

Copyright © 2009 Marco Cantu. All Rights Reserved.

White Paper

REST in Delphi 2010
Marco Cantù, http://blog.marcocantu.com

November 2009

Copyright © 2009 Marco Cantu. All Rights Reserved.

EXECUTIVE SUMMARY
Representational State Transfer (REST) is a new architecture for Web Services that is having a
significant impact on the industry. Most of the new public web services from large vendors
(Google, Yahoo, Amazon, now also Microsoft) rely on REST as the technology for sharing and
merging information from multiple sources.

As implementing the REST architecture implies only using simple technologies (like HTTP and
XML) Delphi has historically had good support for it. Now version 2010 adds specific support for
the development of REST servers, part of the DataSnap infrastructure.

This paper delves in the technologies involved in REST from the Delphi perspective, showing
both how to create client applications for popular Web sites and how to build REST servers
using the specific Delphi 2010 support.

INTRODUCTION
Over the last ten years we have witnessed the explosion of the Web, and now of so-called Web
2.0. What we are only starting to see is the automatic interaction between different web sites,
between web sites and client applications, between web sites and business databases, in a
global interconnection that is often hard to fully understand.

On the Web, data is moving faster than we can browse it, so there is a strong demand for
programs that can find, track and monitor information coming from diverse sources such as
sales data, financial information, online communities, marketing campaigns, and many others.

WHY WEB SERVICES?

The rapidly emerging web services technology has the potential to change the way the Internet
works for businesses. Browsing web pages to enter orders is fine for individuals (business-to-
consumer [B2C] applications) but not for companies (business-to-business [B2B] applications). If
you want to buy a few books, going to a book vendor website and punching in your requests is
probably fine. But if you run a bookstore and want to place hundreds of orders a day, this is far
from an efficient approach, particularly if you have a program that helps you track your sales and
determine reorders. Grabbing the output of this program and reentering it into another
application is ridiculous.

Web services are meant (or to be more precise were originally meant) to solve this issue: The
program used to track sales can automatically create a request and send it to a web service,
which can immediately return information about the order. The next step might be to ask for a
tracking number for the shipment. At this point, your program can use another web service to
track the shipment until it is at its destination, so you can tell your customers how long they
have to wait. As the shipment arrives, your program can send a reminder via SMS or pager or
Twitter to the people with pending orders, issue a pa
could continue but I think I've given you the idea. Web services are meant for computer
interoperability, much as the Web and e-mail let people interact.

Copyright © 2009 Marco Cantu. All Rights Reserved.

The topic of web services is broad and involves many technologies and business-related
standards. As usual, I'll focus on the underlying Delphi implementation and the technical side of
web services, rather than discuss the larger picture and business implications. Delphi for Win32
offers some rather sophisticated support for web services, which originally came in the form of
SOAP, and can now easily be extended by means of HTTP components and REST.

WEB SERVICE TECHNOLOGIES: SOAP AND REST

The idea of a web service is rather abstract. When it comes to technologies, there are currently
two main solutions that are attracting developers. One is the use of the SOAP standard (Simple
Object Access Protocol, see the reference site at http://www.w3.org/TR/soap/), another is the
use of a REST (Representational State Transfer) approach, along with its variation XML-RPC
(XML-Remote Procedure Call).

What is relevant to notice is that both solutions generally use HTTP as the transmission protocol
(although they do provide alternatives) and use XML (or JSON) for moving the data back and
forth. By using standard HTTP, a web server can handle the requests, and the related data
packets can pass though firewalls.

In this white paper I won't provide details on SOAP, but focus exclusively on REST. I'll start by
providing some theoretical foundations, show a simple "hand-made" example of a server and a
client, delve into the development of REST clients for popular REST web services and focus on
the REST server side support available in Delphi 2010 as an extension of the DataSnap
architecture.

THE CONCEPTS BEHIND REPRESENTATIONAL

STATE TRANSFER
Even if the general idea of REST has been around for some time, the introduction of this formal
name and the theory behind it are fairly recent. What is relevant to mention up front is that
there isn't a formal REST standard.

The term REST, an acronym for Representational State Transfer, was originally coined by Roy
Fielding in his Ph.D. dissertation in year 2000, and spread very rapidly as synonymous with
accessing data over the web using HTTP and URLs, rather than relying on the SOAP standard.

 The term REST was originally used to describe an architectural style which described the
relationship of a web browser with a server. The idea is that when you access a web resource
(either using a browser or a specific client application) the server will send you a representation

representation is set in a given state. As the client accesses further information or pages (maybe
using a link) its state will change, transferring from the previous one.

In Roy Fielding's words:

Copyright © 2009 Marco Cantu. All Rights Reserved.

"Representational State Transfer is intended to evoke an image of how a well-designed
Web application behaves: a network of web pages (a virtual state-machine), where the
user progresses through an application by selecting links (state transitions), resulting in
the next page (representing the next state of the application) being transferred to the
user and rendered for their use."

REST ARCHITECTURE S KEY POINTS
So, if REST is an architecture (or even better, an architectural style) it is clearly not a standard,
although it uses several existing standards like HTTP, URL, plus many format types for the actual
data.

While SOAP replies on HTTP and XML but builds on those, REST architectures use HTTP and
XML (or other formats) exactly as they are:

 REST uses URLs to identify a resource on a server (while SOAP uses a single URL for
many requests, detailed in the SOAP envelope). Notice the idea is to use the URL to
identify a resource not an operation on the resource.

 REST uses HTTP methods to indicate which operation to perform (retrieve or HTTP GET,
create or HTTP PUT, update or HTTP POST, and delete or HTTP DELETE)

 REST uses HTTP parameters (both as query parameters and POST parameters) to
provide further information to the server

 REST relies on HTTP for authentication, encryption, security (using HTTPS)

 REST returns data as plain documents, using multiple mime formats (XML, JSON,
images, and many others)

There are quite a few architectural elements that are worth considering in this kind of scenario.
REST demands for system to be:

 Client/server in nature (nothing directly to do with database RDBMS here)

 Inherently stateless

 Cache-friendly (the same URL should return the same data if called twice in sequence,
unless the server side data changed), permitting proxy and cache servers to be inserted
between the client and the server. A corollary is that all GET operations should have no
side effect

There is certainly much more to the theory of REST than this short section covered, but I hope
this got you started with the theory. The practical examples coming next along with Delphi
code should clarify the main concepts.

REST TECHNOLOGIES AND DELPHI
Having said that, there is no REST standard and you do not need to use specific tools for REST
development, there are existing standards that REST replies upon and that is worth introducing

Copyright © 2009 Marco Cantu. All Rights Reserved.

shortly (an in-depth description of each could as well take an entire book). The specific focus
here is also Delphi support for these technologies.

HTTP (CLIENT AND SERVER)
The HyperText Transfer Protocol is the standard at the heart of the World Wide Web, and
needs no introduction. Granted, HTTP can be used by Web Browsers, but also by any other
application.

In Delphi applications the simplest way to write a client application that uses HTTP is to reply on
the Indy HTTP client component, or IdHttp. If you call the Get method of this component,
providing a URL as parameter, you can retrieve the content of any Web page and many REST
servers. At times, you might need to set other properties, providing authentication information

supports the various HTTP methods, beside Get.

Notice that to be on the safe side you should generally make IdHttp requests inside a thread, as
the Indy suite uses blocking threads: the user interface of your program will be stuck until the
requests are returned (which take a long time in case of a slow web server or a large data

but that is the recommended approach.

On the server side you can use multiple architectures for creating a web server or web server
extension in Delphi. For a stand-alone web server you can use the IdHttpServer component,
while for creating web server extensions (CGI applications, ISAPI, or Apache modules) you can
use the WebBroker framework. Another new option is given by the HTTP support of DataSnap
in Delphi 2010.

XML
Extended Markup Language is a commonly used format for data, although many REST servers
also use alternative data structures like JSON (JavaScript Object Notation) and at times even
plain comma-delimited
detail here.

In Delphi, you can process XML documents using the XmlDocument component. This is a
wrapper around one of the available XML DOM engines (the default one being Microsoft XML
DOM). Once a document is loaded you can navigate its node structure or query the document
using XPath (which is often the style I prefer).

XPATH

XPath is a query language that lets you identify and process the nodes of an XML document.
The notation used by XPath resembles file system paths (/root/node1/node2) with square
brackets added to express conditions on node attributes or subnodes (root/node1[@val=5]) or
even complex expressions. The result of an XPath statement can be in itself an expression, like
the number of nodes matching a rule or the total value of a set of nodes.

Copyright © 2009 Marco Cantu. All Rights Reserved.

In Delphi you can execute an XPath request by applying it to the DOM hosting the document,
w.

REST CLIENTS WRITTEN IN DELPHI
There are countless examples of REST servers that you can find on the Web, from the classic
Amazon Web Service, now rebranded as "Amazon E-Commerce Service" since the Amazon
Web Service name is used for their Cloud Computing offering, to many sites letting you have
access to information using a XML data structure rather than the HTML format.

Even if the number of web services that uses REST on the Internet is high, most actual web
services require some developer token (as covered in some of the coming demos), while only a
handful offers free and open access. For a slightly different list of Delphi REST clients and for
the source code of these demos you can refer to the specific section of one of my web sites:

http://ajax.marcocantu.com/delphirest/default.htm

A REST CLIENT FOR RSS FEEDS
The most widespread format for distributing information as XML is the use of the RSS and
ATOM feeds, mostly attached to blog and news sites, but equally usable for any data source.
The interesting point about feeds is they provide to client applications the same information a
user will generally access using a web browser. Feed information is processed by these client
applications, and at times even combined in a summary of similar feeds, as happens on the
Delphi Feeds site.

, as a first example of a client application using REST, I wrote a very simple RSS client
looking into Delphi Blogs at http://www.delphifeeds.com. Every time you access dynamic XML
data using an URL and you can change the URL to access different data, you are using the REST
approach.

THE REST CALL AND THE XML DOCUMENT

The RssClient program uses an IdHttp component and an XMLDocument component. The first
is used to grab the data from the Web (that is, making the REST client call) and loads the data in
the latter component:

var
 strXml: string;
begin
 strXml := IdHTTP1.Get ('http://feeds.delphifeeds.com/delphifeeds');
 XMLDocument1.LoadFromXML(strXml);

http://ajax.marcocantu.com/delphirest/default.htm
http://www.delphifeeds.com/

Copyright © 2009 Marco Cantu. All Rights Reserved.

readability),
when displayed in an XML editor:

PROCESSING THE RSS DATA WITH XPATH

To extract the relevant information from this XML document the RssClient program uses XPath
expressions. For example to read the title of the first blog post (item) of the list is uses:

/rss/channel/item[1]/title

This is done in a cycle along with the extraction of some other information, formatted and
displayed in a list box. Using XPath requires the use of a custom interface of the Microsoft
engine: hence the cast to the extended interface IDOMNodeSelect.

Once it has the nodes it is interested in, the program looks for any child text node, using a
getChildNodes helper function I wrote for this purpose, and adds the data to a listbox. This is
the complete code of the method executed when the Update button of the program is pressed:

Copyright © 2009 Marco Cantu. All Rights Reserved.

procedure TRssForm.btnUpdateClick(Sender: TObject);
var
 strXml, title, author, pubDate: string;
 I: Integer;
 IDomSel: IDOMNodeSelect;
 Node: IDOMNode;
begin
 strXml := IdHTTP1.Get ('http://feeds.delphifeeds.com/delphifeeds');

 XMLDocument1.LoadFromXML(strXml);
 XMLDocument1.Active := True;
 IDomSel := (XMLDocument1.DocumentElement.DOMNode
 as IDOMNodeSelect);

 for I := 1 to 15 do
 begin
 Node := IDomSel.selectNode(
 '/rss/channel/item[' + IntToStr (i) + ']/title');
 title := getChildNodes (Node);
 Node := IDomSel.selectNode(
 '/rss/channel/item[' + IntToStr (i) + ']/author');
 author := getChildNodes (Node);
 Node := IDomSel.selectNode(
 '/rss/channel/item[' + IntToStr (i) + ']/pubDate');
 pubDate := getChildNodes (Node);
 ListBox1.Items.Add(author + ': ' + title + ' [' + pubDate + ']');
 end;
end;

The effect of running this program is visible in the screenshot below:

Copyright © 2009 Marco Cantu. All Rights Reserved.

OF MAPS AND LOCATIONS
Access to location and map information can be very useful in multiple circumstances, as many
applications have to do with addresses. In the recent years, more and more mapping data has
been made available on the web by multiple large sites, including Google, Yahoo, and
Microsoft.

GOOGLE GEOCODING SERVICE

lets you submit an address and retrieve its latitude and longitude, with requests like:

http://maps.google.com/maps/geo?q=[address]&output=[format] &key=[key]

You can type a similar URL also in your browser for testing purposes, as you can see in the
picture in the next page showing New York coordinates in a browser (using the XML format):

Copyright © 2009 Marco Cantu. All Rights Reserved.

addresses the companies of the classic
Customer.cds sample database that comes with Delphi (it uses a local copy, in the ZIP file along
with the project source code).

As with many similar services, this is free for limited usage (the program has some extra sleep()
calls to avoid hitting the maximum rate per minute), but requires a registration for the specific
service on http://code.google.com.

The demo program requires your devkey to be added to a GeoLocation.ini file which must
reside in the user's document folder and has the simple structure:

[googlemap]
devkey=

RESOLVING CUSTOMER ADDRESSES
The program works in two steps.

 First, it looks for unique names of cities / state / country, by scanning the ClientDataSet
component and filling a string list. This code is unrelated to
this paper.

 The second step is to look up each city on the Google Geocoding service, filling an in-
memory ClientDataSet with the resulting information.

This time rather than asking for the XML version of the data, I resorted to a simpler CSV format,
which the program parses using a StringList object.

http://code.google.com/

Copyright © 2009 Marco Cantu. All Rights Reserved.

Here is the actual Geocoding code:

procedure TFormMap.btnGeocodingClick(Sender: TObject);
var
 I: Integer;
 strResponse, str1, str2: string;
 sList:TStringList;
begin
 cdsTown.Active := False;
 cdsTown.CreateDataSet;
 cdsTown.Active := True;
 sList := TStringList.Create;

 for I := 0 to sListCity.Count - 1 do
 begin
 ListBox1.ItemIndex := I;
 if Length (sListCity.Names[I]) > 2 then
 begin
 strResponse := IdHTTP1.Get(TIDUri.UrlEncode(
 'http://maps.google.com/maps/geo?q=' +
 (sListCity.Names[I]) + '&output=csv&key=' +
 googleMapKey));

 sList.LineBreak := ',';
 sList.Text := strResponse;
 str1 := sList[2];
 str2 := sList[3];
 cdsTown.AppendRecord([sListCity.Names[I],
 StrToFloat (str1), StrToFloat (str2),
 Length (sListCity.ValueFromIndex[I])]);

 Sleep (150);
 Application.ProcessMessages;
 end;
 end;
 sList.Free;
end;

The output should look like the image in the following page:

Copyright © 2009 Marco Cantu. All Rights Reserved.

YAHOO MAPS
As a further step, we can try to access to the actual map corresponding to an address. If Google
Maps provide countless features, they are meant to be hosted on web sites not on client
applications (although I do have an example of hosting a Google Map in a client program, its

 this paper).

The new example, called YahooMaps uses Yahoo Map API to get an actual map and show it in
an Image control. Information about this REST API and the link to obtain a free Yahoo
Application ID are available at:

http://developer.yahoo.com/maps/

"user documents" folder called YahooMaps.ini.

The map is retrieved in two steps: a first HTTP call passes the address and receives the URL of
the map image, which is retrieved using a second HTTP call. Again, you could simulate the two
steps in a web browser, which is quite nice for debugging purposes.

While the program uses the same database and intermediate StringList of the previous
example, it also has a button that it uses to display the map or a hard-coded city (San Jose,
California), using the following method:

const

Copyright © 2009 Marco Cantu. All Rights Reserved.

 BaseUrl = 'http://api.local.yahoo.com/MapsService/V1/';

procedure TFormMap.Button1Click(Sender: TObject);
var
 strResult: string;
 memStr: tFileStream;
begin
 strResult := IdHTTP1.Get(BaseUrl +
 'mapImage?' +
 'appid=' + yahooAppid +
 '&city=SanJose,California');

 XMLDocument1.Active := False;
 XMLDocument1.XML.Text := strResult;
 XMLDocument1.Active := True;
 strResult := XMLDocument1.DocumentElement.NodeValue;
 XMLDocument1.Active := False;

 // now let's get the referred image
 memStr:= TFileStream.Create ('temp.png', fmCreate);
 IdHttp1.Get(strResult, memStr);
 memStr.Free;

 // load the image
 Image1.Picture.LoadFromFile('temp.png');
end;

The first HTTP Get request provides the actual query and returns an XML document with the
URL of the image of the actual map, which looks like (with long IDs omitted):

<Result>
 http://gws.maps.yahoo.com/mapimage?MAPDATA=[...]&mvt=m
 &cltype=onnetwork&.intl=us&appid=[...]
 &oper=&_proxy=ydn,xml
</Result>

XMLDocument1.DocumentElement.NodeValue

Finally, the image is saved to a temp file and loaded into an Image control. Beside the map of
this specific city, the program can also fetch those of the Customer.cds database of the
previous example. There is a button to get the map of a hardcoded location (San Jose, as this
was the Delphi Live demo).

Here is an example:

Copyright © 2009 Marco Cantu. All Rights Reserved.

GOOGLE TRANSLATE API
Another simple and interesting example of a REST API provided by Google is their translation

service, called Google Translate REST API. The documentation is at:

http//code.google.com/apis/ajaxlanguage/documentation/

In this case there is no need for a signup key (and an INI file), but only provide a referrer site
(although everything seems to work even without that information). You can ask for a translation
in your Web Browser by entering an URL like:

http://ajax.googleapis.com/ajax/services/language/translate?
 v=1.0&q=What%20a%20nice%20day&langpair=en|de

The output of this call is visible below (I have also listed the JSON result for readability):

{
 "responseData":

Copyright © 2009 Marco Cantu. All Rights Reserved.

 {
 "translatedText":"Was für ein schöner Tag"
 },
 "responseDetails": null,
 "responseStatus": 200
}

This example takes one step further compared to previous demos. Rather than making the
HTTP request, it uses a specific custom VCL component, invoked with a class method (so you

the component on a form, even if you could). This support component
makes the API very easy to use, and encapsulates the HTTP call completely.

A TRANSLATION COMPONENT
This is the declaration of the class of the component:

type
 TBabelGoogleRest = class (TComponent)
 protected
 Http1: TIdHttp;
 FFromLang: string;
 FToLang: string;
 FActiveInForm: Boolean;
 procedure SetFromLang(const Value: string);
 procedure SetToLang(const Value: string);
 public
 function DoTranslate (strIn: string): string; virtual;
 constructor Create(AOwner: TComponent); override;

 class function Translate (strIn, langIn, langOut: string): string;
 published
 property FromLang: string read FFromLang write SetFromLang;
 property ToLang: string read FToLang write SetToLang;
 end;

The actual processing is in the DoTranslate function:

function TBabelGoogleRest.DoTranslate(strIn: string): string;
var
 strUrl, strResult: string;
 nPosA, nPosB: Integer;
begin
 strUrl := Format (
 'http://ajax.googleapis.com/ajax/services/language/translate?' +
 'v=1.0&q=%s&langpair=%s',

Copyright © 2009 Marco Cantu. All Rights Reserved.

 [TIdUri.ParamsEncode (strIn),
 FFromLang + '%7C' + FToLang]); // format hates the %7 !!!
 strResult := Http1.Get(strUrl);

 nPosA := Pos ('"translatedText":', strResult); // begin of JSON data
 if nPosA = 0 then
 begin
 nPosA := Pos ('"responseDetails":', strResult);
 nPosA := nPosA + Length ('"responseDetails":');
 end
 else
 nPosA := nPosA + Length ('"translatedText":');

 nPosA := PosEx ('"', strResult, nPosA) + 1; // opening quotes
 nPosB := PosEx ('"', strResult, nPosA) - 1; // end quotes
 Result := Copy (strResult, nPosA, nPosB - nPosA + 1);
end;

The result of the request to the given URL is in JSON format (as this is considered as a

later. The actual method can be called using a class method that creates a temporary object,
sets its properties, and calls the DoTranslate function. There are some other scenarios, but the
remaining code should be easy to understand.

The main form of the demo program has a list box filled with all supported languages. The
demo translates from English, but you can set it up on the opposite direction as well. In theory,
any two language token combination works, in practice not always. Once you ask for a
transl
(in alphabetic order):

Copyright © 2009 Marco Cantu. All Rights Reserved.

TWITTER, AS SIMPLE AS IT COULD BE
Twitter web services interface has significantly contributed to the rise of this simple social web
site, as it has spawned an entire ecosystem of twitter-enabled applications. As simple as Twitter
is for users, so is its REST web service interface. Twitter was notably written in Ruby, and Ruby
on Rails has certainly contributed pushing the idea of REST, with its neat mapping of URLs to
internal application resources, of the foundations of the REST approach.

If you have a Twitter account how do you access your last 20 entries? And how do you access
the last 20 entries on Twitter? These are the URLs:

http://twitter.com/statuses/user_timeline.xml
http://twitter.com/statuses/public_timeline.xml

The only condition is to make a GET HTTP request passing the standard HTTP headers with the
user name and the password, something you can easily add in Delphi to the corresponding
properties of an IdHttp component. A much more complicated operation, if we can say so, is
posting a status update to your account. This is achieves with a POST HTTP request that passes
a status parameter, as in the following code snippet, which send Twitter the text of one of the
fields of the current record of a ClientDataSet component (ClientDataSet1TEXT), marking it as
posted:

Copyright © 2009 Marco Cantu. All Rights Reserved.

procedure TForm34.btnPostCurrentClick(Sender: TObject);
var
 strResult: string;
 listParams: TStringList;
begin
 listParams := TStringList.Create;
 listParams.Add('status=' + ClientDataSet1TEXT.AsString);
 try
 strResult := idhttp1.Post(
 'http://twitter.com/statuses/update.xml', listParams);
 ShowMessage (strResult);
 ClientDataSet1.Edit;
 ClientDataSet1POSTED.AsString := 'T';
 ClientDataSet1.Post;
 finally
 listParams.Free;
 end;
end;

This code is extracted from my Delphi Tweet of the Day application, which uses a
ClientDataSet (local or hooked with a remote server) for entering the tweets. After posting the
value of the TEXT field of the table, in fact, the program sets the POSTED field to True.

There is some other code in the program, but nothing really related with Twitter itself or its
REST API. The other element relevant for our discussion is the configuration of the IdHttp
component:

object IdHTTP1: TIdHTTP
 Request.ContentLength = -1
 Request.Accept = 'text/html, */*'
 Request.BasicAuthentication = True
 Request.Password = '***' // omitted but required
 Request.UserAgent = 'tweetoftheday'
 Request.Username = 'delphitweetday'
 HTTPOptions = [hoForceEncodeParams]
end

In other words coding to Twitter is extremely simple and you can benefit from automatic
posting at fixed time intervals or when something relevant happens to your business (and in
your database).

Copyright © 2009 Marco Cantu. All Rights Reserved.

INTERFACING WITH GOOGLE SPREADSHEET

SERVICES
If working with map and translations can be a lot of fun, and posting to Twitter can become part
of your company marketing activities, I think it will become increasingly relevant over time to be
able to interact with business services like Google Docs:

http://docs.google.com/

The Web Services interface for Google Docs lets you upload and download (and even convert)
web documents and manage their access credentials, which is certainly quite nice. But, there is
also one interface that lets you work with the content of a given document on the web: this is
the Google Spreadsheet Services API, still in an early beta at the time of writing.

Using this API you can access individual cells of any sheet of any spreadsheet that is either
private or public on the system. Anyone looking at those documents with a web interface will
see them change in real time!

As this API (like many other Google APIs) allows access to personal and reserved documents, it
requires a more robust security layer than other REST APIs we have used so far. There are two
notable differences compared to simpler solutions:

 The API uses HTTPS rather than HTTP. You'll need to hook OpenSSL or another SSL
library to the client application and call the proper Indy support code.

 The API requires a separate authentication request, which will return an authorization
token that will expire after some time. You'll have to pass this token into any following
request (coming from the same IP address).

Let's look at this infrastructure before delving into the specific problem (by the way, I wrote this
authorization management classes for a different Google Web Services, the Provisioning API,
used to set up accounts on private and paid Google Mail and Docs domains).

To support authentication and make a request using this support, I've written a specific Delphi
class, TGoogleAuth, which has the following public interface (I've removed the many private
fields and property access methods):

type
 TGoogleAuth = class
 public
 property GoogleEmail: string
 read FGoogleEmail write SetGoogleEmail;
 property GooglePwd: string
 read FGooglePwd write SetGooglePwd;
 property AuthString: string
 read GetAuthString write SetAuthString;
 property ReqTime: TDateTime

Copyright © 2009 Marco Cantu. All Rights Reserved.

 read FReqTime write SetReqTime;
 property AccountType: string
 read FAccountType write SetAccountType;
 property ServiceName: string
 read FServiceName write SetServiceName;
 public
 function Expired: Boolean;
 procedure Renew;
 end;

Four of the properties above (Email, password, type of account and name of service) are input
values, while the other two are the authorization string and the time it was set, which is used to
automatically renew it again a given amount of times. As you ask for this token, the class will
check if it needs to get a new one. This is the getter method of the AuthString property:

function TGoogleAuth.GetAuthString: string;
begin
 if FAuthString = '' then
 Renew;
 if Expired then
 Renew;
 Result := FAuthString;
end;

The authorization request code is inside the Renew method, which uses an SSL HTTP
connection to ask for the authorization token passing the user name and password in an
encrypted format:

procedure TGoogleAuth.Renew;
var
 res, req: String;
 sList: TStringList;
 IdHttp: TIdHttp;
begin
 FAuthString := '';

 IdHttp := TIdHttp.Create (nil);
 try
 IdHttp.IOHandler := TIdSSLIOHandlerSocketOpenSSL.Create(IdHttp);
 req := 'https://www.google.com/accounts/ClientLogin?Email=' +
 FGoogleEmail + '&Passwd=' + FGooglePwd +
 '&accountType=' + FAccountType + '&service=' + FServiceName;
 res := IdHttp.Get (req);
 finally
 idHttp.Free;
 end;

Copyright © 2009 Marco Cantu. All Rights Reserved.

 sList := TStringList.Create;
 try
 sList.Text := res;
 FAuthString := sList.Values['Auth'];
 FReqTime := Now;
 finally
 sList.Free;
 end;
end;

I created a global singleton for this class, and every time I need to make a request I pass
through a helper method (a global function), which adds the extra token. This is the code of this
rather long function:

function DoRequest (
 const methodAttr, fromAttr, strData: string): string;
var
 res: String;
 postStream: TStream;
 IdHttp: TIdHttp;
 resStream: TStringStream;
begin
 IdHttp := TIdHttp.Create (nil);
 try
 // add authorization from stored key
 IdHttp.Request.CustomHeaders.Values ['Authorization'] :=
 'GoogleLogin auth=' + googleAuth.AuthString;
 IdHttp.Request.CustomHeaders.Values ['Content-type'] :=
 'application/atom+xml';
 IdHttp.Request.CustomHeaders.Values ['GData-Version'] := '2';

 // use SSL
 IdHttp.IOHandler := TIdSSLIOHandlerSocketOpenSSL.Create(IdHttp);
 try
 if (methodAttr = 'post') or (methodAttr = 'put') then
 begin
 postStream := TStringStream.Create (strData);
 try
 postStream.Position := 0;
 if (methodAttr = 'post') then
 res := IdHttp.Post (fromAttr, postStream)
 else // (methodAttr = 'put')
 res := IdHttp.Put (fromAttr, postStream);
 finally

Copyright © 2009 Marco Cantu. All Rights Reserved.

 PostStream.Free;
 end;
 end
 else if (methodAttr = 'delete') then
 begin
 resStream := TStringStream.Create ('');
 try
 IdHttp.DoRequest (hmDelete, fromAttr, nil, resStream);
 finally
 resStream.Position := 0;
 res := resStream.DataString;
 resStream.Free;
 end;
 end
 else // 'get' or not assigned
 res := IdHttp.Get (fromAttr);
 except
 on E: Exception do // intercept and use as result (which is odd)
 begin
 res := E.Message;
 end;
 end;
 finally
 IdHttp.Free;
 end;
 Result := res;
end;

This was a lot of structural code, but it was worth it to make our SSL-based and authorized calls
easy. As an example, the code I'll have to use to request a list of private spreadsheets becomes
the following:

DoAppRequest (
 'get',
 'http://spreadsheets.google.com/feeds/spreadsheets/private/full',
 '');

This code is part of the actual demo, which uses the information available in the dbtosheet.ini
file, which has the following structure and is required to run the demo program:

[google]
email=
password=
accounttype=GOOGLE

Copyright © 2009 Marco Cantu. All Rights Reserved.

The file is loaded when the program starts and the three values are used to fill in the global
singleton TGoogleAuth object, named googleAuth. The fourth parameter, the service, is set up
by the program:

 googleAuth.GoogleEmail :=
 inifile.ReadString('google', 'email', '');
 googleAuth.GooglePwd :=
 inifile.ReadString('google', 'password', '');
 googleAuth.AccountType :=
 inifile.ReadString('google', 'accounttype', 'GOOGLE');
 googleAuth.ServiceName := 'wise';

With this configuration in place, the program has a first button that makes the request above for
the list of available spreadsheets and adds their identifiers (or URLs) in a list box. The resulting
XML is parsed using XPath, but only after stripping the namespace, or else the XPath requests
should take the namespace into account and become very complex:

procedure TForm34.btnListSheetsClick(Sender: TObject);
var
 strXml: string;
 IDomSel: IDOMNodeSelect;
 Node: IDOMNode;
 I, nCount: Integer;
 title, id: string;
begin
 strXml := DoAppRequest ('get',
 'http://spreadsheets.google.com/feeds/spreadsheets/private/full',
 '');
 strXml := StringReplace (strXml,
 '<feed xmlns=''http://www.w3.org/2005/Atom''', '<feed ', []);

 XMLDocument1.LoadFromXML(strXml);
 XMLDocument1.Active := True;

 IDomSel := (XMLDocument1.DocumentElement.DOMNode as IDOMNodeSelect);
 nCount := IDomSel.selectNodes ('/feed/entry').length;
 for I := 1 to nCount do
 begin
 Node := IDomSel.selectNode(
 '/feed/entry[' + IntToStr (i) + ']/title');
 title := getChildNodes (Node);
 Node := IDomSel.selectNode(
 '/feed/entry[' + IntToStr (i) + ']/content/@src');
 id := getChildNodes (Node);
 ListBox1.Items.Add(title + '=' + id);
 end;
end;

Copyright © 2009 Marco Cantu. All Rights Reserved.

The for loop works on each node (it uses the count XPath function to determine the number of
nodes), adding the spreadsheet title and its ID/URL to the list box, as follows:

Now given the ID/URL you can make a second query to ask for the available tab sheets inside

operation affecting the document content. This is how the program retrieves the ID from the list
box and makes the second REST request:

 strSheetId := ListBox1.Items.ValueFromIndex [ListBox1.ItemIndex];
 strXml := DoAppRequest ('get', strSheetId, '');

At this point there is another similar loop to extract sheet names and move them to a second
list box:

 IDomSel := (XMLDocument1.DocumentElement.DOMNode as IDOMNodeSelect);
 nCount := IDomSel.selectNodes ('/feed/entry').length;
 for I := 1 to nCount do
 begin
 Node := IDomSel.selectNode(
 '/feed/entry[' + IntToStr (i) + ']/title');
 title := getChildNodes (Node);
 Node := IDomSel.selectNode(
 '/feed/entry[' + IntToStr (i) + ']/content/@src');
 id := getChildNodes (Node);
 ListBox2.Items.Add(title + '=' + id);
 end;

Now the real power of this program comes from the ability to add data to an actual document.
The simplest way to accomplish this is to set up a document which behaves like a database
table (that is, it has a first line with the field names). This is a document of this kind inside the
browser:

Copyright © 2009 Marco Cantu. All Rights Reserved.

The cells of the first row are simple text entries, nothing special. What is nice is that you can
refer to the corresponding columns using a dynamic namespace like:

<gsx:Company>Tom Sawyer Diving Centre<(gsx:Company>

This means we can add new rows to the document by fetching the fields of a table with
corresponding names. This requires a POST HTTP request using the sheet ID:

const
 gsxNameSpace =
 'xmlns:gsx="http://schemas.google.com/' +
 'spreadsheets/2006/extended"';

begin
 strSheetId := ListBox2.Items.ValueFromIndex [ListBox2.ItemIndex];

 Memo1.Lines.Add(
 DoAppRequest ('post',
 strSheetId,
 '<entry xmlns="http://www.w3.org/2005/Atom" ' +
 gsxNameSpace + '>' +
 recordtoxml +
 '</entry>'));

The recordtoxml function grabs the values of the fields we are interested in from the current
record of the ClientDataSet used by the program, producing the proper input data:

function recordtoxml: string;
begin
 Result :=
 FieldToXml ('custno') +

Copyright © 2009 Marco Cantu. All Rights Reserved.

 FieldToXml ('company') +
 FieldToXml ('city') +
 FieldToXml ('state') +
 FieldToXml ('country');
end;

function FieldToXml (fieldname: string): string;
begin
 Result := '<gsx:' + fieldname + '>' +
 ClientDataSet1.FieldByName(fieldname).AsString +
 '</gsx:' + fieldname + '>';
end;

As already mentioned, the gsx: pseudo namespace refers to the names of the spreadsheet
columns, which are determined by the strings in its first line. This code lets you populate the
spreadsheet with new lines corresponding to database records.

editing the data once posted, it lets the document automatically recalculate totals based on the
data sent by the client application, and makes it possible for anyone in the world with proper
rights to see the resulting document.

So we have a sophisticated mechanism for viewing and editing data originating from database
ly

thanks to a free Gmail account!

REST SERVERS IN DELPHI 2010
Now that we have spent a considerable amount of time looking at a diverse array of client REST
applications written in Delphi, facing different permission requests and using different data type
formats, we are ready to start delving into the second part of this white paper, focused on
writing REST servers in Delphi 2010.

creating a Web server, that is, probably since Delphi 3. Today you can use the IdHTTPServer
component or the WebBroker architecture or other third-part solutions to roll out your own
custom REST server. I did it over the years, as examples in my Mastering Delphi 2005 book can

Delphi 2010 and will probably be the foundation of any future extension provided by
Embarcadero Technologies to the product.

BUILDING A FIRST SIMPLE REST SERVER

To build a first simple REST server in Delphi 2010 we can use the DataSnap Wizard:

Copyright © 2009 Marco Cantu. All Rights Reserved.

As there are actually two DataSnap Wizards (as you can see above) we need to decide which
one to pick. If you want to host your REST server as a web server, picking the DataSnap
WebBroker Application will probably be your best choice, but you can later add components to
the project generated by both wizards to make them very similar. In general, using a plain
DataSnap server should make more sense if you plan having Delphi clients or other client
applications and your server is on your internal network, while a DataSnap WebBroker server
which integrates with your HTTP server, makes more sense for open architectures and for calling
the REST server from Browser-based applications.

From a slightly different perspective, the DataSnap WebBroker server lets you have more
control on the HTTP requests coming in and lets you integrate your REST data within your
WebBroker server.

The most important

worr
actual code later on:

Copyright © 2009 Marco Cantu. All Rights Reserved.

For actual hosting in a web server, the ISAPI option is generally the recommended one,
although the (generally slower) CGI is easier to set up and debug. But for true debugging and
testing I really recommend using the Web App Debugger infrastructure provided by Delphi,
which lets you add breakpoint to your code directly and even inspect the HTTP data flow,
including the headers. If you pick that option insert an internal class name, which is used only as
a reference to the program (in the Web App Debugger URL). Notice also that even if this is not
explicit in the Wizard dialog box, Delphi still offers support for Apache server integration
modul

In the bottom portion of the DataSnap WebBroker Wizard dialog you can ask for a ready-to-use
server method class with sample methods, but again it would be quite simple to roll out your
own in code. With the settings above, Delphi will generate a project with three units:

 A main form, which has no specific use but can be used for logging information. This
form will be removed as you change the project structure to a web server module or
CGI,

 A web data module (inheriting from TWebModule) hosting the DataSnap server
components

 A data module acting as server class, where you add the code you want your REST
server to execute.

Copyright © 2009 Marco Cantu. All Rights Reserved.

THE WEB DATA MODULE GENERATED BY THE DATASNAP

WEBBROKER WIZARD

 to the
program and test it. The web module is the core element of the WebBroker architecture. It can
define multiple actions and has pre-processing and post-processing events for any HTTP
request. On this web module you can add components which intercept given URL actions, as in
this example the DSHTTPWebDispatcher:

object DSHTTPWebDispatcher1: TDSHTTPWebDispatcher
 RESTContext = 'rest'
 Server = DSServer1
 DSHostname = 'localhost'
 DSPort = 211
 WebDispatch.MethodType = mtAny
 WebDispatch.PathInfo = 'datasnap*'
end

This component intercepts any request with a URL starting with , which are passed to
the HTTP support of DataSnap. For requests starting with and indicating a
path, the processing will be diverted to the built-in REST engine. In other words, the request
with a path are considered as REST requests. As these are two strings, you can
change them
standard settings.

The other two components of the web data module provide the DataSnap overall foundation
and indicate with class is going to respond to requests (or classes in case you add multiple
DSServerClass components). These are the default settings:

object DSServer1: TDSServer
 AutoStart = True
 HideDSAdmin = False
end
object DSServerClass1: TDSServerClass
 OnGetClass = DSServerClass1GetClass
 Server = DSServer1
 LifeCycle = 'Session'
end

While the DSServer component only needs to get started, manually or automatically, the
DSServerClass configuration takes place mostly in the event handler that returns the target
class. This has the following default code (generated by the Wizard), which returns the
secondary data module class (TServerMethods1), hosted by the corresponding unit
(Fsrs_ServerClass):

procedure TWebModule2.DSServerClass1GetClass(

Copyright © 2009 Marco Cantu. All Rights Reserved.

 DSServerClass: TDSServerClass;
 var PersistentClass: TPersistentClass);
begin
 PersistentClass := Fsrs_ServerClass.TServerMethods1;
end;

Finally, the web module provides a default HTTP response for any other action, simply returning
some bare-bone HTML:

procedure TWebModule2.WebModule2DefaultHandlerAction(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content := '<html><heading/><body>' +
 'DataSnap Server</body></html>';
end;

This action is configured at design-time as:

 Actions = <
 item
 Default = True
 Name = 'DefaultHandler'
 PathInfo = '/'
 OnAction = WebModule2DefaultHandlerAction
 end>

THE SAMPLE SERVER CLASS GENERATED BY THE DATASNAP

WEBBROKER WIZARD

The third unit that is generated by the DataSnap WebBroker Wizard is the sample server class,
the class surfacing methods to be called remotely via REST. This is the Delphi class that is
connected to the DSServerClass component through the DSServerClass1GetClass event
handler listed earlier, and is where most of the actual code will end up.

The skeleton class that gets generated is very simple, and depends on the fact I asked for
sample methods in the wizard. Here is the code:

type
 TServerMethods1 = class(TDSServerModule)
 private
 { Private declarations }
 public
 function EchoString(Value: string): string;
 end;

Copyright © 2009 Marco Cantu. All Rights Reserved.

Notice that this class inherits from the TDSServerModule class, which is almost a standard data
module (with support for DataSetProvide components), but compiled with a special compiler
option which enables a form of RTTI generation for public methods (predating Delphi 2010 new
extended RTTI): {$MethodInfo ON}.

The EchoString method by default simply returns the parameter you are passin

function TServerMethods1.EchoString(Value: string): string;
begin
 Result := Value + '...' +
 Copy (Value, 2, maxint) + '...' +
 Copy (Value, Length (Value) - 1, 2);
end;

COMPILING AND TESTING THE REST SERVER
We can now compile the server and see if it works. After compiling and running the program,

the corresponding button):

Copyright © 2009 Marco Cantu. All Rights Reserved.

The Web App Debugger runs on a specific port, in my configuration 8081 as you can see above.
You can open the default URL to see the various applications available in this architecture, or
type in the specific URL of our program, which takes the format ApplicationName.ServerClass.

In our case the two tokens are identical, so the URL for the server becomes:

http://localhost:8081/FirstSimpleRestServer.FirstSimpleRestServer

If you open it in a Web browser you can check if the Web App Debugger and the specific server
are running (notice that the specific server must be already running, as the Web App Debugger
will not start it automatically). You should see something like:

If you remember, this is the HTML returned by the program for the standard action. Not terribly
interesting, of course.

The next step is to use the specific URL for the only request our REST server can perform, calling

The URL is automatically combined by adding the REST server prefix (/datasnap/rest by default),
the class name, the method name, and the method parameters:

/datasnap/rest/TServerMethods1/EchoString/hello%20world

In the URL the %20 is just a replacement for a space, but you can actually type a space in your

Copyright © 2009 Marco Cantu. All Rights Reserved.

Notice that while doing this tests we can use the Web App Debugger for figuring out the actual
HTTP requests and responses being transferred. The page above is originated by a browser
request:

GET /FirstSimpleRestServer.FirstSimpleRestServer/
 datasnap/rest/TServerMethods1/EchoString/hello%20world HTTP/1.1
Host: localhost:8081
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US)
 AppleWebKit/532.0 (KHTML, like Gecko) Chrome/3.0.195.27 Safari/532.0
Accept: application/xml,application/xhtml+xml,text/html;q=0.9,
 text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: gzip,deflate,sdch
Cookie: LastProgID=FirstSimpleRestServer.FirstSimpleRestServer
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

This request produces the following complete HTTP response:

HTTP/1.1 200 200 OK
Connection: close
Content-Type: TEXT/HTML
Content-Length: 44

{"result":["hello world...ello world...ld"]}

As I mentioned earlier, the easy access to this low-level information can be a big bonus when
debugging HTTP applications.

Copyright © 2009 Marco Cantu. All Rights Reserved.

CALLING THE REST SERVER FROM A PLAIN DELPHI CLIENT
Now that we have built the server and made sure that it works, we can write a Delphi client
application to test it. We can use two different approaches. One is to fall back to write a Delphi

difference compared to using the HTTP or TCP transport layers of DataSnap.

like all of the various clients I built in the first part of this white paper. This means, you could use
any other language for building the client application, as we are not relying on any specific
support. To accomplish this simply create a standard Delphi VCL application, add an IdHTTP
component to it to perform the actual REST request, an edit box for the input, and a button
with the code:

const
 strServerUrl = 'http://localhost:8081/' +
 'FirstSimpleRestServer.FirstSimpleRestServer/';
 strMethodUrl = 'datasnap/rest/TServerMethods1/EchoString/';

procedure TFormFirstRestClient.btnPlainCallClick(Sender: TObject);
var
 strParam: string;
begin
 strParam := edInput.Text;
 ShowMessage (IdHTTP1.Get(strServerUrl + strMethodUrl + strParam));
end;

This call builds a proper URL by concatenating the server address, the relative path to reach the
given method with the REST server, and the only parameter. The call results in the following
output:

Copyright © 2009 Marco Cantu. All Rights Reserved.

Now what is more interesting is to extract the actual information from the JSON data structure
returned by the server. We could use a manual approach, as demonstrated before, but in this

is available in Delphi 2010.

Delphi new JSON support is made available through a series of classes defined in the
DBXJSON, which desp
dbExpress framework. The DBXJSON unit defines classes that you can use to work with the
various JSON data types (individual values of different types, arrays, objects, and so on). This is

project) and for reading data received by a client, as in this specific case.

The JSON data that our server returns is a string, but the REST server support creates an object

the result of the HTTP into a JSON data structure, we need to navigate from the object to the
pair it contains and from pair to the single element array it holds:

procedure TFormFirstRestClient.btnToJSONClick(Sender: TObject);
var
 strParam, strHttpResult, strResult: string;
 jValue: TJSONValue;
 jObj: TJSONObject;
 jPair: TJSONPair;
 jArray: TJSOnArray;
begin
 strParam := edInput.Text;
 strHttpResult := IdHTTP1.Get(strServerUrl +
 strMethodUrl + strParam);
 jValue := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes(strHttpResult), 0);
 if not Assigned (jValue) then
 begin
 ShowMessage ('Error in parsing ' + strHttpResult);
 Exit;
 end;

 try
 jObj := jValue as TJSONObject;
 jPair := jObj.Get(0); // get the first and only JSON pair
 jArray := jPair.JsonValue as TJsonArray; // pair value is an array
 strResult := jArray.Get(0).Value; // first-only element of array
 ShowMessage ('The response is: ' + strResult);
 finally
 jObj.Free;
 end;
end;

Copyright © 2009 Marco Cantu. All Rights Reserved.

Again, the complexity is due to the data structure returned by the server, as in other
circumstances it would be much easier to parse the resulting JSON and access to it.

CALLING THE REST SERVER FROM AN AJAX WEB APPLICATION

If all you need is to pass objects from a server side Delphi application to another one, there
could be many alternatives to using JSON. This choice makes a lot of sense when you want to
call the Delphi compiled server from a JavaScript application running in the browser. This case
is quite relevant because AJAX (Asynchronous JavaScript calls done in the Web browser) was
and still is one of the driving forces behind the adoption of REST. Calling a corresponding
SOAP server from a Browser based program is incredibly more complicated.

So, how can we create an application mimicking the client I just wrote but running in the Web
browser. I could have used many different approaches and libraries, but my preference at this
time goes to using jQuery, an incredibly powerful open source JavaScript library available at:

http://jquery.com

the jQuery code behind this specific example. First of all, the HTML page includes jQuery and
its JSON support:

<head>
 <title>jQuery and Delphi 2010 REST</title>
 <script
 src="http://jqueryjs.googlecode.com/files/jquery-1.3.2.min.js"
 type="text/javascript"></script>
 <script
 src="http://jquery-json.googlecode.com/files/jquery.json-2.2.min.js"
 type="text/javascript"></script>
</head>

Second, the page has a very simple user interface, with some text, an input field and a button
(without any sophisticated CSS and added graphics, as I really wanted to keep this focused):

<body>
 <h1>jQuery and Delphi 2010 REST</h1>

 <p>This example demonstrates basic use of jQuery calling a
 barebone Delphi 2010 REST server. </p>

 <p>Insert the text to "Echo":

 <input type="text" id="inputText" size="50"
 value="This is a message from jQuery">

Copyright © 2009 Marco Cantu. All Rights Reserved.

 <input type="button" value="Echo" id="buttonEcho">

 <div id="result">Result goes here: </div>
</body>

If this is the skeleton, let us now look at the actual JavaScript code. What we have to do is add
an event handler to the button, read the input text, make the REST call, and finally display the

on the objects ID, as in:

$("#inputText")

This returns a jQuery object wrapping the input text DOM element. To define an event handler
we can pass an anonymous method parameter to the click() function of the button. Two more
calls are the REST call itself (using the global getJSON) and the htmlI() call to add the result to
the HTML of the output element.

This is the complete code at the heart of this demo, a very compact but not exactly readable
JavaScript snippet:

$(document).ready(function() {
 $("#buttonEcho").click(function(e) {
 $.getJSON("http://localhost:8081/"
 "FirstSimpleRestServer.FirstSimpleRestServer/"
 "datasnap/rest/TServerMethods1/EchoString/" +
 $("#inputText").val(),
 function(data) {
 $("#result").html(data.result.join(''));
 });
 });
});

Just by opening an HTML file with the given code you can call the custom server, but only if the
browser permission settings allow an AJAX call from a local file to a local REST server. In
general, most browsers will only let you call REST servers on the same site originating the HTML
page.

In any case, Internet Explorer seems to work fine on this local file, after enabling local scripts
and asking for limited security (available since the file is on the local machine, see the icons in
the status bar):

Copyright © 2009 Marco Cantu. All Rights Reserved.

On other browsers, you need to have the web server returning both the HTML page and the
REST data, which is not a terribly big deal as our REST server is indeed a web server. So, all I

action to
from it:

procedure TWebModule2.WebModule2WebActionItem1Action(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
var
 strRead: TStreamReader;
begin
 strRead := TStreamReader.Create('jRestClient.html');
 try
 Response.Content := strRead.ReadToEnd;
 finally
 strRead.Free;
 end;
end;

Now we can refer to given server page with the /file URL, get the file with the JavaScript code,
and let it call our REST server:

Copyright © 2009 Marco Cantu. All Rights Reserved.

The difference between this and the previous image
in this second case

T application as a full Web server, returning the HTML used for
calling the same server via AJAX.

RETURNING OBJECTS AND UPDATING THEM
Now that we have explored the development of a very simple REST server with Delphi 2010
DataSnap support, it is time to try to figure out the actual code we can write on the server to
make it more powerful. As we have seen, the server returns JSON data, converting the result of
your functions to this format. We can pass an object as result and have it converted. However, in
most practical situations, it would be better to take full control and create specific JSON objects
on the server side and return them. That is going to be one of the goals of our next project.

The same project will also show how to process other HTTP methods beside get, letting us
retrieve but also modify a server side object from a simple Browser-based client written in
JavaScript
them nicer and more flexible.

RETURNING JSON OBJECTS AND VALUES

data module as target class for the REST calls. As you need specific RTTI support, the rule is to
inherit (at least) from TPersistent and mark the class with the $METHODINFO directive, as in
the following generated code:

{$METHODINFO ON}

Copyright © 2009 Marco Cantu. All Rights Reserved.

type
 TObjectsRest = class(TPersistent)
 public
 function PlainData (name: string): TJSONValue;
 function DataMarshal (name: string): TJSONObject;
 end;
{$METHODINFO OFF}

to the class.

The data structure behind this application is a list of objects of a custom type (which could have
been written in a more object-oriented way, but I wanted to keep simple for the sake of the
example):

type
 TMyData = class (TPersistent)
 public
 Name: String;
 Value: Integer;
 public
 constructor Create (const aName: string);
 end;

The objects are kept in a dictionary, implemented using the generic container class
TObjectDictionary<TKey,TValue> defined in the Generics.Collections unit since Delphi 2009.
This global object is initialized when the program starts with the addition of a couple of
predefined objects. Notice that I use a specific AddToDictionary procedure to add the objects,
to make sure the object name is in sync with the dictionary key and it has a random value if
none is provided:

var
 DataDict: TObjectDictionary <string,TMyData>;

procedure AddToDictionary (const aName: string; nVal: Integer = -1);
var
 md: TMyData;
begin
 md := TMyData.Create (aName);
 if nVal <> -1 then
 md.Value := nVal;
 DataDict.Add(aName, md);
end;

initialization
 DataDict := TObjectDictionary <string,TMyData>.Create;

Copyright © 2009 Marco Cantu. All Rights Reserved.

 AddToDictionary('Sample');

Having this data structure in place, we can now focus on the first two sample methods used to
return the JSON values. The first returns the value of the given object (picking a default one if
no parameter is passed to the function):

function TObjectsRest.PlainData(name: string): TJSONValue;
begin
 if Name = '' then
 name := 'Sample'; // default
 Result := TJSONNumber.Create(DataDict[name].Value);
end;

If we use an URL with or without the parameter (as in the following two lines):

/datasnap/rest/TObjectsRest/PlainData/Test
/datasnap/rest/TObjectsRest/PlainData

we will still get a resulting JSON response, either for the specific object or a default one:

{"result":[8978]}

What if we want to return a complete object rather than a specific value? Our REST server
cannot return a TObject value, as the system has no way to convert it automatically, but it can
indeed use the new JSON marshaling support for converting an existing object to the JSON
format:

function TObjectsRest.DataMarshal(name: string): TJSONObject;
var
 jMarshal: TJSONMarshal;
begin
 jMarshal := TJSONMarshal.Create(TJSONConverter.Create);
 Result := jMarshal.Marshal(DataDict[name]) as TJSONObject;
end;

This approach is mostly useful when you need to recreate the object in the Delphi client
application, while it is not particularly handy in the case where the client is written in another
language. The resulting JSON looks a little ugly:

{"result":[{
 "type":"ObjectsRestServer_Classes.TMyData",
 "id":1,
 "fields": {
 "Name":"Test",
 "Value":8068}

Copyright © 2009 Marco Cantu. All Rights Reserved.

}]}

So, what would be the best option to return a JSON object? I think it would be to create one on

function TObjectsRest.MyData(name: string): TJSONObject;
var
 md: TMyData;
begin
 md := DataDict[name];
 Result := TJSONObject.Create;
 Result.AddPair(
 TJSONPair.Create ('Name', md.Name));
 Result.AddPair(
 TJSONPair.Create ('Value',
 TJSONNumber.Create(md.Value)));
end;

dded two pairs or properties for the name
and the value. I could have used a dynamic name (that is, used the name for the name part of
the pair), but this would have made it harder to retrieve the data on the client side. The result of
this code should look like the following cleaner JSON code:

{"result":[{
 "Name":"Test",
 "Value":8068
}]}

LISTING OBJECTS WITH TJSONARRAY
Now having a list of objects, you might well need to access the list of objects. Having a list with
the names only (and no data) will be useful when building a client side user interface.

For returning a list you can use a TJSONArray, which in this case will be an array of strings,
which I crate using an enumerator on the Keys of the dictionary:

function TObjectsRest.List: TJSONArray;
var
 str: string;
begin
 Result := TJSONArray.Create;
 for str in DataDict.Keys do
 begin
 Result.Add(str);
 end;

Copyright © 2009 Marco Cantu. All Rights Reserved.

end;

The result of this call is an array in JSON format, which in turned is passed (as usual) in an array
called result (hence the double nested array notation):

{"result":[
 ["Test","Sample"]
]}

Now that we have a way to return a list of values and fetch the data of each individual element,
we can start building a user interface.

STARTING WITH THE CLIENT: LIST AND VALUES
Rather than having to build the initial HTML with the list of values, to let the user pick one, we
can fully exploit the AJAX model.

The page on start up will have no data at all, only the HTML elements and the JavaScript code.
As soon as the page is loaded, even without user intervention, it will reach the server asking for
the actual data and populating the user interface.

As an example, on start up the program shows the value of the Sample object, using the
following HTML elements and AJAX call (executed as when document is ready, that is the DOM
has finished loading):

<div>Sample: </div>

<script>
 var baseUrl = "/ObjectsRestServer.RestObjects/dataSnap" +
 "/rest/TObjectsRest/";

$(document).ready(function() {
 $.getJSON(baseUrl + "MyData/Sample",
 function(data) {
 strResult = data.result[0].Value;
 $("#sample").html(strResult);
 });
The AJAX call to MyData passes the object name as a further URL parameter and extracts from
the result array the property/pair called Value, showing it in an empty span HTML element.
Something similar (but somewhat more complex) happens for the list. Again, there is an AJAX
call, but this time we have to build the resulting HTML. The operation is performed in a
separate refreshList function called both automatically at startup and manually by the user:

<div>Current entries list:
 Refresh
 </div>

Copyright © 2009 Marco Cantu. All Rights Reserved.

function refreshList()
{
 $.getJSON(baseUrl + "list",
 function(data) {
 thearray = data.result[0];
 var ratingMarkup = ["
"];
 for (var i=0; i < thearray.length; i++) {
 ratingMarkup = ratingMarkup +
 "" + thearray[i] + "
";
 }
 $("#list").html(ratingMarkup);
 });
};

The code uses a for loop to scan the resulting array. I could have used the $.each enumeration
mechanism of jQuery, but this would have made the code more complex to read. The for loop
creates the HTML, which is later displayed in the span placeholder with the given ID. This is a
sample output with the value of the Sample object (the code shown earlier) plus the list of the
values returned in the JSON array:

As I mentioned earlier, the refreshList function is called at startup (in the ready event handler)
and also connected with a corresponding link, so that the user can later refresh the data of the
list without having to refresh the entire HTML page:

$(document).ready(function() {

 refreshList();

Copyright © 2009 Marco Cantu. All Rights Reserved.

 $("#refresh").click(function(e) {
 refreshList();
 });

There is actually a little more to the code generation. As soon as we have the HTML for the list,
which is a list of links, we need to hook code to those links so that selecting each entry of the list
the client application will load the corresponding server side object. The user interface for the
object data is made of two input boxes, which will later use also for manipulating the object
data. The behavior is added to each anchor within the list container.

 $("#list").find("a").click(function(e) {
 var wasclicked = $(this);
 $.getJSON(baseUrl + "MyData/" + $(this).html(),
 function(data) {
 strResult = data.result[0].Value;
 $("#inputName").val(wasclicked.html());
 $("#inputValue").val(strResult);
 });
 });

Notice the use of the $(this) call, which is more or less the Sender parameter for a Delphi event.
The html content of the element that was clicked is its text, which is the name of the element we
have to pass to the server in the URL, with the expression:

baseUrl + "MyData/" + $(this).html()

Now with this code in place we can see the effect of clicking on one of the elements of the list:
A further AJAX call will reach our server asking for a given value, and the returned value is
displayed in two input text boxes:

Copyright © 2009 Marco Cantu. All Rights Reserved.

As you can see above, the program let us retrieve a value, but has also three buttons to perform
the most common operations (the so called CRUD interface Create, Read, Update, Delete).
This is supported in HTML using the 4 code HTML methods, respectively PUT, GET, POST, and
DELETE. How these are supported by a Delphi 2010 REST server is the subject of the next
section.

POST, PUT, AND DELETE
Up to now we have seen only how to get data from our REST server, but what about updating
it? The generally agreed idea in REST is to avoid using specific URLs for identifying the
operations, but use an URL only to identify server side objects (like MyData/Sample in our case)
and use the HTTP methods to indicate what do to.

uld have been out of
luck, Instead, it maps URLs plus the HTTP method to methods, using a rather simple scheme:
the name of the operation is prepended to the method name, using the following mapping:

 GET get (default, can be omitted)

Copyright © 2009 Marco Cantu. All Rights Reserved.

 POST update

 PUT accept

 DELETE cancel

You can customize these mappings by handling the four corresponding event handlers of the
DSHTTPWebDispatcher component. If we decide to go with the standard naming rules, to
support the various operations we need to define our server class as:

type
 TObjectsRest = class(TPersistent)
 public
 function List: TJSONArray;
 function MyData (name: string): TJSONObject;
 procedure updateMyData (name, value: string);
 procedure cancelMyData (name: string);
 procedure acceptMyData (name, value: string);
 end;

To get a delete an element we only need the name, while to create or update it we need a
second parameter with the data. The implementation of the three new methods is rather simple
and direct, also because they
checked that parameters are not empty and that the server side object really exists):

procedure TObjectsRest.updateMyData (name, value: string);
begin
 DataDict[name].Value := StrToIntDef (Value, 0);
end;

procedure TObjectsRest.cancelMyData(name: string);
begin
 DataDict.Remove(name);
end;

procedure TObjectsRest.acceptMyData(name, value: string);
begin
 AddToDictionary (name, StrToIntDef (Value, 0));
end;

CLIENT SIDE EDITING
Now that we have the CRUD operations available on the REST server, we can complete our
JavaScript client application with the code of the three editing buttons (the image with the
browser-based the user interface was displayed earlier).

Copyright © 2009 Marco Cantu. All Rights Reserved.

While jQuery has specific support for the get operation (with different versions, including the
JSON-specific one we have used earlier) and some support for post operations, for the other
HTTL methods you have to use the lower level (and slightly more complex $.ajax call. This call
has as a parameter a list of paired values, out of over a dozen that are possible. The more
relevant parameters are the type and the url, while data lets you pass further POST parameters.

Posting our update is rather simple, and we can provide all of the data to our REST server using
the URL:

$("#buttonUpdate").click(function(e) {
 $.ajax({
 type: "POST",
 url: baseUrl + "MyData/" +
 $("#inputName").val() + "/" + $("#inputValue").val(),
 success: function(msg){
 $("#log").html(msg);
 }
 });
});

Deleting is equally simple, as we need to create the URL with the reference to the object we
want to remove:

 $("#buttonDelete").click(function(e) {
 $.ajax({
 type: "DELETE",
 url: baseUrl + "MyData/" + $("#inputName").val(),
 success: function(msg){
 $("#log").html(msg);
 }
 });
 });

HTTP input parsing of the REST server crash with an error. As we need to pass information (and
we cannot pass more parameters than the server requires, which will be equally flagged as an
error), what we can do is replace one of the URL elements with a corresponding data element:

 $("#buttonNew").click(function(e) {
 $.ajax({
 type: 'PUT',
 data: $("#inputValue").val(),
 url: baseUrl + "MyData/" + $("#inputName").val(),
 success: function(msg){
 $("#log").html(msg);

Copyright © 2009 Marco Cantu. All Rights Reserved.

 }
 });
 });

Notice that jQuery documentation specifically warns against using PUT in browsers, as you
might get mixed results. That might as well be the reason for which a number of REST services
(including those from Microsoft) tend to use POST for both updating and creating server side
objects. I prefer keeping the two concepts separate, for clarity and consistency, whenever
possible.

So with the three extra methods added to our class and the proper JavaScript calls, we now
have an example with a complete Browser-based user interface for creating and editing objects
in our REST server. Here is an example with a few objects created:

DATA-ORIENTED REST SERVERS
If the original idea behind DataSnap is focused on moving data tables from a middle-tier server
to a client application, it might be quite odd at first to realize that you cannot return a dataset
from a REST server written in Delphi 2010. Well, you cannot return it directly or as easily as you
return its XML representation, but you can create a JSON result with all of the data of a Delphi

s the focus my last example.

Copyright © 2009 Marco Cantu. All Rights Reserved.

The program is quite bare bone, as all it does is return the data of a complete Dataset, with no
metadata. It could be extended in several ways and lacks a polished user interface, but should
get you started. The server class has only one method, returning an entire dataset in a JSON
array, with individual objects / records inside it:

function TServerData.Data: TJSONArray;
var
 jRecord: TJSONObject;
 I: Integer;
begin
 ClientDataSet1.Open;
 Result := TJSonArray.Create;

 while not ClientDataSet1.EOF do
 begin
 jRecord := TJSONObject.Create;
 for I := 0 to ClientDataSet1.FieldCount - 1 do
 jRecord.AddPair(
 ClientDataSet1.Fields[I].FieldName,
 TJSONString.Create (ClientDataSet1.Fields[I].AsString));
 Result.AddElement(jRecord);
 ClientDataSet1.Next;
 end;
end;

This method is invoked by the client application after loading the page, building an HTML table
dynamically, with the following jQuery code (you should have become familiar with the coding
style by now):

$(document).ready(function() {

 $.getJSON(
 "/DataRestServer.RestDataServer/datasnap/rest/TServerData/Data",
 function(data) {
 thearray = data.result[0];
 var ratingMarkup = "<table border='1'>";
 for (var i=0; i < thearray.length; i++) {
 ratingMarkup = ratingMarkup + "<tr><td>" +
 thearray[i].Company +
 "</td><td>" +
 thearray[i].City +
 "</td><td>" +
 thearray[i].State +
 "</td><td>" +
 thearray[i].Country +
 "</td></tr>";

Copyright © 2009 Marco Cantu. All Rights Reserved.

 }
 ratingMarkup = ratingMarkup + "</table>";
 $("#result").html(ratingMarkup);
 });
});

The bare-bone result is visible below in Internet Explorer:

Can we improve it a little bit? What about avoiding listing all of the fields we want to display in
the JavaScript, in case we want them all? The final version of the program adds some metadata
support to improve the final output.

On the server side, there is a second function returning an array of field names from the dataset
field definitions:

Copyright © 2009 Marco Cantu. All Rights Reserved.

function TServerData.Meta: TJSONArray;
var
 jRecord: TJSONObject;
 I: Integer;
begin
 ClientDataSet1.Open;
 Result := TJSonArray.Create;

 for I := 0 to ClientDataSet1.FieldDefs.Count - 1 do
 Result.Add(ClientDataSet1.FieldDefs[I].Name);
end;

The client-side JavaScript has been expanded with a second call to the REST server to get the
metadata:

 $.getJSON(
 "/DataRestServer.RestDataServer/datasnap/rest/TServerData/Meta",
 function(data) {
 theMetaArray = data.result[0];

This information is used to create the table header and to access to the object properties
dynamically, with the notation . In our case the existing code used to
access to an object with the property symbol:

thearray[i].Company

becomes the following code that reads the property by name, using the name of the field
stored in the metadata:

thearray[i][theMetaArray[j]].

This is the complete JavaScript code used to create the HTML markup:

var ratingMarkup = "<table border='1'><tr>";
// header
for (var j=0; j < theMetaArray.length; j++) {

ratingMarkup = ratingMarkup + "<th>" +
theMetaArray[j] + "</th>";

};
ratingMarkup = ratingMarkup + "</tr>";

// content
for (var i=0; i < thearray.length; i++) {
 ratingMarkup = ratingMarkup + "<tr>";
 for (var j=0; j < theMetaArray.length; j++) {

Copyright © 2009 Marco Cantu. All Rights Reserved.

 ratingMarkup = ratingMarkup + "<td>" +
 thearray[i][theMetaArray[j]] + "</td>";
 };
 ratingMarkup = ratingMarkup + "</tr>";
}
ratingMarkup = ratingMarkup + "</table>";

The output of this extended version becomes slightly nicer (and more flexible):

-ins, which
would add significant capabilities to HTML tables, turning them into powerful user interface
grids, with sorting, filtering, and editing capabilities.

CONCLUSION
In this white paper, I have just scratched the surface of the REST architecture and of the
development of REST client and server applications
limited overview of related technologies (XML, JSON, XPath, JavaScript, jQuery) which you
might need to learn in some detail to become proficient on REST architectures.

With the growing number of public REST servers, with the emerging of cloud-computing, with
the growing interest for web hosted applications, Delphi can play a significant role both in the

Copyright © 2009 Marco Cantu. All Rights Reserved.

development of rich user interface clients calling into remote servers and in the development of
actual servers for manipulating data structures in a client application (written in any language) or
directly in the browser.

As the final demos showed, combining JavaScript and a Delphi REST server
use the Embarcadero IDE for the development of professional, high-quality, and modern web
based applications.

ABOUT THE AUTHOR
Marco is the author of the best-selling Mastering Delphi series and in the recent years he has
self-published books on the latest versions of Delphi, including his Delphi 2007 Handbook,
Delphi 2009 Handbook, and Delphi 2010 Handbook (which is being completed at this time).

Beside training and consulting on Delphi, Marco is available for consulting on Web
architectures and the integration of Delphi projects with the web, but in terms of calling other
servers and exposing them to the world.

You can read Marco's blog at http://blog.marcocantu.com, follow him on Twitter at
http://twitter.com/marcocantu, and contact him on marco.cantu @gmail.com.

Marco wishes to thank Daniele Teti for his help in working on this white paper, specifically on
N support.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The compa ® Change

Embarcadero ®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

http://www.embarcadero.com/

