 7 Runtime Example of ListView Control Enhancements

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 11 -

 FooterAlign = taLeftJustify
 Subtitle = 'Houses with different colors for ' +
 'the roof...'
 TitleImage = 1
 ExtendedImage = -1
 end>
 GroupHeaderImages = ImgGroups
 GroupView = True
end

The only code of the example is used to change the alignment of the header and footer of each
group. This is the event handler of one of the three toolbar buttons:

procedure TFormGroupingList.tbRightClick(
 Sender: TObject);
var
 aGroup: TCollectionItem;
begin
 for aGroup in ListView1.Groups do
 begin
 (aGroup as TListGroup).HeaderAlign := taRightJustify;
 (aGroup as TListGroup).FooterAlign := taRightJustify;
 end;
end;

Besides grouping support, the ListView control has another unrelated new event,
OnItemChecked, triggered when a user selects an item of the ListView.

THE NEW CATEGORYPANELGROUP CONTROL
Over the years, the so-called Outlook Sidebar family of components has seen the largest
number of VCL controls available, mimicking the well-established interface that was originally
introduced by the Microsoft email program.

Styles have changed a lot from the original collection of large icons used for the various
sections of the program, but the usage of a sidebar with options and commands continues. For
the first time, Delphi 2009 offers a similar component out of the box.

The CategoryPanelGroup control is a visual container of CategoryPanel controls. You create
these category panels using the shortcut menu of the CategoryPanelGroup at design time or
calling its CreatePanel method at runtime. The individual CategoryPanels refer to the
container using the PanelGroup property, while the grouping controls has a Panel property
(a bare-bones TList of pointers) or a list of child controls, in the standard Controls
property.

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 12 -

If you try adding any other control directly to the CategoryPanelGroup the IDE will show the
error “Only CategoryPanels can be inserted into a CategoryPanelGroup.” Of course, once
you've defined a few CategoryPanels you can add virtually any control you like to them.

Figure 8 shows the user interface of this control, taken from the CategoryPanels demo:

The grouping control and the individual panels have a plethora of properties which you can use
to customize the user interface, managing headers with multiple images depending on their
collapsed or expanded status, activate gradient backgrounds for the headers, change the font
and the Chevron colors, and much more.

These are the settings of the panels above (from which I've removed details of the hosted
controls):

object CategoryPanelGroup1: TCategoryPanelGroup
 VertScrollBar.Tracking = True
 HeaderFont.Charset = DEFAULT_CHARSET
 HeaderFont.Color = clWindowText
 HeaderFont.Name = 'Tahoma'
 Images = ImageList1
 object CategoryPanel1: TCategoryPanel
 Caption = 'CategoryPanel1'
 CollapsedImageIndex = 0
 ExpandedImageIndex = 0
 object Button1: TButton...
 object Button2: TButton...
 end
 object CategoryPanel2: TCategoryPanel
 Caption = 'CategoryPanel2'
 Collapsed = True
 CollapsedImageIndex = 2

Figure 8 Category Panels Control

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 13 -

 ExpandedImageIndex = 1
 object CheckBox1: TCheckBox...
 object CheckBox2: TCheckBox...
 object CheckBox3: TCheckBox...
 end
 object CategoryPanel3: TCategoryPanel
 Caption = 'CategoryPanel3'
 object GridPanel1: TGridPanel
 Align = alClient
 Caption = 'GridPanel1'
 ControlCollection = <...>
 ShowCaption = False
 object Button3: TButton...
 object Button4: TButton...
 object Button5: TButton...
 object Button6: TButton...
 end
 end
end

If we look at the header images, the first panel uses the same one for both states, the second
uses two different images for the expanded and collapsed states, while the third has no custom
images and uses the default Chevron symbol. The third CategoryPanel doesn't host its controls
directly, but has a GridPanel (with 4 buttons) aligned to its entire surface. This is an example of
how you can combine a CategoryPanel with panels providing custom positioning.

IMPROVED GRAPHICS SUPPORT
In the early days, Delphi graphic support was mostly limited to bitmaps. Over the years, there
have been extensions to the image formats you could use in the Image component, including
JPEG format support. In Delphi 2009, the support for multiple images has been extended to
PNG and all formats can now be used with the Image control as well with the ImageList control.

Moreover, the ImageList control supports setting a specific color depth, although increasing its
value clears all images from the current image list. There have also been enhancements in the
ImageList editor and alpha channel support.

Additionally, the TBitmap class now supports the alpha channel, using the new
AlphaFormat property, while TGraphic class has support for transparent images using the
SupportsPartialTransparency property.

As there are many changes, I've picked a few worth underlining in the GraphicTest program. I’ll
start with the most significant change which is the native support for multiple formats, including
PNG (which is new). The support for the formats comes from a set of units that define inherited
TGraphic classes that you can selectively include in your application. Here are the units and
the graphics classes they make available:

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 14 -

Format Unit Class

JPEG jpeg.pas TJPEGImage

GIF GIFImg.pas TGIFImage

PNG pngimage.pas TPngImage

By including the corresponding unit, you can directly load a file of those formats (plus the
standard Bitmap, Icon, and Metafile formats) into an Image component. Because the format is
determined by the file extension, you can easily load graphic files with different formats with
simple code like:

procedure TFormGraphicsTest.btnLoadImageClick(
 Sender: TObject);
var
 strFilename: string;
begin
 case fImgNo of
 0: strFilename := 'adog.jpg';
 1: strFilename := 'Athene.png';
 2: strFilename := 'CodeGear.gif';
 end;
 Image1.Picture.LoadFromFile(strFileName);
 fImgNo := (fImgNo + 1) mod 3
end;

The program also has some code to create an empty bitmap in memory. A user can draw on
this bitmap by moving the mouse over the image control. The bitmap can then be saved in the
three different formats. For example, the code for saving the file in JPEG format looks like this:

var
 jpgImg: TJPEGImage;
begin
 jpgImg := TJPEGImage.Create;
 try
 jpgImg.Assign(Image1.Picture.Graphic);
 jpgImg.SaveToFile('test.jpg');
 finally
 jpgImg.Free;
 end;

To avoid repeating this code for the PNG and GIF formats, I've written a simple routine to take
care of the various differences:

procedure SaveWithClass (graph: TGraphic;
 graphClass: TGraphicClass; const strFilename: string);
var
 grapImg: TGraphic;
begin
 grapImg := graphClass.Create;

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 15 -

 try
 grapImg.Assign(graph);
 grapImg.SaveToFile(strFilename);
 finally
 grapImg.Free;
 end;
end;

This works only with the default settings, though, as you'll need to work on the specific
TGraphic descendant class to trigger its compression level and other specific options for the
given format. In the demo program, the routine is called like this:

SaveWithClass (Image1.Picture.Graphic,
 TPngImage, 'test.png');
SaveWithClass (Image1.Picture.Graphic,
 TGIFImage, 'test.gif');

The support for multiple image formats doesn't relate exclusively to the Image component, but
it has also been extended to the ImageList component. This means you now have PNG-based
image lists. I've already used an ImageList in other demos where I've loaded PNG images from
the GlyFX library licensed by CodeGear and included in Delphi (and installed, by default, in the
\Program Files\Common Files\CodeGear Shared\Images\GlyFX folder).

INTRODUCING THE FLUENT USER INTERFACE
The Fluent User Interface was invented by Microsoft, who is seeking a patent for it. This patent
doesn't focus on the code behind the user interface (the ribbon controls used in Office 2007),
but on the design of the user interface itself. Microsoft also refers to this user interface as
“Microsoft Office Fluent UI.”

If the Microsoft patent is granted, it will still apply even if the VCL implementation available in
Delphi 2009 is a brand new version of the controls (in no way related with the code that
Microsoft uses in Office and other applications, and that Microsoft doesn't license). That's why
we have to look at the “legal side” of this component before looking at its use.

Unlike other guidelines, the Office Fluent UI Design Guidelines, describing how applications
based on the Ribbon should work, are not public, but are “Microsoft’s confidential
information”. Microsoft asks anyone that wants to use their Fluent User Interface to accept the
terms of their Office UI license. This license is royalty-free, but there are guidelines and
limitations related to what you can do. The most significant issue is that you are not allowed to
create programs which compete directly with Microsoft Office.

For complete information, refer to the web site mentioned in the dialog box that appears while
installing Delphi 2009:

http://msdn.microsoft.com/officeui

Once you agree with the license and register your application, you'll be able to download the
119-page PDF with the Office UI design guidelines.

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 16 -

A SIMPLE RIBBON
My first Ribbon example is a very bare-bones demo showing how the component works, but
actually providing no real user interface. As we'll see in the next section, the only real way to
create a complete Ribbon-based user interface is to use the Action Manager architecture along
with it. It is technically possible to use the Ribbon component without Actions, but it is very
clumsy and extremely limited... so after a very simple example I'll move in that direction.

We can, in fact, start some initial experiments with a plain Ribbon component, creating tabs and
groups, and placing a couple of standard components into them. To follow my steps, create a
new application and place a Ribbon component on its main form. Once you have that
component in place you can use its shortcut menu (selecting it in the form or in the Structure
pane) to add a new tab. The same menu will let you remove a tab or add the Application menu
and Quick Access toolbar, as we'll see later on.

You can also work on the Ribbon Tabs by using the Tabs collection of the Ribbon component
(technically a collection of TRibbonTabItem objects, each of which is connected with a
TRibbonPage, a sort of panel) and the related AddItem command. This is available in the
Structure view as shown in Figure 9Error! Reference source not found.:

The header of a Ribbon with two tabs and pages looks like Figure 10Error! Reference source
not found.:

In this case I've kept on the (default) ShowHelpButton property that shows the question
mark in the top right of the control; I've also kept on the UseCustomFrame property
(something I'll cover later on). Here are a few other properties of the Ribbon control of the
example:

 object Ribbon1: TRibbon
 Width = 630
 Height = 145
 Caption = 'Ribbon Caption'
 DocumentName = 'Document Name'
 Tabs = <
 item
 Caption = 'RibbonPage1'

Figure 9 Structure View of Ribbon Tabs

Figure 10 Design Time View of a Ribbon with Two Tabs

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 17 -

 Page = RibbonPage1
 end
 item
 Caption = 'RibbonPage2'
 Page = RibbonPage2
 end>
 StyleName = 'Ribbon – Luna'
 object RibbonPage1...
 object RibbonPage2...
 end

Once you have one or more Ribbon tabs, you can add Ribbon groups (or boxes) to them.
Again, you can work with the shortcut menus of the components right in the form or in the
Structure pane. Figure 11 shows how a Ribbon page with a few (empty) groups can look:

On a Ribbon page, you can add a group, remove a group, or reorder groups, through a simple
specific dialog box (which tends to be easier to use, rather than dragging groups around the
Ribbon page, hoping they'll stick in place).

What can you place in a group? You generally populate them with elements of various types,
from commands to options that are connected with Actions of an ActionManager component. If
you want to hack something together, most certainly diverging from the Ribbon UI
specification, you can add plain buttons or special purpose RibbonSpinEdit controls to the
groups, as I've done in this demo. Again, this is not the recommended approach, although the
RibbonSpinEdit control itself does fit with the Ribbon UI specification.

You can see the first two populated pages of my demo at runtime in Figure 12:

Figure 11 Runtime Display of a Ribbon Page with Multiple Groups

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 18 -

As you can see, this form is different than the usual one, because its caption and standard
borders have been replaced by a special custom frame, painted by the Ribbon control itself.
This is the default style for the Ribbon UI, with further graphical elements (like the Application
menu) added, as we'll see later.

ACTIONS AND THE RIBBON
Let's start creating an actual demo application based on the Ribbon and the Action Manager
architecture. The first step, of course is to create a VCL application and add an ActionManager
component to its main form. Next you can drop a Ribbon control onto the form. The control
should automatically hook itself to the action manager; if not, use its ActionManager
property.

Before adding any action to the ActionManager, add two ImageList controls and connect them
to it. Adding standard actions, in fact, will automatically populate the image lists. Add one
ImageList for the standard Images of the ActionManager (standard images are used for the
Ribbon commands) and one for the LargeImages property (used by the Ribbon application
menu and by large buttons in any Ribbon Group). You should have settings like these:

object RibbonEditorForm: TRibbonEditorForm
 Caption = 'RibbonEditor'
 Constraints.MinHeight = 300
 Constraints.MinWidth = 400
 object Ribbon1: TRibbon
 ActionManager = ActionManager1
 Caption = 'RibbonEditor'
 StyleName = 'Ribbon - Luna'
 end
 object ActionManager1: TActionManager
 LargeImages = listLarge
 Images = listStandard

Figure 12 Populated Groups on Ribbon Tabs

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 19 -

 StyleName = 'Ribbon - Luna'
 end
 object listStandard: TImageList...
 object listLarge: TImageList...
end

My goal is to create a simple editor (not a full word processor as I don't mean to infringe on the
Ribbon license, you know), so I basically need to place a RichEdit control aligned to the client
area of the form and add a good amount of standard actions for editing (the six standard
actions of the Edit category), rich edit support (the eight standard actions of the Format
category), file support (the eight standard actions of the File category), and a few more (the
Download action of the Internet category and the Font action of the Dialogs category).

GROUPS AND COMMANDS
Now that I have all of these actions in place, I can create a Ribbon user interface for them. After
creating two tabs and a few groups, I can drag actions into the groups. Figure 13 shows a
couple of groups:

These groups host direct commands, so there is nothing specific to set. Another group has a set
of non-exclusive options, like setting the text in bold and italic. For the action items of such a
group, it is better to pick the csCheckBox value for the CommandStyle property (rather
than the default csButton). The effect is to have a set of check boxes you can toggle both by
selecting the check area or the icon and the text of the command. Figure 14 is an example from
the demo:

The only exception to dragging actions into groups is represented by the Font Dialog action,
where I can hook a dialog action to one of the groups, using it’s the group DialogAction
property. This adds a small graphical element in the bottom right corner of the group, as in
Figure 14.

Another option is to have alternative options, represented by radio buttons, setting the
CommandStyle property to csRadioButton, with the visual effect shown in Figure 15:

Figure 13 Groups in a Simple Editor

Figure 14 Example of Toggling Checkboxes

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 20 -

As you select one the items of a Ribbon group, you'll see the various properties for the
corresponding TActionClientItem object. But how are these objects managed? It turns
out that the ActionManager component has a “toolbar” for each Ribbon group, as you can see
in the ActionManager component editor. Even better, you can see the actual internal structure
of these objects using the Structure view and expanding the ActionManager component
collection, not those of the Ribbon! A small portion of it is shown in Figure 16:

This means you can navigate among the elements in the various Ribbon groups in a less visual
but more detailed way, selecting elements that are not visible, picking up small separators, and
even adding new ActionClientItem objects. You can configure these new ActionClientItem
objects by defining text elements and separators, picking actions, or connecting them to visual
controls.

APPLICATION MENU
To complete our application, for which we hooked several custom actions but had to write no
actual code, we should add two other relevant elements of the Ribbon user interface. Both are
added using commands of the Ribbon component editor (that is, the shortcut menu that

Figure 15 Alternative Options with Radio Buttons

Figure 16 Viewing Ribbon Groups in the Structure View

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 21 -

appears at design time when the component is selected) and can be added only if an
ActionManager is connected to the Ribbon.

The first is the Application menu (the round control element in the top left corner of the Ribbon
that replaces the traditional Windows application menu), shown in Figure 17:

This element features an empty drop-down menu. The idea is to use it for file-related
operations, and add the standard File, Open, and Save actions to it. You could drag actions to
this toolbar, but it’s difficult, as it tends to close down. I find it easier to select it in the Structure
view, add items, and hook each item to the corresponding action.

If the left of the Application menu is simply a list of file-oriented actions with large icons, the
right side should host a list of recently used files. The Ribbon control has specific support for
handling this “most recently used” (MRU) list. In this simplified demo I've decided to handle
only the Load and Save As operations. Each of them adds an entry to the MRU list by calling a
custom method that, in turn, invokes the AddRecentItem method of the Ribbon control. This
operation adds a new entry at the top of the Recent Documents list, eventually deleting an
existing entry referring to the same file name.

The OnAccept events of the FileOpen1 and FileSaveAs1 actions have the following
(similar) code, which calls the custom AddToMru method listed below them:

procedure TRibbonEditorForm.FileOpen1Accept(
 Sender: TObject);
begin
 RichEdit1.Lines.Clear;
 RichEdit1.Lines.LoadFromFile(FileOpen1.Dialog.FileName);
 Ribbon1.DocumentName := FileOpen1.Dialog.FileName;
 AddToMru(FileOpen1.Dialog.FileName);
end;

procedure TRibbonEditorForm.FileSaveAs1Accept(
 Sender: TObject);
begin
 RichEdit1.Lines.SaveToFile(FileSaveAs1.Dialog.FileName);
 Ribbon1.DocumentName := FileSaveAs1.Dialog.FileName;
 AddToMru(FileSaveAs1.Dialog.FileName);
end;

procedure TRibbonEditorForm.AddToMru(
 const strFilename: string);
begin
 Ribbon1.AddRecentItem(strFilename);
end;

Figure 17 Application Menu

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 22 -

When one of the MRU list items is selected, the Ribbon control triggers an
OnRecentItemClick event handler, which I've coded in a quite naïve way, as it doesn't
check if the file is already active in the editor. Also, this information is not saved between
sessions. All I wanted to show is how you can manually populate the most recently used list,
obtaining an effect such as what is shown in Figure 18:

This is the event handler for the MRU list selection:

procedure TRibbonEditorForm.Ribbon1RecentItemClick(
 Sender: TObject; FileName: string; Index: Integer);
begin
 RichEdit1.Lines.Clear;
 RichEdit1.Lines.LoadFromFile(FileName);
 Ribbon1.DocumentName := FileName;
end;

The right page of the Application Menu can also be used to display buttons, by setting the
CommandType property of the ApplicationMenu object of the Ribbon control to
ctCommands (rather than the default ctRecent). In this case, any item added to the
RecentItems collection appears as a button. This is demonstrated by the Application Menu
demo that ships with Delphi 2009, an interesting example as it is similar to the way Office 2007
works.

QUICK ACCESS TOOLBAR
The second graphical element of the Ribbon is its Quick Access Toolbar, a toolbar with
operations that automatically managed by the system. This is added on the right of the round
Application menu selector, in this case showing a couple of actions (Save As and Exit).

Figure 18 Most Recently Used (MRU) List

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 23 -

Next to the actions there is also the customize drop-down button that lets a user add extra
commands to this toolbar, something quite powerful but that you might want to disable, shown
in Figure 19:

With these steps I have built a very simple but somewhat complete Ribbon-based editor. Delphi
2009 ships with another example that includes extra features and a nicer looking user interface,
but no management of the most recently used files.

CONCLUSION
In this paper I’ve covered the relevant extensions that Delphi 2009 provides to the VCL library
for the development of modern-looking user interfaces. With Delphi 2007 already providing
significant support for Windows Vista, Delphi 2009 offers enhancements to several standard
controls, from button to edit boxes, so that they'll easily adapt to the latest features provided by
the Windows API.

Delphi 2009 offers a ready-to-use Ribbon component, which is compliant with the Microsoft's
Office User Interface design guidelines, and leverages the Action Manager architecture that's
been in Delphi for some time. Considering the extended graphical support, and the availability
of many third-party extensions, you can see why the VCL is considered the best library for
building the UI for native Windows applications.

ABOUT THE AUTHOR
This paper has been written for Embarcadero Technologies by Marco Cantù, author of the best-
selling series Mastering Delphi. The content has been extracted from his latest book “Delphi
2009 Handbook”, http://www.marcocantu.com/dh2009. You can read about Marco on his blog
(http://blog.marcocantu.com) and reach him at his email address: marco.cantu@gmail.com.

Figure 19 Customize drop-down Menu

Building User Interfaces with Delphi 2009

Embarcadero Technologies - 24 -

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change
Manager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

