
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum Performance and Productivity Series 
 
 

Five Indexing Tips to Improve SQL Server 
Performance 

 
By Pinal Dave, Creator of SQL Authority (blog.sqlauthority.com) 

 

January 2012 

 



SQL Server Community Technote 

 
Sponsored by Embarcadero Technologies  - 1 - 

ABOUT PINAL DAVE 

 

Pinal Dave is a Microsoft Technology Evangelist (Database and BI). He has 

written over 2000 articles on the subject on his blog at 

http://blog.sqlauthority.com. Along with 8+ years of hands-on experience 

he holds a Master’s of Science degree and a number of certifications, 

including MCTS, MCDBA and MCAD (.NET). He is the co-author of three 

SQL Server books - SQL Server Programming, SQL Wait Stats and SQL Server 

Interview Questions and Answers. Prior to joining Microsoft he was 

awarded the Microsoft MVP award for three continuous years for his 

contributions to the community. 

 

INTRODUCTION 

SQL Server Performance is always one of the most challenging subject. Hard drives are 

getting cheaper and cheaper and data is growing exponentially. With this new pattern we 

all have an important challenge. In the database world, though, we now have a new 

problem of performance. Here are few questions that keep coming up in various systems in 

the industry:  

 

1. Query which was running quickly now taking too long 

2. Our report is now running very slow  

3. During data import everything gets slow 

4. Every day at during a certain time period we are facing many deadlocks 

5. Queries are continuously time-outs 

6. SELECT queries are slower when INSERT, UPDATE and DELETE are happening 

7. … and many more… 

Throughout the years I have seen and solved many similar issues. I have seen many bad 

practices implemented in SQL Server at the server and database level. There are hundreds of 

tips that one can practice to keep a database at optimal performance.  

 

The purpose of this document is to highlight a few best practices that can give maximum 

benefits to the SQL Server system. Out of thousands of the best practices I have selected the 

five best practices related to Indexes.  

DROP UNUSED INDEXES 
Indexes are commonly created to gain additional performance from the system. It is very 

common for a new DBA to inherit index systems. When a new DBA gets a system which has 

been there for long time, there are always lots of indexes already created. New DBAs often 

do not have the understanding or documentation about why all of those indexes were 

created. The new DBA cannot drop indexes created by earlier admins and create a few 

more to accommodate new requests. This leads to the issue that there are way more indexes 

than needed. 

 

http://blog.sqlauthority.com/
http://wp.me/P2NUQ-41y
http://bit.ly/waitstatsbook
http://bit.ly/sqlinterviewbook
http://bit.ly/sqlinterviewbook


SQL Server Community Technote 

 
Sponsored by Embarcadero Technologies  - 2 - 

Lots of unused indexes are an extra burden on SQL Server. Every time any field is updated 

which is referenced in the index, the index also has to be updated. Updating the index is an 

additional load on the SQL Server engine. If you have an Index maintenance script, it will also 

be wasting some resources on rebuilding/reorganizing indexes.  

 

The best practice for unused indexes is to drop them. When dropping indexes, one has to be 

very careful that they do not drop any index which is useful to queries by mistake. It is 

recommended to evaluate this unused index script on the server after running it continuously 

for a while without restarting the services or server.  

 

Unused Index scripts are based on DMV and will return lots of results. Select the top 2-3 

indexes at a time and drop them on the development server. Keep your server on watch for 

a while and, if you find it appropriate, drop them on the production server too.  

 

You can download the script from here: http://bit.ly/UnusedIndex  

CREATE MISSING INDEXES 
Indexes are created to improve performance. As important as it is to drop unused indexes, it 

is also important to create missing indexes. It is quite normal for developers to keep on writing 

optimal queries and changing the queries to suit new requests of the end users. The 

requirements of the end users always keep on changing and developers follow up by 

changing the query.  

 

The ever changing queries have a circular effect on the indexes. The indexes which are 

created for specific queries become lout-dated when the underlying queries change. As 

discussed in the earlier topic, we should drop the unused index. However, we must not forget 

to check the most relevant indexes against the recently running queries.  

 

Missing index scripts provide the details of the indexes which are most beneficial to the 

queries. When any query plan is generated it is always looking for the most optimal index. 

When the most optimal index is not found, SQL Server Engine uses another index which is the 

next best choice. It is good idea to create an index which is going to be the most effective 

one.  

 

Missing Index script is based on DMV and will return lots of results. Select the top 2-3 indexes 

at a time and create it on development server. Keep your server on watch for a while and, if 

you find it appropriate, create them on production server too.  

 

You can download the script from here: http://bit.ly/MissingIndex  

REMOVING DUPLICATE INDEXES 
Just like unused and missing indexes – duplicate indexes are another very important concept 

one must consider. As most developers inherit the database from previous developers, the 

understanding of the database schema and indexes is not usually at its best. Quite 

commonly, when the new index is needed developers do not look at the definition of the 

http://bit.ly/UnusedIndex
http://bit.ly/MissingIndex


SQL Server Community Technote 

 
Sponsored by Embarcadero Technologies  - 3 - 

existing indexes; they just create the new index as per their requirement. This can lead to 

multiple indexes with the same definition in the system.  

 

There is absolutely no point to have two indexes with exactly the same structure in any 

database system. This duplicate index not only takes up space on the hard drive but also 

reduces the performance. All the INSERT, UPDATE and DELETE queries will have to now 

update two similar sets of the data on every single occurrence. As there are duplicate 

indexes, only one of the indexes is used when any query is executing, making the duplicate 

index redundant.  

 

The best practice is to drop the duplicate index and keep any database free from additional 

overhead. Again, please be sure to verify that the index is indeed a duplicate before 

dropping it.  

  

You can download the script from here: http://bit.ly/DuplicateIndex  

SIGNIFICANCE OF CLUSTERED INDEXES 
More than best practices it is very important to understand the significance of the 

clustered index. The common opinion and generic best practice suggests that any 

table should have a clustered index. If your table is very small and the database is of 

insignificant size, this property can be ignored, however, I suggest understanding the 

best practice related to clustered indexes.  

 

Another common practice is to create clustered indexes on the columns which are 

often searched in the database. An additional advantage is that when the first set of 

the data is retrieved the next set of the data which is commonly queried are placed 

adjacent. This can help improve query performance. Clustered indexes also help 

improve performance when the unique values are retrieved.  

 

Here are a few best practices for clustered indexes: 

 Columns which have large numbers of unique, distinct data may be good 

candidates for clustered indexes.  

 In OLTP workload the common practice is to create clustered indexes on the 

primary key as data is often looked up using the same keys. (In SQL Server 

when a Primary Key is created it automatically creates the clustered index if it 

does not already exist. There are some rare cases when Primary Keys are on 

different columns than Clustered indexes). It is indeed good practice to have 

clustered indexes on unique values (e.g. Primary Keys) as it will avoid adding 

an additional unique identifier on the clustered index.  

 Keep the width of the Clustered Index as narrow as possible.  

 

http://bit.ly/DuplicateIndex


SQL Server Community Technote 

 
Sponsored by Embarcadero Technologies  - 4 - 

ADDITIONAL INDEXING BEST PRACTICES 
As mentioned earlier there are many best practices related to Indexes. I am listing a 

few here, in no particular order:  

 Primary key is usually a good candidate for clustered index. 

 Keep the width of the index as narrow as possible.  

 GUID is not a candidate for clustered index (except in extreme cases) as it may 

lead to higher fragmentation and reduced performance.  

 Any column which has high distinctive values (i.e. column is increasing, unique, 

identity column) is a good candidate for clustered index.  

 When creating multiple column indexes it is usually a good idea to have the 

most selective columns the first column in your index. (Verify this by a thorough 

test; this can vary case by case. When there are no other external conditional 

influences this is considered as best practice.)  

 Do not add indexes on every single column in the table, indexes should be 

carefully analyzed before creating.  

 Fill Factor 0 or 100 is the default value for the server. The index can be adjusted 

to the appropriate value. Higher fill factors for less frequently changed data 

and lower fill factors for more frequently changed data is recommended.  

 

FINAL NOTE 
Try all the queries on the development server first. Test all the changes first on the 

development server and validate all the results. Deploy only after careful 

consideration. Take all the advice here as a best practice but not as a strict rule.  
 

 

 
Embarcadero Technologies, Inc. is the leading provider of software tools that empower 

application developers and data management professionals to design, build, and run 

applications and databases more efficiently in heterogeneous IT environments. Over 90 of 

the Fortune 100 and an active community of more than three million users worldwide rely on 

Embarcadero’s award-winning products to optimize costs, streamline compliance, and 

accelerate development and innovation. Founded in 1993, Embarcadero is headquartered 

in San Francisco with offices located around the world. Embarcadero is online at 

www.embarcadero.com. 
 

http://www.embarcadero.com/

