

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters

100 California Street, 12th Floor

San Francisco, California 94111

York House

18 York Road

Maidenhead, Berkshire

SL6 1SF, United Kingdom

L7. 313 La Trobe Street

Melbourne VIC 3000

Australia

White Paper

Developing for Mono with Delphi Prism
Brian Long Consultancy & Training Services Ltd

December 2009

Brian Long Developing for Mono with Delphi Prism

- 1 -

CONTENTS
Introduction ...- 3 -

Microsoft .NET, ECMA and Mono...- 3 -

Cross-platform Development ..- 4 -

Licensing Considerations..- 6 -

Getting Started ..- 6 -

Compiler..- 6 -

Linux and OS X...- 6 -

Mono ...- 7 -

Mono Source...- 7 -

Xcode and Interface Builder ...- 8 -

Shared Folder ...- 8 -

First Foray with Console Applications...- 8 -

Platform & Runtime Identification ...- 11 -

Application Deployment ..- 14 -

Leave As Is ...- 14 -

Change the Behavior of .exe Files..- 14 -

Scripts ...- 14 -

Bundled Executables ..- 15 -

Mac OS X Application Bundles...- 16 -

Data Access ..- 17 -

The Problem of GUI Applications..- 20 -

GUI Toolkits ..- 21 -

WinForms..- 21 -

Mac Application Icons... ‐ 24 ‐

GTK#...- 25 -

Tweak the GTK# Project Code... ‐ 27 ‐

GTK# Examples..‐ 28 ‐

Simple GTK# Example ... ‐ 28 ‐

Dialog Example..‐ 30 ‐

TreeView Example .. ‐ 31 ‐

GTK# Bundled Executable ... ‐ 36 ‐

GTK# Mac OS X Application Bundle .. ‐ 38 ‐

Developing for Mono with Delphi Prism Brian Long

- 2 -

Cocoa#..- 39 -

Monobjc ..- 39 -

.nib Files ..‐ 40 ‐

Interface Builder ... ‐ 41 ‐

Simple Text Editor ... ‐ 42 ‐

Monobjc and Snow Leopard ... ‐ 43 ‐

Correct Closure ... ‐ 44 ‐

Interacting Controls Examples .. ‐ 47 ‐

Color Chooser Example... ‐ 51 ‐

Cocoa UI Techniques ‐ Error Indication By Window Shake...‐ 55 ‐

Cocoa UI Techniques ‐ Confirmation By Slide‐in Sheet ..‐ 56 ‐

Summary...- 58 -

Acknowledgements ...- 58 -

Brian Long Developing for Mono with Delphi Prism

INTRODUCTION
Delphi Prism is well known as the .NET Object Pascal compiler created by
RemObjects Software and marketed by Embarcadero Technologies. The
compiler at the heart of the product is RemObjects Oxygene, formerly
RemObjects Chrome. Most commonly Delphi Prism is used by Delphi
developers to build regular .NET applications of various types, including
Windows applications (with the .NET WinForms library or the newer
Windows Presentation Foundation, or WPF, library), console applications,
windows service applications, ASP.NET web server applications or

Windows Communication Foundation (WCF) service libraries.

This paper leaves traditional .NET development to one side and instead explores how Delphi
Prism lets you take your existing .NET and Delphi skills and break out of the Windows world by
leveraging the Mono project. This allows you to build cross-platform applications that broaden
your reach and gain access to users of Linux and Mac OS X. Launching into the world of cross-
platform development will inevitably result in stumbling across some pitfalls, but we will try and
foresee as many of the more common issues as we can and see how to avoid or overcome
them.

The sample code shown in the paper will be made available on Code Central.

MICROSOFT .NET, ECMA AND MONO
Microsoft released .NET 1.0 in 2002 and it provided a great platform to develop for. Not only
did the platform provide built-in security, consistent exception handling scheme, garbage
collection, and ability to mix and match code from various languages in one managed runtime
environment, but it held the promise of cross-platform development in a more tangible form
than we had encountered before. After all, .NET applications were actually compiled to a
common Intermediate Language (IL), which the platform translated to native instructions
through a JIT (Just-In-Time compilation) process, thereby opening the door for various potential
underlying hardware architectures.

As far as this Microsoft offering was concerned, their initial fulfillment of cross-platform support
involved ensuring that .NET ran on Windows 98, Me, NT 4.0, 2000, and XP, and later versions of
Windows as time went on. This definition of cross-platform being ‘different implementations of
Windows running on the same hardware’ didn’t really come as much of a treat – it was after all
assumed to be a given by Windows developers. However, all was not lost.

Early in the .NET development cycle, Microsoft saw the potential of what they were working
towards and released the specifications for the major parts of its .NET infrastructure to the
European Computer Manufacturer’s Association (ECMA) for standardization. The first standard
of what was called the Common Language Infrastructure, or CLI, was released in December
2001. This later became an ISO standard in April 2003. You can download the latest standards
document from the ECMA web site at http://www.ecma-
international.org/publications/standards/Ecma-335.htm, and I would recommend doing so – it
provides a formalized definition of the platform you develop for as a .NET developer. The
standard is split into various sections, or partitions, and covers the architecture of the virtual

- 3 -

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm

Developing for Mono with Delphi Prism Brian Long

machine (or execution engine), metadata, the base class libraries (BCL), the Intermediate
Language.

So Microsoft’s .NET platform is an implementation of the CLI. Microsoft calls the virtual machine
component of .NET the Common Language Runtime or CLR, and its .NET class library (FCL, or
Framework Class Library) is a significant superset of the BCL, so .NET can be seen as an
implementation of the CLI (CLR + BCL) plus a large additional set of libraries. Note that the CLI
specification is also available as two annotated books from Addison-Wesley, split between the
platform and the BCL: The Common Language Infrastructure Annotated by James S. Miller &
Susann Ragsdale (Addison-Wesley, 2004) and .NET Framework Standard Library Annotated
Reference, Volume 1: Base Class Librray and Extended Numerics Library by Brad Abrams
(Addison-Wesley, 2004).

Microsoft proceeded with additional implementations of the CLI, thereby actually making .NET
a cross-platform product. The .NET Compact Framework for mobile and embedded devices
emerged towards the end of 2002. Earlier the same year a shared source implementation of the
CLI, SSCLI (codenamed Rotor) was released under an academic license. This huge source base
shared a lot with the commercial .NET platform, but employed a Platform Abstraction Layer
(PAL) to allow it to target Windows, FreeBSD or Mac OS X.

More interesting was the Mono project (http://www.mono-project.com),
originally from Ximian, now from Novell. This project was started before
.NET 1.0 was released and Mono 1.0 was released in 2004. Mono attempts
to be not only a complete implementation of the CLI and also as much of
the additional non-standardized parts of .NET as possible on as many
platforms as possible. The JIT compiler targets include x86, x86-64, SPARC,
ARM, and PowerPC and you can download installation kits for Windows,
OS X and various Linux distros.

As well as matching what .NET offers, Mono goes above and beyond that and takes advantage
of many Linux and OS X specific technologies. There are libraries that support specific Unix-
related calls and much support for various graphical toolkits.

Delphi Prism supports the Mono platform and we will look at how we can embrace this support
and move into the world of Linux and OS X without abandoning too much of what we know.

There are other implementations of the CLI available, including the DotGNU project’s
Portable.NET, but they fall outside the scope of this paper.

CROSS-PLATFORM DEVELOPMENT
Before diving into the code, let’s have a think about what is meant by cross-platform
development. This is important as there are various interpretations that could be made.

Regular .NET applications are already cross-platform as they will work on Microsoft Windows
machines running on either 32-bit or 64-bit machines. That could be described as cross-
architecture. Many .NET applications will actually run un-altered on the Mono platform. This
could be described as cross-CLI. A given managed application might run under several
operating systems. This could be described as cross-OS. And of course there are permutations

- 4 -

http://www.mono-project.com/

Brian Long Developing for Mono with Delphi Prism

- 5 -

of these; you need to decide on your requirements and work towards solving them using the
tools at your disposal. The thrust of this paper will be to promote code re-use (cross-CLI) and
look at the feasibility of cross-OS code, which by default will be cross-architecture to one extent
or another.

Of course, the moment you start contemplating having code that runs on any OS other than
Windows (which in this context will be Linux or Mac OS X, both Unix-based), you need to be
conscious of what will immediately break in existing Windows-centric code. There are obvious
examples found when interacting with the file system, such as the separator between directories
in a path (back slash on Windows and forward slash on Unix), or the separator between paths in
a path list (semi-colon on Windows, colon on Unix). These are easy pitfalls to avoid if you
conscientiously use the facilities in the BCL that shield you from the specific platform option,
namely System.IO.Path.DirectorySeparatorChar and System.IO.Path.PathSeparator.
Slightly more interesting is the fact that Unix-based file systems are typically case-sensitive. That
one could take some thinking about if you do a lot of file manipulation.

The more knotty concerns crop up when thinking about the application’s GUI and whether or
not you are interested in maintaining consistency with the look and feel of the OS you are
targeting. Can you create one UI and have it work everywhere, or should you instead think of
building specific UIs for specific OSs? We’ll look at the options later (see GUI Toolkits on page -
21 -).

And what about native code that you’ve called through the P/Invoke or COM Interop
mechanisms? Well, P/Invoke is fully supported and so if you can find suitable implementations
of the native libraries with suitable functions exported, you can probably conditionalise the
code to call one function or another. A P/Invoke function won’t be loaded by the interop layer
in the runtime unless the method that calls it is invoked. So as long as you keep platform-
specific P/Invoke calls wrapped up in their own functions, with different functions calling the
native functions on different platforms, you can work through this one. The Mono class libraries
call many native functions in order to work. Mono wraps up the Unix-specific P/Invokes in the
Mono.Unix.Native.Syscall class in the Mono.Posix.dll assembly. Incidentally, you can get a
list of all the P/Invoke calls contained in an assembly by using the Mono tool monodis, passing it
the --implmap command-line switch.

COM Interop, however, is another matter, what with COM being a mostly Windows-specific
technology. That said, Mono supports COM Interop to some extent on the Windows platform
(see http://mono-project.com/COM_Interop).

You may be wondering whether it is feasible to work out programmatically whether you are
running on Windows or on Linux or on OS X, or whether you can tell if you are running under
Mono or .NET. It is indeed possible to do all these things as we shall see when start building
applications. However, conditionalising your code based on CLI is considered poor form,
although it is accepted that sometimes it is necessary, not least of which for when you happen
upon a bug or limitation in Mono. Do remember that Mono is under constant development and
is always playing a game of catch-up with .NET. It is in very good shape, but there are still holes
here and there.

If you have a library of code that you are thinking of taking to Mono and you want to see how
well it is likely to fare in terms of how many of the .NET library calls are implemented on Mono

http://mono-project.com/COM_Interop

Developing for Mono with Delphi Prism Brian Long

- 6 -

then you should use the MoMA (Mono Migration Analyzer) tool (http://www.mono-
project.com/MoMA). This scans an assembly and produces a report based on some definition
files that are generated for specific releases of Mono.

LICENSING CONSIDERATIONS
An important factor to take into consideration when building applications with open source
libraries such as Mono, the Mono tools, GTK# and Monobjc is the license model they use and
subsequent licensing implications for the whole project.

The Mono tools work under the “viral” GPL v2 (GNU General Public License,
http://www.opensource.org/licenses/gpl-license.html) license, which means if you incorporate
them into your projects, your projects have to use the GPL (meaning it has to be open software).
Fortunately this ends up as irrelevant; you just need to use the odd Mono tool during
development - you are unlikely to need to include them in your own software.

The Mono runtime and the Monobjc libraries are licensed under the LGPL v2 (GNU Library
General Public License, http://www.gnu.org/copyleft/library.html), which means you can use
them in your projects without being forced to make your project use the GPL.

The Mono class libraries are licensed under the MIT X11 license
(http://www.opensource.org/licenses/mit-license.html), which is designed to be rather like the
LGPL, but avoid technical loopholes where you might have been forced to make your
application LGPL just by using it and inheriting from classes within the framework.

In summary, if you use any of these Mono-based libraries in your project, you can distribute
them without being forced to make your own applications use the LGPL - you can use whatever
license you choose. However the author is by no means a lawyer and you should clearly invest
some personal research in this area to ensure you do not get caught out.

GETTING STARTED
Ok, enough of the preamble. Let’s make sure you have all the tools you’ll need for our journey
beyond Windows.

COMPILER
Firstly, the compiler - well that’s Delphi Prism running in Visual Studio (or from a command-line,
running either under .NET or under Mono if you prefer). In 2010 it will also support running
within the Mono development tool MonoDevelop, but for now we’ll stick with Visual Studio.

LINUX AND OS X
Now, assuming your cross-platform requirement isn’t simply restricted to running under a
different CLI implementation then you’ll either be running an Apple Mac with OS X, and/or have
Linux running somewhere. For the examples here I am using the latest (at the time of writing)
version of OS X, 10.6 (or Snow Leopard). I am also running the Debian-based Linux distro,
Ubuntu. Most of the work was done with the April 2009 release of Ubuntu (version 9.04 aka
Jaunty Jackalope).

http://www.mono-project.com/MoMA
http://www.mono-project.com/MoMA
http://www.opensource.org/licenses/gpl-license.html
http://www.gnu.org/copyleft/library.html
http://www.opensource.org/licenses/mit-license.html

Brian Long Developing for Mono with Delphi Prism

MONO
When Delphi Prism is installed it also installs a copy of Mono on Windows, currently version 2.4
(installed into C:\Program Files\Mono-2.4).

Ubuntu comes with the core parts of Mono pre-installed. Ubuntu 9.04 comes with version 2.0.1
of Mono installed in /usr/lib/mono and /usr/bin. Ubuntu 9.10 includes Mono 2.4.2.3. For some
Linux distros you can find packages to download at http://www.go-mono.com/mono-
downloads, and for others the distro will already have it installed, as Ubuntu does. The fact that
Ubuntu only has the core Mono libraries installed will come to bite us later, but we’ll see how to
resolve the problems we see. In the case of other distros, there may be similar problems, but
then there will also be similar solutions to research.

OS X does not come with Mono pre-installed so the appropriate version needs to be pulled
down from Mono downloads link above - there are versions for both Intel and PowerPC
architectures there. On the Mac it installs into /Library/Frameworks/Mono.framework and
/usr/bin. The Mac installer looks like this:

MONO SOURCE
It’s certainly not a requirement in order to work with Mono, but it should be noted that you can
pull down the source code for as many parts of Mono as you like. This can be quite educational.
I prefer to use Subversion and check-out the source directly from the SVN tree as documented
at http://www.mono-project.com/Compiling_Mono_From_SVN so for the Mono main class
library source this will pull down around 110,000 files (totaling slightly more than half a gigabyte)
into a new directory called mcs:

- 7 -

svn co http://anonsvn.mono-project.com/source/trunk/mcs

http://www.go-mono.com/mono-downloads
http://www.go-mono.com/mono-downloads
http://www.mono-project.com/Compiling_Mono_From_SVN

Developing for Mono with Delphi Prism Brian Long

- 8 -

XCODE AND INTERFACE BUILDER
If you are planning on developing for the Mac and ultimately want native looking applications,
then you will have to install Apple’s free Xcode development tools. These include a
development environment (Xcode) and, more importantly, a UI design tool (Interface Builder).
You can either find these as an Optional Install on the OS X installation DVD, or you can
download the installer package from http://developer.apple.com/tools/xcode after registering
for free ADC (Apple Developer Connection) membership.

Apple’s recognizable user interface is produced by the Cocoa library. When you get to building
applications that use Cocoa you will need to use Interface Builder from the Xcode tools. One of
the reasons this paper has been prepared using the latest version of OS X (10.6) is that the last
few versions of Interface Builder have each had some major work done to them and so they
have things laid out in different places, or not at all. Using the latest version ensures you can all
get the benefit of the latest changes.

SHARED FOLDER
The next thing to take into consideration is how you will manage compiling a project on
Windows and running it on either Linux or OS X. Some form of shared folder will be required.
This can be a folder resident on the Linux or OS X box shared via the network, or via the Shared
Folders mechanism if you are running Windows in VM software on the non-Windows box.
Alternatively it can be a Windows shared folder that is mounted onto the Linux/Mac file system.

In my case, I used a MacPro as the real machine, and used VMWare to permit Windows XP and
Ubuntu Linux to run simultaneously in virtual machines. A subdirectory off my OS X home
directory was shared to both VMs so the Windows VM could generate applications on the Mac
drive and the Linux VM could see them as well.

FIRST FORAY WITH CONSOLE APPLICATIONS
Okay, the time has come to cut some code. The first thing to do is just prove a point. We’ll build
a .NET application and ensure it runs under .NET and Mono. We’ll then build the same project
as a Mono project and prove that it also works under both platforms. We’ll start with a simple
console application that lists out various pieces of environment information. Note that when you
choose File, New, Project… (Ctrl+Shift+N) and look at the available projects there is a
Console Application in the main Delphi Prism section, and there is also a Mono Console
Application in the Mono section. You can choose either (and indeed can go through both).

The main source of each version of the project looks like this:

class method ConsoleApp.Main;
begin
 Console.WriteLine(String.Format('Command line: {0}', Environment.CommandLine));
 Console.WriteLine(String.Format('Current directory: {0}',
 Environment.CurrentDirectory));
 Console.WriteLine(String.Format('#Processors: {0}', Environment.ProcessorCount));
 Console.WriteLine(String.Format('User name: {0}', Environment.UserName));
 Console.WriteLine(String.Format('Machine name: {0}', Environment.MachineName));
 Console.WriteLine(String.Format('User domain: {0}', Environment.UserDomainName));
 Console.WriteLine(String.Format('Reported OS Version summary: {0}',
 Environment.OSVersion.VersionString));

http://developer.apple.com/tools/xcode

Brian Long Developing for Mono with Delphi Prism

 Console.WriteLine(String.Format('Reported OS platform: {0}',
 Environment.OSVersion.Platform));
 Console.WriteLine(String.Format('Reported OS Version: {0}',
 Environment.OSVersion.Version));
 Console.WriteLine(String.Format('Reported OS Service Pack: {0}',
 Environment.OSVersion.ServicePack));
 Console.Write('Actual platform: ');
 if IsWindows then
 Console.WriteLine(String.Format('A Windows platform ({0})',
 Environment.OSVersion.Platform))
 else if IsLinux then
 Console.WriteLine('Linux')
 else
 Console.WriteLine('Mac OS X');
 Console.WriteLine(String.Format('Execution engine version: {0}',
 Environment.Version));
 Console.Write('Running .NET or Mono: ');
 if IsMono then
 Console.WriteLine('Mono')
 else
 Console.WriteLine('.NET');
 Console.WriteLine(String.Format('System dir: {0}', Environment.SystemDirectory));
 Console.WriteLine(String.Format('Application Data folder: {0}',
 Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData)));
 Console.WriteLine(String.Format('Desktop folder: {0}',
 Environment.GetFolderPath(Environment.SpecialFolder.Desktop)));
 // More of the same sorts of calls...
 Console.ReadLine;
end;

The code uses some helper methods but we’ll come back to those; they allow you to establish
the runtime or OS for when you desperately need it. For now just note that when you compile
either the .NET or the Mono version of the project you essentially get the same result - a
managed Portable Executable file that can be run wherever Mono or .NET is found. For
example, here is the Mono version of the project being run under .NET.

- 9 -

Developing for Mono with Delphi Prism Brian Long

In addition to the fact that the application helpfully reports it is running under .NET, you should
also know that you are running under .NET because to run under Mono you need to feed the
application the mono command as you can see here:

Note: on Windows, the Mono bin directory is not forced onto the system path. You can either
remedy this or use the Mono Command Prompt in the Mono folder in the Start menu.

Regardless of runtime (CLI) the application dutifully reports details of the Windows build.
Interestingly, Mono reports its execution engine (virtual machine) version as being exactly the
same as the .NET CLR, presumably for compatibility.

Here’s the application running on Linux. The platform version here is the Linux kernel version
number. Notice the Personal or My Documents directory - that home directory is typically
abbreviated to ~ when working at the command prompt and writing scripts in Unix-based OSs.

- 10 -

Brian Long Developing for Mono with Delphi Prism

And here it is running on OS X, so you can see how the directory structures differ.

PLATFORM & RUNTIME IDENTIFICATION
Before moving on there is the matter of the helper functions used in the code to be addressed.
They help identify runtime and OS. The runtime detection calls are straightforward - Mono’s
mscorlib.dll will always have a Mono.Runtime type in it, so:

class method ConsoleApp.IsMono: Boolean;
begin
 exit &Type.GetType('Mono.Runtime') <> nil
end;

- 11 -

Developing for Mono with Delphi Prism Brian Long

- 12 -

class method ConsoleApp.IsDotNet: Boolean;
begin
 exit not IsMono()
end;

Note: This code uses a Delphi Prism extension to Exit where you can specify a function’s return
value and exit in one statement, rather like the return statement in C and C#. In this example
its use over simply assigning to Result is irrelevant, however in later examples it proves useful
when used amidst other logic - it saves having to assign a value to Result and then call Exit (or
use other convoluted conditional logic to avoid further code executing).

For the platform routines, you might be forgiven for thinking a quick peek at
System.Environment.OSVersion.Platform would sort that out - after all, the value is from the
System.PlatformID enumeration which has all the platforms of interest in it. However some
history is useful here. When .NET 1.0 came out, PlatformID only defined Windows-related
values: Win32NT, Win32S, Win32Windows & WinCE. .NET 2 added the Unix value, and then .NET
3.5 added MacOSX and Xbox. This poses a problem for Mono on the Mac. As you can see above,
on OS X it returns Unix; returning the correct MacOSX value (which was added to Mono) was
considered but at the time it broke too much code.

Detecting a generic Unix platform is also an issue; the original Mono kept a true representation
of PlatformID and so on Unix Platform returned an integer value 128. When .NET 2 added
the Unix value (that had an integer value of 4) they switched to that, and now recently MacOSX
(value 6) has been added.

So, the generally recommended way of determining if you are on a Windows or Unix platform is
to check System.IO.Path.DirectorySeparatorChar, which will either be '\' or '/'. The
approved way of working out what type of Unix you are on (Linux or OS X) is to take advantage
of the Unix uname command. In a terminal window, uname will return either ‘Darwin’ (the
FreeBSD derivative that OS X is based on) or ‘linux’. How do you call such a command from
your program? Well, running an external process is overkill - you would typically add a reference
to Mono.Posix.dll and call Mono.Unix.Native.Syscall.uname(), being careful not to make
the call on Windows:

class method ConsoleApp.IsWindows: Boolean;
begin
 Result := System.IO.Path.DirectorySeparatorChar = '\'
end;

class method ConsoleApp.IsLinux: Boolean;
begin
 if IsWindows then
 exit False;
 var buf: Mono.Unix.Native.Utsname;
 if Mono.Unix.Native.Syscall.uname(out buf) = 0 then
 exit string.Compare(buf.sysname, 'linux', True) = 0;
 Result := false;
end;

Brian Long Developing for Mono with Delphi Prism

- 13 -

class method ConsoleApp.IsOSX: Boolean;
begin
 if IsWindows then
 exit False;
 var buf: Mono.Unix.Native.Utsname;
 if Mono.Unix.Native.Syscall.uname(out buf) = 0 then
 exit string.Compare(buf.sysname, 'darwin', True) = 0;
 Result := false;
end;

Note: The code above uses the Delphi Prism syntax extension to allow variables to be declared
wherever they are required, rather than being forced to use the var section above a method’s
code block.

If you use any of the Mono libraries and you are expecting to deploy on Windows, particularly to
.NET users without Mono, then you should ensure the Mono assembly references have their
Copy Local option set to True, to get all dependent files copied to your bin directory. This
allows you to readily see what needs to be deployed to users.

An alternative approach, just for completeness and to show that cross-platform code can make
use of P/Invokes, involves talking directly to the Unix library libc.

 ConsoleApp = class
 private
 [DllImport('libc')]
 class method uname(buf: IntPtr): Integer; external;
 ...
 end;
...
class method ConsoleApp.RunningOnUnix: Boolean;
begin
 //.NET 1.x didn't have a Unix value in System.PlatformID enum, so Mono
 //just used value 128.
 //.NET 2 added Unix to PlatformID, but with value 4
 //.NET 3.5 added MacOSX with a value of 6
 exit Integer(Environment.OSVersion.Platform) in [4, 6, 128];
end;

class method ConsoleApp.RunningOnLinux: Boolean;
begin
 exit RunningOnUnix and InternalRunningLinuxInsteadOfOSX
end;

class method ConsoleApp.RunningOnOSX: Boolean;
begin
 exit RunningOnUnix and not InternalRunningLinuxInsteadOfOSX
end;

class method ConsoleApp.InternalRunningLinuxInsteadOfOSX: Boolean;
begin
 //based on Mono cross-platform checking code in:
 // mcs\class\Managed.Windows.Forms\System.Windows.Forms\XplatUI.cs
 if not RunningOnUnix then
 raise new Exception('This is not a Unix platform!');
 var Buf: IntPtr := Marshal.AllocHGlobal(8192);
 try
 if uname(buf) <> 0 then
 //assume Linux of some sort
 exit True

Developing for Mono with Delphi Prism Brian Long

- 14 -

 else
 //Darwin is the Unix variant that OS X is based on
 exit Marshal.PtrToStringAnsi(Buf) <> 'Darwin'
 finally
 Marshal.FreeHGlobal(Buf);
 end;
end;

Note: the difference between a Mono project and a .NET project, as far as the Delphi Prism
compiler is concerned, is really down to which set of assemblies to link against. In the case of
the Mono project the project file contains a directive to point at the Mono framework
assemblies.

APPLICATION DEPLOYMENT
One thing you will have noticed when running an application under the Mono runtime is the
requirement to pass the executable name as a parameter to the mono command. This could well
be a bit of an issue, given it is more work for a user than is normally required at a command-line.
Fair enough, if the application ends up in an Applications menu somewhere and the command-
line is obscured this maybe not so bad, but there is no such menu on a Mac. So let’s look at the
options you have for deploying applications and having them executed by the user.

LEAVE AS IS
The first option is to do nothing and require users to run your application via mono. This may be
okay for some command-line tools, particularly if the recipient is familiar with using Mono
applications and tools already, but it’s not really very satisfactory.

CHANGE THE BEHAVIOR OF .EXE FILES
It is possible to set up a specific response in Linux when you invoke a file conforming to the
Portable Executable file format (.exe files) and run them via mono, via the binfmt kernel module.
However this is discouraged as it may interfere with other applications. For example VMWare
Fusion sets up a similar mechanism to run .exe files in the context of a guest Windows system.

SCRIPTS
The next best thing would be to supply a shell script with your application whose sole purpose
is to run mono and pass your application along. On Windows this would be a batch file (.bat) or
command script (.cmd), although the issue is almost moot on Windows, given that users will
most commonly launch applications from the folders in the Start menu. For command-line tools,
however (such as those supplied with Mono itself) batch files are still appropriate.

On Unix systems shell scripts have no file extension. You might briefly consider writing such
scripts from the comfort of Visual Studio’s editor, but that wouldn’t get you very far. Firstly there
is the issue of line endings - Windows defaults to using carriage return and line feed characters,
whereas Unix only uses line feeds. But more importantly you will need to test your scripts, so
you should dive in and use a Unix text editor.

On a Mac, the faint-hearted will migrate towards the graphical TextEdit application, although
there are various terminal-based editors: ed, pico (actually nano), vi (actually vim) and the

Brian Long Developing for Mono with Delphi Prism

- 15 -

infamous emacs. Hardened Unix geeks will argue the merits of choosing either vi or emacs, but
MacVim is a good GUI-based version of the old vim editor, available from
http://code.google.com/p/macvim. You should also run vimtutor to get a handle on how to
use it.

On Ubuntu, ed, pico (actually nano) and vi are installed by default. vim, vimtutor and emacs
are available - run the command and you are told how to install them.

Given a Mono application called Blah.exe, a suitable, if minimal script, would look like the
following, and perhaps be called simply blah, to match the general lower-case scheme found
on the case-sensitive Unix systems:

#!/bin/sh
mono Blah.exe $@

The first line of the script is a shell execution directive and says the script should be run by sh,
the basic shell (which on OS X maps onto bash, the Bourne-Again shell). The second line runs
mono, passes the Mono application to it and the $@ says to pass all the command-line
parameters to the script along to the program.

Note: UK Mac keyboards don’t have a # key on them. To type #, use Alt+3.

Note: In order for a shell script to be directly executed it must be marked as executable,
otherwise you will get a Permission denied error. This is done by running the command: chmod
+x blah
Alternatively you can run the script via the shell explicitly, for example: sh blah

Note: if your shared folder that you compile your projects to happens to be a Windows folder,
mounted into the Linux or OS X file system, then you don’t see the above problem. Since
Windows file systems don’t understand Unix execute bits all files are marked executable by
default. This can be a handy time saver, but you should remember the underlying point about
ensuring your scripts are marked as executable.

Note: If you’re in the same directory as the script you won’t be able to directly execute the shell
by simply typing its name. Execution requires the script to be on the path and the current
directory is not typically on the path in Unix-based systems (for security reasons) and so the path
needs to be explicitly mentioned: ./blah

Note: the Mono tools are managed applications and use scripts located in a directory on the
path in order to be called with a single word.

BUNDLED EXECUTABLES
Another option is to bundle everything required for the application into a single executable.
The Mono tool mkbundle does just this. It looks at the executable and identifies dependent
assemblies (and their config files), assuming you pass the --deps command-line switch, and
encodes them as raw assembly language files, which are then assembled into object files by the
GNU assembler. It then creates a C file and compiles it all together into one self-contained
application. The application still uses various native libraries when launched, but all the

http://code.google.com/p/macvim

Developing for Mono with Delphi Prism Brian Long

- 16 -

managed assemblies are all compiled into the one image. We’ll look at using this approach
later (see page - 36 -).

Note that mkbundle does offer the --static option, which will statically link the Mono libraries
into the target executable file, rather than dynamically linking to them. This will mean you will
be forced to use an LGPL license for your application and so this option is generally best
avoided. mkbundle does warn you of this issue if you use the --static switch by printing out
this message: Note that statically linking the LGPL Mono runtime has more licensing restrictions
than dynamically linking. See http://www.mono-project.com/Licensing for details on licensing.

MAC OS X APPLICATION BUNDLES
OS X offers another way of tidying away pesky additional resources required by an application:
application bundles (or packages). If you’ve used a Mac and launched applications in Finder you
will have seen that they appear to be singular monolithic entities, thereby making installing and
uninstalling applications a breeze. However this appearance is an illusion; each application is a
directory structure containing various files and resources as needed by the application.

In Finder you can right-click on an application and the context menu will have a Show Package
Contents menu item. Choosing this launches another Finder window showing the directory
structure within the application bundle, or package.

The actual directory that looks like a monolithic application has an .app extension to it, though
Finder hides this fact. Beneath this is a Contents directory. In here is a MacOS directory
containing the executable program, a Resources directory and a file called Info.plist. This latter
item is a property list and describes the application bundle in a formalized manner. There may
be other files as required in the bundle directory structure but that covers the main suspects.
Note that application bundles provide the best means of setting an application icon, as
displayed by the Dock and the Task Switcher; the icon file will be in the Resources directory and
will be referenced by an entry in the property list file.

Clearly Finder is happy opening applications set up as bundles, but what about command-line
access? Given an application set up as a bundle you can use the open command, which is
essentially what Finder uses:

• if you know the application bundle directory name (such as /Applications/iChat.app) you
can pass it as a parameter to open, for example:

open /Applications/iChat.app

• if the application is installed in the main /Applications directory and you know its name,
such as MacVim (if installed), you can use the -a switch, which allows parameters to be
passed, for example:

open -a MacVim ~/.bash_profile

Note: open also has the -e switch which will automatically open the passed in file with TextEdit.

When you start building OS X applications that have various support files, an application bundle
is the natural choice. Indeed when you build applications based on Cocoa you are pretty much

Brian Long Developing for Mono with Delphi Prism

- 17 -

forced into using bundles. To help us along, Mono has a tool called macpack that takes an
assembly, various resources, and an icon file and generates an application bundle. The -m
switch allows you to specify whether this app bundle is for a WinForms app, Cocoa app, X11
app or console app, as there are certain differences in what needs to be generated.

We’ll come back to the subject of app bundles later (see page - 38 -).

DATA ACCESS
Mono supports ADO.NET functionality, despite it being outside the scope of the ECMA CLI
specification. Over and above the standard ADO.NET namespaces there are also many more
Mono-specific namespaces for various additional databases. See http://www.mono-
project.com/Database_Access for full details. It’s interesting to note that, for example, the
System.Data.SqlClient namespace that provides Microsoft SQL Server support requires no
native client as it is written in fully managed code.

Note: Mono includes a convenient database querying tool called SQL# (invoked with sqlsharp)
that allows you to set a provider and connection string and test out query strings from a SQL
prompt. It’s not on Ubuntu by default but can be added readily by running: sudo apt-get
install mono-devel
sudo is a command that allows you to run commands as the super-user, root.

A commonly used database is the open source MySQL (http://www.mysql.com) and you can
access this in various ways. In regular .NET you might try the MySQL ODBC driver with code like
this to run a SELECT query:

uses System.Data.Odbc;
...
class method ConsoleApp.GetSomeData(): string;
const
 rootPassword = '';
 //ODBC connection string
 connectionString = 'Driver={MySQL ODBC 3.51 Driver};Server=localhost;' +
 'User=root;Password=' + rootPassword + ';Option=3;';
 selectSQL = 'SELECT * FROM Customers WHERE Town LIKE ''%che%'';';
 widths: Array of Integer = [3, 22, 12, 6];
var
 results: StringBuilder := new StringBuilder();
begin
 using sqlConnection: OdbcConnection := new OdbcConnection(connectionString) do
 begin
 sqlConnection.Open();
 SetupData(sqlConnection);
 var dataAdapter: OdbcDataAdapter := new OdbcDataAdapter(selectSQL, sqlConnection);
 var dataTable: DataTable := new DataTable('Results');
 dataAdapter.Fill(dataTable);
 for each row: DataRow in dataTable.Rows do
 begin
 results.Append('|');
 for I: Integer := 0 to dataTable.Columns.Count - 1 do
 begin
 var Width := 20;
 if I <= High(widths) then
 Width := widths[I];
 results.AppendFormat('{0,' + Width.ToString() + '}|', row.Item[I]);

http://www.mono-project.com/Database_Access
http://www.mono-project.com/Database_Access
http://www.mysql.com/

Developing for Mono with Delphi Prism Brian Long

 end;
 results.Append(Environment.NewLine);
 end;
 TearDownData(sqlConnection);
 end;
 Result := results.ToString()
end;

This works fine in .NET and gives identical results in Mono running on Windows:

Note: The code above uses the Delphi Prism for each iteration syntax using a variable row
that is local to the loop, and is declared in the loop syntax itself.

Note: Rather than force a particular character sequence for the end of each row, the platform-
suitable character sequence is obtained from System.Environment.NewLine.

So the code works, but ODBC is a technology prevalent on Microsoft operating systems and
doesn’t show up that much elsewhere. Mono supports talking to ODBC, if present, but what
happens on non-Windows platforms? The answer is you get an error DllNotFoundException:
libodbc.so on Linux and the somewhat impenetrable OdbcException: ERROR [I on OS X.

You can get ODBC to work on Unix-based platforms with help from the unixODBC project
(http://www.unixodbc.org). There are many native drivers listed at
http://www.unixodbc.org/drivers.html but perhaps ODBC is best bypassed.

An alternative is to use a better cross-platform driver such as the MySQL Connector/Net,
available from http://dev.mysql.com/downloads/connector/net. The download links imply
Windows support, but really the archive contains a managed assembly mysql.data.dll that you
need to reference from your project (remember to set the Copy Local option to True in the
Properties for this assembly reference, unless you plan to install it in the GAC (Global Assembly
Cache) with the gacutil tool). Formal installation instructions are at
http://dev.mysql.com/doc/refman/5.1/en/connector-net-installation-unix.html. With this driver
the code changes to:

uses MySql.Data.MySqlClient;
...
class method ConsoleApp.GetSomeData(): string;
const
 rootPassword = '';

- 18 -

 //MySQL Connector/Net connection string

http://www.unixodbc.org/
http://www.unixodbc.org/drivers.html
http://dev.mysql.com/downloads/connector/net
http://dev.mysql.com/doc/refman/5.1/en/connector-net-installation-unix.html

Brian Long Developing for Mono with Delphi Prism

 connectionString = 'Server=localhost;Username=root;Password=' + rootPassword;
 selectSQL = 'SELECT * FROM Customers WHERE Town LIKE ''%che%'';';
 widths: Array of Integer = [3, 22, 12, 6];
var
 results: StringBuilder := new StringBuilder();
begin
 using sqlConnection: MySqlConnection := new MySqlConnection(connectionString) do
 begin
 sqlConnection.Open();
 SetupData(sqlConnection);
 var dataAdapter: MySqlDataAdapter :=
 new MySqlDataAdapter(selectSQL, sqlConnection);
 var dataTable: DataTable := new DataTable('Results');
 dataAdapter.Fill(dataTable);
 for each row: DataRow in dataTable.Rows do
 begin
 results.Append('|');
 for I: Integer := 0 to dataTable.Columns.Count - 1 do
 begin
 var Width := 20;
 if I <= High(widths) then
 Width := widths[I];
 results.AppendFormat('{0,' + Width.ToString() + '}|', row.Item[I]);
 end;
 results.Append(Environment.NewLine);
 end;
 TearDownData(sqlConnection);
 end;
 Result := results.ToString()
end;

The code works just the same in Mono on Windows (and also in .NET):

As with Windows, MySQL is not installed by default on Linux or OS X. You can download the
Mac version from the MySQL web site (just be sure to read the README carefully for
instructions on how to start the service). It will vary between Linux distros, but Ubuntu will install
MySQL with: sudo apt-get install mysql-server

Data access then works in exactly the same manner on Linux and OSX:

- 19 -

Developing for Mono with Delphi Prism Brian Long

THE PROBLEM OF GUI APPLICATIONS
This is where things get interesting/messy (delete as applicable). Application GUIs are very
specific to the OS they run on. Windows applications have a distinct look and feel because they
are built with Windows controls using some variant of some version of the Windows User
Experience Interaction Guidelines (http://msdn.microsoft.com/en-us/library/aa511258.aspx) -
these guidelines have changed over the years, so Windows applications vary, but they are still
readily recognizable.

Linux applications have less of a common look and feel, though those built with the same GUI
toolkit typically have some visual consistency.

Mac applications have a definite look and feel thanks to the almost exclusive use of the Cocoa
library, as mentioned earlier. Additionally the Apple Human Interface Guidelines make very
clear how Mac applications should act and look in order to be acceptable
(http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/AppleHI
Guidelines).

So what happens here with regard to cross-platform solutions, in particular cross-OS? You have
to make a choice, partly based on your expected user base, partly based on what you already
have. If you have a .NET application you are looking to take cross-platform, then you
presumably already have your GUI developed. You might consider a first cut of a cross-platform
app by leaving the GUI as a WinForms UI. WinForms is supported by Mono, despite being

- 20 -

http://msdn.microsoft.com/en-us/library/aa511258.aspx
http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/AppleHIGuidelines
http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/AppleHIGuidelines

Brian Long Developing for Mono with Delphi Prism

- 21 -

outside the ECMA specification. The API is all supported although some minor features do not
actually function.

Using your existing WinForms knowledge may also be acceptable if your user base is deemed
to be quite small or quite forgiving. The issue here being that your WinForms application will
stick out as inconsistent in the Linux GNOME or KDE desktops, or on OS X. Mac users in
particular are unwelcoming to non-Cocoa applications but that’s a call for you to make.

The alternative is to consider building a different GUI for your application. You could go all-in
and build a new application using a different cross-platform UI toolkit, for example GTK# (a
Mono layer over GTK+). This will favor Linux users as GTK+ is the toolkit used to build the
popular GNOME desktop, but will again look out of place on the Mac. There are other similar
toolkits that Mono supports for cross-platform UI development, such as Qyoto (a layer over Qt
giving a Linux KDE desktop look and feel) and wxNet (a layer over wxWindows)

A further alternative is to ensure all your business logic is isolated as much as possible in self-
contained assemblies with appropriately diverse calling interfaces, and to build different front
ends for each target platform. A number of applications take this approach. Clearly this adds
considerable learning and development efforts but does result in a native-looking application
on each OS.

Something that can guide our choices here a little is to limit ourselves to which toolkits Delphi
Prism has project templates for. This includes WinForms and GTK# for cross-OS projects, and
Cocoa# and Monobjc for OS X. There is nothing stopping you looking at Qyoto and wxNet or
other Mono GUI toolkit layers that may exist, but at least you get a starting point with the
project templates.

Let’s take a look at these toolkits.

GUI TOOLKITS
WINFORMS
Mono’s implementation of WinForms had a couple of false starts, where they tried to layer it
over existing graphical toolkits and eventually ran into the limitations of trying to fit a square
peg into a round hole. The current implementation uses System.Drawing to render all controls,
and System.Drawing uses a platform-dependent driver to talk with the underlying OS
windowing system. Currently, though, the rendering is only done using a Windows theme; Linux
and OS X themes might possibly arrive in the future.

In principle you should be able to take your WinForms application from .NET and run it under
Mono on Linux or OS X, however it would be worthwhile running it through MoMA (Mono
Migration Analyzer) to see if there are foreseeable issues with what your code does.

To check out cross-platform WinForms support you could either take an existing Delphi Prism
WinForms .NET project or create a new WinForms project using either the .NET project
template or the Mono WinForms project template for Mac OS X. They will both allow us to

Developing for Mono with Delphi Prism Brian Long

develop and build a WinForms application but clearly there are some differences in the Mac OS
X template.

The two key differences are:

• the Mono project will be linked against the Mono framework assemblies

• an application bundle will be created for the application for OS X users. This allows a
custom icon to be used by the Mac Dock and Task Switcher, which is good as without
this the application is left with a generic executable application icon.

Delphi Prism doesn’t directly invoke Mono’s macpack tool to generate app bundles, but uses a
custom MSBuild target that offers the same functionality.

Let’s look at a sample WinForms application that uses a TreeView control and a NotifyIcon
control (we’ll see more about how this example came about when we see the GTK# equivalent
application in the next section). The first problem we hit is that Mono WinForms support is not
installed on Ubuntu (it’s not a core part of Mono, what with it not being part of the ECMA
specification). This is easily resolvable, as usual:

A quick check with MoMA says all is fine with our use of WinForms. I checked with the default
current Mono version definitions file, and also pulled down the definitions file for Mono version
2.0 (the one on Ubuntu 9.04).

- 22 -

Brian Long Developing for Mono with Delphi Prism

Now if you run it on Linux it executes and pretty much works; pretty much, but not perfectly, as I
will explain.

The application works like this. It starts up and enumerates all the assemblies loaded in its
process, and all the types in those assemblies and all the members in each of those types and
loads them into a TreeView. Whilst loading all this information a progress dialog is on-screen
showing what is being loaded. When all is loaded, the progress dialog disappears and the main
form with the populated TreeView is displayed. That’s about it for the main functionality, but in
addition the application sets up a NotifyIcon control. This shows up in Windows as an icon in
the Taskbar Notification Area (often wrongly referred to as the system tray). The notification
control is programmed to respond to a mouse click (Click event) by toggling the visibility of
the form; it also responds to a right-click by popping up a menu with a Quit option on it (thanks
to the ContextMenuStrip property).

In Windows all is well, it responds to the left-click and right-click just fine. However on Linux
things aren’t so clear-cut. The notification icon responds to a left-click correctly; however its
response to a right-click seems at first glance a little odd. Both events trigger for it - you get the
popup menu and the visibility changes. Clearly the Mono implementation takes the Click
event name literally - any type of click triggers the event. This is not the sort of thing that MoMA
picks up. I’d be inclined to suggest this was a bug (being inconsistent) in the Linux side of Mono
WinForms. Perhaps it was not such a sage move to have both a Click event handler and a
ContextMenuStrip after all.

It also runs on OS X. Kind of; but not entirely. You see, the NotifyIcon control is not fully
implemented in OS X and when the code tries to set the icon you get:

Again, MoMA did not see this as it is looking more for missing methods more than missing
functionality. If you pulled down the Mono class library source (as described earlier) you can see
the offending routines in
msc\class\managed.Windows.Forms\System.Windows.Forms\XplatUICarbon.cs (note that the
Cocoa Mac UI framework is itself based on the Carbon framework). Specifically SystrayAdd(),
SystrayChange() and SystrayRemove() all throw a NotImplementedException and are
marked with the MonoTODO attribute, so you need to avoid this can of worms by conditionalising
some of the code based on the OS:

method MainForm.MainForm_Load(sender: System.Object; e: System.EventArgs);
begin
 if not RunningOnOSX then
 notifyIcon.Icon := Icon;
end;

With this done the application runs fine on OS X:

- 23 -

Developing for Mono with Delphi Prism Brian Long

MAC APPLICATION ICONS
Notice the custom Dock icon? This was achieved through the content of the application bundle
set up by the Mono WinForms project template. Each template that sets up an app bundle has
a default App.icns file (an Apple icon image file) in the project that is sent into the app bundle,
and which can be replaced. However if you replace it with a file of a different name you need to
make Delphi Prism aware of it as a Mac icon file.

In the current release of Delphi Prism (August 2009) this requires you to edit your project file
(the .oxygene file), which is stored in XML format. Nested within the main PropertyGroup
element you need to add a MacIconFile element, for example:

<MacIconFile>Properties\Tree.icns</MacIconFile>

Note: The Apple Xcode tools include an Icon Composer application in
/Developer/Applications/Utilities that can be used to build .icns files and .ico files. Note this
tool is for building the files, not for editing the images, but if you have suitable .png files for the
various resolutions required you can simply drag them into the placeholder areas in an .icns file
or .ico file in Icon Composer. There are web sites with free images that can be used to build
icons, such as http://www.zoobapps.com/free_icons.

In the case of a WinForms application that can also be executed on other platforms, be sure to
set the application icon as you would normally, as well as the Icon property for your forms.

Now that you have a custom application icon, not only does it show up in the Dock when the
application is running, but of course it is displayed by Finder when looking at the application
bundle as well. In the screenshot below you can see the actual WinForms executable (and
debug symbol file), and also the application bundle (remember Finder by default hides the .app
extension on application bundle directories).

- 24 -

http://www.zoobapps.com/free_icons

Brian Long Developing for Mono with Delphi Prism

GTK#
GTK+ (http://www.gtk.org and http://www.gtk-osx.org) is a cross-platform
graphical widget toolkit (where a widget is a control). It is an object-
oriented version of the original GTK that was built specifically to develop
the popular GNU image editor GIMP (GNU Image Manipulation program),
hence GTK being the GIMP Tool Kit. GTK# (http://www.mono-
project.com/GtkSharp) is a .NET binding over GTK+ allowing Mono
applications

GTK+
 to be developed.

Documentation can be found under Gnome Libraries in the Mono documentation
(http://www.go-mono.com/docs) - use the hierarchy browser on the left of the page. It can also
be useful to keep a link to the original GTK+ documentation, which you can find at
http://library.gnome.org/devel/references.

GTK+ is based on separate libraries maintained by the same team, all represented in GTK#:

• Glib - core library providing the event loop and other runtime functionality

• Pango - text rendering and layout library, supporting internationalization

• GDK - GIMP Drawing Kit - insulates GTK+ from the windowing system

• Cairo - cross-platform 2D graphics rendering system

• ATK - accessibility toolkit

- 25 -

http://www.gtk.org/
http://www.gtk-osx.org/
http://www.mono-project.com/GtkSharp
http://www.mono-project.com/GtkSharp
http://www.go-mono.com/docs
http://library.gnome.org/devel/references

Developing for Mono with Delphi Prism Brian Long

- 26 -

Building a GTK# application can either be thoroughly code-based, or you can use the Glade UI
designer (http://glade.gnome.org), with binaries available for Windows and OS X. Glade allows
you to design the user interface entirely separate from the code, with the definition saved in an
XML file. It presents the regular UI design paradigm: lay out controls, or widgets, on one or
more windows, set the properties of the controls and set up the names of methods that
respond to things happening. In GTK+ and GTK# events are referred to as signals and event
handlers are referred to as callbacks.

Note: Glade XML files are loaded by functionality in libglade. Technically, libglade is heading
toward deprecation, to be replaced by GtkBuilder (added to GTK+ in 2007). As of version 3.6,
Glade works with both libglade and GtkBuilder files, however GTK# currently only supports
libglade. Presumably at some point in the future GtkBuilder support will be added to GTK#, but
bear in mind which format to use when using Glade - the Delphi Prism GTK# project template
contains a libglade XML file.

Note: When using Glade to edit your UI it is advisable to follow the mantra “save and save
often.” I have encountered a number of frustrating Glade crashes that have caused a loss of
work.

Note: If using Glade on a Mac you should be very wary of the Delete key on the keyboard
when editing text properties. It is instinctive to expect it to delete the character after the cursor,
as it does on Windows; however on the Mac it has a tendency to delete the currently selected
widget, which may include a whole hierarchy of child widgets.

Note: Use of Glade should be optional very soon as work is under way to have Delphi Prism
integrate with MonoDevelop (http://monodevelop.com). MonoDevelop also has an XML-based
UI design approach for GTK# applications but uses a dedicated GTK#-friendly editor called
Stetic, which bypasses both libglade and GtkBuilder.

The basic GTK# application has a Main.pas file that notionally contains the main form. In truth it
really contains a class (MainForm) that can act for the main form and as many other forms as you
choose. Also included in the project is Main.glade, the libglade XML file. This contains a simple
definition of a GTK+ window with a VBox container on it and a delete_event callback handler
set. The MainForm class looks like this:

type
 MainForm = class(System.Object)
 private
 {$REGION Glade Widgets}
 var
 [Widget] window1: Gtk.Window;
 {$ENDREGION}
 public
 constructor(args: array of String);

 method on_window1_delete_event(aSender: Object; args: DeleteEventArgs);
 end;

constructor MainForm(args: array of String);
begin
 inherited constructor;
 Application.Init();

http://glade.gnome.org/
http://monodevelop.com/

Brian Long Developing for Mono with Delphi Prism

- 27 -

 with lXml := new Glade.XML(nil, 'GtkApplication1.Main.glade', 'window1', nil) do
 lXml.Autoconnect(self);

 Application.Run();
end;

method MainForm.on_window1_delete_event(aSender: Object; args: DeleteEventArgs);
begin
 Application.Quit();
end;

Here you can see a declaration for the window (adorned with a Widget attribute), the callback
handler, and the code that sets things in motion. The Glade.XML class loads the libglade XML
file and creates a user interface defined inside. This particular constructor allows the XML file to
be found as a resource in a specified assembly (the first nil means the current assembly). The
second parameter is the resource name - note that the resource name starts with the assembly
name. The third parameter is the widget node to start building the UI from, typically a top level
window name, and the last parameter is an XML translation domain, typically nil.

As soon as the XML object is created its Autoconnect() method is called with a reference to
this class passed in. This connects all the signals defined in the glade file with the callback
handlers defined in the class, and also wires up fields defined in the class with the Widget
attribute to the same-named widgets in the UI.

TWEAK THE GTK# PROJECT CODE
There are factors that normally cause me to update this setup code. The XML file will always be
embedded in my main executable assembly so I use a simpler constructor overload. Also, since
I may save my project under a new name, or rename the executable after building it, I remove
the literal reference to the assembly name in the XML resource name (which will be invalid as
soon as the executable is renamed) and calculate it dynamically instead. Finally, to avoid the
compiler complaining about a lack of assignment to the widget variables (they are, after all,
assigned behind the scenes) I add in a nil assignment to their declarations. All this changes the
constructor to as follows. Note that the Glade XML object is created without a variable, and
Autoconnect() is called directly before leaving it to fend for itself until the Garbage Collector
finds it.

uses
 ...
 System.Reflection;

type
 MainForm = class(System.Object)
 private
 var AssemblyName: String;
 {$REGION Glade Widgets}
 var
 [Widget] window1: Gtk.Window := nil;
 {$ENDREGION}
 ...
 end;

constructor MainForm(args: array of String);
begin
 inherited constructor;
 Application.Init();

Developing for Mono with Delphi Prism Brian Long

- 28 -

 AssemblyName := &Assembly.GetEntryAssembly().GetName().Name;
 new Glade.XML(
 AssemblyName + '.Main.glade', 'myGladeWindow').Autoconnect(self);
 Application.Run();
end;

You simply add in as many additional widget variable declarations as you require, based on the
widgets you build into your UI in the Glade designer.

Note: In the August 2009 release of Delphi Prism, the GTK# project template references all the
various GTK# assemblies but has the Copy Local property set to True for all of them. This has no
impact on Windows, but causes problems on Linux and OS X. The thing is, there is no need to
copy the GTK# assemblies - they are a part of the Mono distribution. Unfortunately having them
sat in the executable’s directory without their config files breaks required loading behavior on
non-Windows platforms and gives the error: Unhandled Exception:
System.DllNotFoundException: libglib-2.0-0.dll.

GTK# EXAMPLES
To learn something of how GTK# works (and later, Monobjc) we’ll look at how to implement
some example programs detailed in a few tutorials scattered about the web; both for the Mono
wrapper GTK# and for the original GTK+. This can be quite useful as you can see the
differences required to achieve the same results when using Delphi Prism and Mono and
compare the steps with the original tutorial. This will help when looking at additional tutorials
that you find to learn how to achieve other goals in the future.

SIMPLE GTK# EXAMPLE
The first example to try is a very simple GTK# application and the original tutorial is located at
http://www.box.net/public/aqu7jo4uby, by Paul Hogan (aka pachjo). This tutorial uses Python as
the programming language and appears to use an older version of Glade that offers GTK+ and
GNOME as project types over GtkBuilder and Libglade, but again, use Libglade when asked.

Build up the trivial UI in Glade as per the directions - you should be looking at something like
this:

http://www.box.net/public/aqu7jo4uby

Brian Long Developing for Mono with Delphi Prism

Note that there is a Label control below the two buttons. Also note that signal handler names
can either be entered manually or a reasonably sensible name can be selected from a drop-
down list in the Signals tab.

This example is quite simple and has both buttons update the label’s caption from their
clicked signal handler. This is the important code, including the manually entered signal
handler methods:

type
 MainForm = class(System.Object)
 private
 var AssemblyName: String;
 {$REGION Glade Widgets}
 var
 [Widget] theLabel: Gtk.Label := nil;
 {$ENDREGION}
 public
 constructor(args: array of String);
 method on_myGladeWindow_delete_event(aSender: Object; args: DeleteEventArgs);
 method on_button1_clicked(sender: Object; args: EventArgs);
 method on_button2_clicked(sender: Object; args: EventArgs);
 end;

- 29 -

Developing for Mono with Delphi Prism Brian Long

- 30 -

constructor MainForm(args: array of String);
begin
 inherited constructor;
 Application.Init();
 AssemblyName := &Assembly.GetEntryAssembly().GetName().Name;
 new Glade.XML(
 AssemblyName + '.Main.glade', 'myGladeWindow').Autoconnect(self);
 Application.Run();
end;

method MainForm.on_myGladeWindow_delete_event(aSender: Object; args: DeleteEventArgs);
begin
 Application.Quit();
end;

method MainForm.on_button1_clicked(sender: Object; args: EventArgs);
begin
 theLabel.Text := 'You pressed button1';
end;

method MainForm.on_button2_clicked(sender: Object; args: EventArgs);
begin
 theLabel.Text := 'You pressed button2';
end;

As you can see, it’s quite straightforward: standard PME (property, method & event) coding.
Hopefully you navigated your way around the Glade designer without too much ado.

DIALOG EXAMPLE
The next tutorial to tackle in GTK# is http://tadeboro.blogspot.com/2009/04/gtkdialog-tutorial-
part-2.html by Tadej Borovšak aka tadeboro. This takes us though building a confirmation
dialog used to confirm the user wishes to quit, and also extending and using the About box
template. Other than a bit more time in the Glade designer, following the tutorial requires a
couple of signal handlers as follows:

method MainForm.on_mainWindow_delete_event(aSender: Object; args: DeleteEventArgs);
begin
 new Glade.XML(AssemblyName + '.Main.glade', 'confirmQuitDialog').Autoconnect(self);
 try
 confirmQuitDialog.Icon := new Pixbuf(nil, AssemblyName + '.Properties.Tux.png');
 args.RetVal := confirmQuitDialog.Run <> 1;
 confirmQuitDialog.Hide;
 finally
 confirmQuitDialog.Destroy;
 confirmQuitDialog := nil;
 end;
end;

http://tadeboro.blogspot.com/2009/04/gtkdialog-tutorial-part-2.html
http://tadeboro.blogspot.com/2009/04/gtkdialog-tutorial-part-2.html

Brian Long Developing for Mono with Delphi Prism

method MainForm.on_aboutButton_clicked(aSender: Object; args: EventArgs);
begin
 new Glade.XML(AssemblyName + '.Main.glade', 'aboutDialog').Autoconnect(self);
 try
 aboutDialog.Icon := new Pixbuf(nil, AssemblyName + '.Properties.Tux.png');
 aboutDialog.Logo := new Pixbuf(nil, AssemblyName + '.PrismLogo.png');
 aboutDialog.Run;
 aboutDialog.Hide;
 finally
 aboutDialog.Destroy;
 aboutDialog := nil;
 end;
end;

Note that I have also chosen to add a PNG image into the project in the Properties directory,
and use this as the icon for each window in the application (this shows up on Linux and on
Windows). Additionally I added a regular icon file to the application so that when the .exe file is
examined on Windows, the icon will be visible.

You can see that the pre-fabricated About box template is quite flexible inasmuch as it
automatically offers a Credits screen.

Note: The Glade auto-connect mechanism does a good job of hooking variables up to UI
widgets, but occasionally you find a corner case where it fails. For example, in the About dialog
template there is an internal VBox dialog-vbox3, in which I wanted to load an image from a
resource file. However the regular approach to having the image control surface as a variable
failed, possibly due to the VBox being an internal control.

TREEVIEW EXAMPLE

- 31 -

The next demo application uses the GTK+ TreeView control. Unfortunately the Glade designer
(or more specifically the libglade support) does not support working with the treeview (though
the GtkBuilder support does) so we’ll deal with it in code. TreeView is interesting in that it
forces separation of the UI from the data displayed there; the data is set up in a TreeStore
(which implements the TreeModel interface), and this is later fed to the TreeView via its

Developing for Mono with Delphi Prism Brian Long

- 32 -

constructor or Model property. Also, the GTK+ TreeView supports columns of information in
addition to the displayed hierarchy, something that the WinForms TreeView control does not.

The TreeView class is documented in the Mono documentation library at
http://tinyurl.com/Gtk-TreeView where you will also find a simple example of its use along with
a more advanced example, both written in C#. This ends up being quite easy to port over to
Delphi Prism, all the more so if you ignore all the regular UI building code and do those steps in
the Glade designer. This is what the main parts of the code end up looking like:

type
 MainForm = class(System.Object)
 private
 var AssemblyName: String;
 {$REGION Glade Widgets}
 var
 [Widget] mainWindow: Gtk.Window := nil;
 [Widget] scrolledWindow: ScrolledWindow := nil;
 [Widget] updateDialog: Gtk.Dialog := nil;
 [Widget] dialogLabel: Label := nil;
 {$ENDREGION}
 store: TreeStore;
 method UpdateProgress(format: String; params args: Array of object);
 method ProcessType(parent: TreeIter; t: &Type);
 method ProcessAssembly(parent: TreeIter; asm: &Assembly);
 method PopulateStore;
 public
 constructor(args: array of String);
 method on_window1_delete_event(aSender: Object; args: DeleteEventArgs);
 method on_updateDialog_response(aSender: Object; args: ResponseArgs);
 end;
...
implementation

uses
 System.Security;

constructor MainForm(args: array of String);
begin
 inherited constructor;
 AssemblyName := &Assembly.GetEntryAssembly().GetName().Name;
 Application.Init();
 PopulateStore;
 new Glade.XML(AssemblyName + '.Main.glade', 'mainWindow').Autoconnect(self);
 mainWindow.Icon := new Pixbuf(nil, AssemblyName + '.Properties.Tree.png');
 var tv: TreeView := new TreeView(store);
 tv.HeadersVisible := True;
 tv.AppendColumn('Name', new CellRendererText(), 'text', 0);
 tv.AppendColumn('Type', new CellRendererText(), 'text', 1);
 scrolledWindow.Add(tv);
 updateDialog.Destroy;
 updateDialog := nil;
 mainWindow.ShowAll();
 Application.Run();
end;

method MainForm.on_window1_delete_event(aSender: Object; args: DeleteEventArgs);
begin
 Application.Quit();
end;

http://tinyurl.com/Gtk-TreeView

Brian Long Developing for Mono with Delphi Prism

- 33 -

method MainForm.PopulateStore;
begin
 if store <> nil then
 Exit;
 store := new TreeStore(typeof(string), typeof(string));
 for each asm: &Assembly in AppDomain.CurrentDomain.GetAssemblies() do
 begin
 var asmName: String := asm.GetName().Name;
 UpdateProgress('Loading {0}', asmName);
 ProcessAssembly(store.AppendValues(asmName, 'Assembly'), asm)
 end;
end;

method MainForm.UpdateProgress(format: String; params args: Array of object);
begin
 var Text := string.Format(format, args);
 if updateDialog = nil then
 begin
 new Glade.XML(AssemblyName + '.Main.glade', 'updateDialog').Autoconnect(self);
 updateDialog.Icon := new Pixbuf(nil, AssemblyName + '.Properties.Tree.png');
 dialogLabel.Text := Text;
 updateDialog.ShowAll();
 end
 else
 begin
 dialogLabel.Text := Text;
 while Application.EventsPending() do
 Application.RunIteration()
 end;
end;

method MainForm.ProcessAssembly(parent: TreeIter; asm: &Assembly);
begin
 var asmName: String := asm.GetName().Name;
 for each t: &Type in asm.GetTypes() do
 begin
 UpdateProgress('Loading from {0}:'#10'{1}', asmName, t.ToString());
 ProcessType(store.AppendValues(parent, t.Name, t.ToString()), t);
 end;
end;

method MainForm.ProcessType(parent: TreeIter; t: &Type);
begin
 for each mi: MemberInfo in t.GetMembers() do
 store.AppendValues(parent, mi.Name, mi.ToString())
end;

method MainForm.on_updateDialog_response(aSender: Object; args: ResponseArgs);
begin
 //Application.Quit();
 System.Environment.Exit(0);
end;

When the application starts up (MainForm constructor) it sets up the TreeStore via
PopulateStore() before doing anything with the main window. This method iterates through
each assembly in the process, then each type in the assemblies and each member in each type,
adding information about each item into the store using the helper methods
ProcessAssembly() and ProcessType(). Additionally, each step of the way the user is alerted
to what is going on by UpdateProgress(), which ensures the progress dialog is displayed on

Developing for Mono with Delphi Prism Brian Long

the screen (with an associated window icon) and updates a label on it with the passed in
progress message:

An enhanced version of this example contains the GTK+ About dialog, set up with pretty
image, credits etc. as well as a menu allowing the user to choose an additional assembly to loop
through and add into the tree view. The code for these additions is not very informative, but
there is also a StatusIcon widget used to add a notification icon into the system, based on the
sample code at http://www.mono-project.com/GtkSharpNotificationIcon. As usual the code
ports over straightforwardly, but in this case I’ve fixed some shortcomings:

constructor MainForm(args: array of String);
begin
 ...
 //Set up a tray icon
 trayIcon := new Statusicon(new PixBuf(nil, AssemblyName + '.Properties.Tree.png'));
 trayIcon.Visible := True;
 //Show/hide the window when the icon is clicked
 trayIcon.Activate += method begin mainWindow.Visible := not mainWindow.Visible end;
 //Set up a context menu for the icon
 trayIcon.PopupMenu += OnTrayIconPopup;
 trayIcon.Tooltip := 'TreeView Demo Icon';
 //Start the app proper
 mainWindow.ShowAll();
 Application.Run();
end;

method MainForm.OnTrayIconPopup(sender: Object; args: EventArgs);
begin
 //Ensure we don't get lots of popups if we keep clicking in different spots
 if popupMenu = nil then
 begin
 popupMenu := new menu();
 var menuItemQuit: ImageMenuItem := new ImageMenuItem('Quit');
 menuItemQuit.Image := new Gtk.Image(Stock.Quit, IconSize.Menu);
 popupMenu.Add(menuItemQuit);
 //Quit when the menu item is clicked
 menuItemQuit.Activated += method begin ExitNicely end;
 end;
 popupMenu.ShowAll();
 popupMenu.Popup();
end;

- 34 -

http://www.mono-project.com/GtkSharpNotificationIcon

Brian Long Developing for Mono with Delphi Prism

method MainForm.ExitNicely;
begin
 if trayIcon <> nil then
 begin
 trayIcon.Visible := False;
 Application.Quit;
 end;
end;

Notice the check to ensure you don’t create multiple popup menus - without this if you right-
click multiple times on the notification icon you would keep getting additional popup menus
showing. Also, the termination code has been extended to ensure the notification icon is
explicitly removed from the notification area to avoid a ghost icon being left there.

Note: The code above uses some Delphi Prism syntax extensions. The += operator adds a new
event handler. In the case of the Activate and Activated events we are adding an anonymous
delegate: a method body declared inline.

This example is now functionally equivalent to the WinForms example we looked at earlier. It
operates successfully on Windows and Linux; even the status icon behaves as intended this
time. The StatusIcon’s Activate signal is triggered on a left-click and the PopupMenu signal
on a right-click.

- 35 -

Developing for Mono with Delphi Prism Brian Long

On OS X the application isn’t so good. Resizing the window causes it to jump all over the screen
and the StatusIcon signal generation is different. A left-click triggers the PopupMenu signal
and the Activate signal seems to not trigger at all. So there are some platform differences
again in the case of the notification icon control but other than that GTK# does a good job of
cross-platform UI.

GTK# BUNDLED EXECUTABLE
Let’s turn one of these GTK# applications into a bundled executable so that it doesn’t need to
be launched via the mono command. This is a suitable operation for any application intended for
use on Linux and for console applications on the Mac - GUI applications will use application
bundles as discussed next.

Note: mkbundle will generate a bundled executable suitable for the platform it was called on. It
generates different code based the running OS.

Note: Be careful to ensure your directory path does not contain a # in it when running mkbundle
otherwise the process will fail. For example if my target Mono application is located in
~/dev/mono/src/gtk#/TreeViewDemo2/bin/Debug and I run mkbundle from that directory
against the .exe file I get this error thanks to the # being taken as a comment character in one of
the command expansions:
Unhandled Exception: System.IO.FileNotFoundException: Could not load file or assembly
'/Users/brian/dev/mono/src/gtk' or one of its dependencies. The system cannot find the file
specified.

- 36 -

Brian Long Developing for Mono with Delphi Prism

Things go very smoothly on Linux; you tell mkbundle to work out the dependencies and make a
program called simply treeviewdemo and the job is done.

As mentioned, it’s less important on OS X, but things don’t go too smoothly on OS X 10.6. You
may notice in the screenshot above that mkbundle invokes the GNU assembler as, the GNU C
compiler cc and also pkg-config, a tool used to get compiler switches to allow successful
linking to various libraries. On OS X (at least on my Mac Pro) it seems the assembler and linker
default to an architecture that is incompatible with the generated assembly and C source files.
Also, pkg-config is not in any directories on the path (though Mono does supply a copy on a
directory not on the path, /Library/Frameworks/Mono.framework/Commands) and cannot find
its data files for some of the required libraries (partly due to a lack of config, partly due to the
Glib developer framework not being installed).

Fortunately all of this can be rectified by installing GTK+ for OS X (http://www.gtk-osx.org) and
modifying some environment variables; I chose to edit my ~/.profile file (which didn’t initially
exist) so each new session would have these pre-set. I added these lines to the file:

scripts is where my own scripts are to be found
Mono commands path is to allow pkg-config to be found

Export PATH=/Library/Frameworks/GLib.framework/Resources/dev/lib/
pkgconfig:/Library/Frameworks/Mono.framework/Commands:$PATH

To allow Mono mkbundle to work

export AS="as -arch i386"
export CC="cc -arch i386"

- 37 -

http://www.gtk-osx.org/

Developing for Mono with Delphi Prism Brian Long

- 38 -

export PKG_CONFIG_PATH=/Library/Frameworks/Mono.framework/Versions/Current/lib/pkgconf
ig

If you add modify your .profile you can force the shell to reload it immediately, to save
starting a new shell, with:

. ~/.profile

This should give successful executable bundling on OS X.

GTK# MAC OS X APPLICATION BUNDLE
For proper deployment on OS X you should look at what’s involved in making an application
bundle for a GTK# application. In this case we currently have a Mono executable. For a decent
app bundle you’ll need a Mac icon (.icns file), so I made one called Tree.icns. Now it’s just a
case of invoking macpack:

macpack -n TreeViewDemo -i Tree.icns -m console TreeViewDemo2.exe

Clearly the -i switch specifies the icon file, but the other two switches bear some investigation.
-n specifies the application name that will appear in Finder when you select the application
bundle (as shown in the screenshot on page - 25 -), and is also used in the Task Switcher and in
the tooltip for the application icon in the Dock when it is running. -m allows you to choose the
type of application so the generated bundled script can set things up correctly. Values that you
might feasibly choose include winforms, cocoa and console, but since the environment
variables that would be set up for WinForms or Cocoa are not required, console will do just
fine.

This is the manual way to generate an application bundle and is currently appropriate for
console and GTK# applications on OS X. WinForms applications (as we saw earlier), Cocoa#
applications and Monobjc applications have their projects set up to automatically generate an
application bundle thanks to the Delphi Prism MacPack MSBuild task invoked via the project
file.

If you prefer, you can skip the manual macpack invocation and make use of the IDE app bundle
generator by modifying your GTK# project file (the XML format .oxygene file). You can either
load the project file into some text editor of your choice, or you can edit it within Visual Studio
by following these steps:

1. Ensure you have saved changes within your project/solution
2. Right-click on the project node in the Solution Explorer window hierarchy and choose

Unload project (this changes the project node to say it is unavailable)
3. Right-click on the project node and choose Edit <projectname>.oxygene to load the

XML project file into the Visual Studio editor
4. Edit the file as you require
5. Close the .oxygene file in the editor
6. Right-click the project node and choose Reload project

Nested within the main PropertyGroup element in the project file you need to add a
MacPackMode element and, if desired, a MacIconFile element, for example:

Brian Long Developing for Mono with Delphi Prism

<MacPackMode>Console</MacPackMode>
<MacIconFile>Properties\Tree.icns</MacIconFile>

You’ll also need to import the MSBuild target file that enables the IDE-resident MacPack
functionality. You can add this after the other RemObjects import element towards the end of
the project file nested within Project element:

 <Import Project="$(MSBuildExtensionsPath)\RemObjects Software\Oxygene\
 RemObjects.Oxygene.Cocoa.targets" />

Note: Having an app bundle means moving and installing the application are straightforward. It
also means you can drag your application into the Dock to have a persistently available shortcut
on hand.

Note: if generating your app bundle in the IDE, you must ensure the bundled script file has the
execute bit set. If you build to a Windows drive that the Mac is sharing this will happen
automatically. Otherwise you will have to set it manually with chmod, for example:

chmod +x TreeViewDemo.app/Contents/MacOS/TreeViewDemo

COCOA#
Cocoa# (http://cocoa-sharp.com) is one of a number of projects designed to allow Cocoa
applications to be built under Mono. However, it isn’t the fastest moving project and has a
number of issues waiting to bite you right from the off.

The Delphi Prism version that has been shipping since August 2009 contains a couple of
Cocoa# project templates, one for OS X 10.4 (Tiger) and one for 10.5 (Leopard). Unfortunately
neither of these seems to run correctly under OS X 10.6 (Snow Leopard). Even in 10.5, the
Leopard project exhibits a very noticeable problem inasmuch as the Colors button on the
toolbar crashes the application.

This is an issue in the Cocoa# libraries as opposed to any limitation with Delphi Prism. This and
other issues were reported some time back to the Cocoa# maintainers, but still remain unfixed.
Due to this the Cocoa# project templates will be removed in the next Delphi Prism release.

In short, let’s dismiss Cocoa# as an idea good in theory and poor in implementation.

MONOBJC
This is where you spend some time doing real Mac development.
Monobjc (http://www.monobjc.net) is a bridge technology that allows
Mono applications to connect to various Apple Objective-C libraries
including the main UI library, Cocoa. API documentation can be found
at http://api.monobjc.net but of course it is useful to keep the original
Cocoa documentation handy. As well as online at
http://developer.apple.com/mac/library/navigation, you also have a
local copy thanks to the Xcode tools:
/Developer/Documentation/DocSets/com.apple.adc.documentation.A

ppleSnowLeopard.CoreReference.docset.

- 39 -

http://cocoa-sharp.com/
http://www.monobjc.net/
http://api.monobjc.net/
http://developer.apple.com/mac/library/navigation

Developing for Mono with Delphi Prism Brian Long

- 40 -

Monobjc is not part of Mono but is a project that builds on Mono. The August 2009 version of
Delphi Prism ships with Monobjc version 2.0.404.0 (installed in C:\Program Files\Monobjc-
2.0.404.0) although at the time of writing the current released version is 2.0.413.0 and the
current test version is 2.0.436.0. You should get the latest version of the library to develop
against.

Let’s jump straight in and make a new Monobjc application in Delphi Prism using the Monobjc
project template. Once you’ve created the project and built it, you should locate the
automatically generated application bundle in Finder and try and launch the new application to
see what it offers.

Note: Finder will try to launch the application but it may well fail, depending on where the
directory resides that you built the application to. If it’s on a Windows drive that is shared and
mounted onto the Mac then all will be well, otherwise you’ll have to set the execute bit as
discussed in the Scripts section on page - 15 -. However in this case the script is bundled into a
nested directory in the app bundle. For an example project MonobjcApplication1, if you change
to the directory containing the app bundle directory (the bin/Debug directory under the project
directory) then this command will fix it:

chmod +x MonobjcApplication1.app/Contents/MacOS/MonobjcApplication1

Note: if you find that you are required to keep adding the execute bit in order to run the
application through Finder or via open then you could perhaps use an alternative method. If you
explicitly ask the shell to run the bundled script then the execute bit is not required. For a
sample project MonobjcApp, if you cd to the directory that contains the project directory, then
this will launch the application:

bash MonobjcApp/bin/Debug/MonobjcApp.app/Contents/MacOS/MonobjcApp

Note: The Monobjc project template in Delphi Prism has references to all the Monobjc
assemblies and Copy Local is set to True for them all. This covers all eventualities and allows
you to access the entire Monobjc bridge library, meaning you can access Cocoa, OpenGL,
QuickTime, the PDF framework as well as the AddressBook, Image Kit, Security and Web Kit
frameworks. However if you are just building a regular Cocoa application then you might not
want all the additional framework assemblies deployed to your application directory. For most
Cocoa applications you can delete all the Monobjc references except Monobjc.dll and
Monobjc.Cocoa.dll.

Now you should be able to launch the application with Finder, or from a terminal window with
open. The application’s UI has a toolbar with a Colors button on it that launches a color panel,
and a Fonts button that launches a font panel. However there is currently nothing for these
controls to edit. There are disabled Print and Customize buttons on the toolbar and there is a
reasonably well populated menu system and some of the menu items (such as About, Quit,
Page Setup, Print) actually prompt things to happen, but in general the application has no
real functionality.

.NIB FILES
To add controls and build up a UI you need to use Apple’s Interface Builder and edit the
project’s .nib file, which itself is a file bundle. In the project template the .nib bundle is called
Interface.nib and inside it are the two files designable.nib and keyedobjects.nib.

Brian Long Developing for Mono with Delphi Prism

.nib is a legacy extension dating back to NeXTSTEP and comes from NeXT Interface Builder.
Historically .nib files were binary but more recently they may be stored as XML and optionally
have the .xib extension. In the setup you get from the project template, designable.nib is XML
and keyedobject.nib is binary. After the application is built the .nib bundle is stored in the
Resources directory of the application bundle.

INTERFACE BUILDER
Interface Builder can be located in Finder as /Developer/Applications/Interface Builder. When
you open a .nib bundle, Interface Builder displays it in the Document window (Window,
Document). The sample project .nib bundle shows up like this:

You can see the window (an NSWindow object)
listed, along with the embedded toolbar
(NSToolbar) and a content view (NSView) that
fills up the rest of the window. These can be
edited using the various pages of the Inspector
(accessible from the Tools menu if not visible).
The menu (an NSMenu) is also listed and can be
edited in a visual menu designer by double-
clicking it in the Document window. A Cocoa
application can have multiple .nib files, but
one of them will have a representation of the
Application (NSApplication) object, also
present here.

Note: the NS prefix on all the Cocoa classes is
a legacy nomenclature aspect harking back to the days of NeXTSTEP.

The other main item of interest in the Document window
is the main window controller. Without wanting to turn
this into a full Cocoa tutorial, it is important to know that
Cocoa enforces an MVC (Model-View-Controller) design
pattern to one extent or another. The view is
represented by what you design into the .nib file with
Interface Builder. The model is represented in your code
(as much as you choose to make your code act like a
model). The controller connects up the two, is placed in
the .nib file and is represented in your code as you will
see over the coming sections.

You add additional controls to your window to build up
the UI using the Library window (Tools, Library). When
designing the UI you should take various aspects of
Apple’s Human Interface Guidelines into account. You
can find these from Interface Builder by selecting Help,
Human Interface Guidelines.

The controller object is typically defined as a class
inherited from the default base Cocoa class NSObject.

- 41 -

Developing for Mono with Delphi Prism Brian Long

- 42 -

Interface Builder allows you to set up descendant classes on the Classes tab on the Library
window. Simply select the base class from the class list, right-click and choose New Subclass…;
this will add a new class to the list for you to use. The MainWindowController class in the
template project .nib is created like this as a class inherited from NSObject. You will find this
custom class if you browse through the list of classes on the Library window’s Classes tab.

With a controller in place you can add connections to it to allow the application code and UI to
interact. You can add outlet connections, which ultimately surface as instance variables in the
controller class source and which allow you to link the controller to a UI control. These allow
your code to talk to important controls and views in the UI; it’s almost like declaring variables
that represent the controls you wish to talk to. You can also add action connections. Various UI
controls offer a number of action messages that they will send when the user interacts with
them (a message being sent can be considered similar to a method being called). You can
define action methods in the controller that can be hooked up to control actions in order to
enable code to respond to those actions - action methods are essentially event handlers. You’ll
see outlets and actions being set up in some examples later.

SIMPLE TEXT EDITOR
We’ll start by editing the Interface.nib of the generated template project and make it do
something useful. In this first instance we’ll edit some of the menu items. If you use the menu
editor and examine the text in the menu items you’ll see that there are several instances of
NewApplication as a place holder for your application name. There are three under the main
application menu (also marked as NewApplication): About NewApplication, Hide
NewApplication and Quit NewApplication. There is also one under the Help menu:
NewApplication Help. You can edit each of these by double-clicking the menu item, or
selecting it and editing the text on the Attributes pane of the Inspector.

Note: editing the text of the bold menu item, NewApplication, will have little effect as the text
for this is actually set at runtime from the application name.

Next add a Text View control onto the main part of the window. You can find this on the
Objects tab under Cocoa, Views & Cells, Inputs & Values, but it is often quicker to type part of
the name into the filter box at the bottom of the Library window. When you have added the
control, you can size it to fit and you’ll notice the sizing guides helping to get it suitably sized to
fit in with the Human Interface Guidelines.

To further customize the control you should first ensure it is selected in the Document window.
On the Inspector’s Size tab you can set up automatic geometry management (i.e. have the text
view resize in sync with the window being resized) by playing with the red springs and struts in
the Autosizing section - an animation shows the effect of your chosen settings so you should be
able to get the desired effect easily. The Inspector’s Attributes page allows you to customer the
border and scroll bars of the text view.

Don’t forget that you can change the application icon by replacing App.icns in the project. If
you choose a file with a different name then just update the MacIconFile entry in the project file
as covered in the Mac Application Icons section on page - 24 -.

The application can now be run and you’ll see that you have a capable rich text editor (albeit
without the ability to load or save files):

Brian Long Developing for Mono with Delphi Prism

It takes very little work to improve this editor. The sample menu added by the project template
does not include a Format menu, but there is one in the Library. You can add it in by expanding
the MainMenu in the Document window and dragging it to the appropriate point. This adds in
menu items to launch the Fonts and Colors panels as well as other features including a very
functional ruler that sits at the top of the Text View.

MONOBJC AND SNOW LEOPARD
Thanks to the introduction of thread-local garbage collection in the OS X Snow Leopard (see
http://www.sealiesoftware.com/blog/archive/2009/08/28/objc_explain_Thread-
local_garbage_collection.html for more information) certain assumptions made by low-level
aspects of the Monobjc bridge library are now unsafe. This means that after a certain amount of
time the application will hang or crash in the middle of the Mono garbage collection code (see
https://bugzilla.novell.com/show_bug.cgi?id=537764). The Monobjc author, Laurent Etiemble,
has analyzed the problem and a new build remedies the problem (at the time of writing this new
build, 2.0.436.0, was being tested).

To avoid the issue the new version of Monobjc introduces two native shared libraries, (one for
each version of the Objective-C runtime) that need to be copied into the app bundle in the
subdirectory containing the execution script. However, since that directory will not be on the
library search path, the script itself also needs updating to fix this. The forthcoming update to
Delphi Prism will include these libraries and hide these required updates, but in the meantime

- 43 -

http://www.sealiesoftware.com/blog/archive/2009/08/28/objc_explain_Thread-local_garbage_collection.html
http://www.sealiesoftware.com/blog/archive/2009/08/28/objc_explain_Thread-local_garbage_collection.html
https://bugzilla.novell.com/show_bug.cgi?id=537764

Developing for Mono with Delphi Prism Brian Long

- 44 -

the following steps are required to avoid the thread-local garbage collection issues with
Monobjc applications on Snow Leopard.

1. Download the latest version of Monobjc from the Downloads link on http://monobjc.net
and place it next to the current version in your C:\Program Files directory (the
downloads are gzipped tarballs, or .tar.gz files, and so need to be un-archived on the
Mac using its Stuffit Expander support or on a PC with a suitable Windows tool, such as
WinRar). My installation directory is C:\Program Files\Monobjc-2.0.436.0, which I’ll refer
to as $(MONOBJC)

2. Verify The two shared libraries libmonobjc.1.dylib and libmonobjc.2.dylib are in
$(MONOBJC)\dist

3. Verify the generic execution script AppLoader is in
$(MONOBJC)\src\tools\NAnt.MonobjcTasks\Embedded

4. Add the following post-build events to your project (on the Build Events tab of the
project properties window). Note the commands are wrapping here but what we have is
a pair of copy commands:

copy "$(ProgramFiles)\Monobjc-2.0.436.0\dist\libmonobjc.*"
 $(TargetDir)$(TargetName).app\Contents\MacOS
copy "$(ProgramFiles)\Monobjc-2.0.436.0\src\tools\NAnt.MonobjcTasks\Embedded
 \AppLoader" $(TargetDir)$(TargetName).app\Contents\MacOS\$(TargetName)

5. Build your Monobjc application in Delphi Prism as usual

Again, this will be made transparent and automatic in the next update to Delphi Prism.

CORRECT CLOSURE
One aspect that seems to be overlooked, even in some of the OS X tools, is a recent change in
Apple’s Human Interface Guidelines specifically for single window applications. You can find the
specific guideline by browsing through to Part III: The Aqua Interface, Windows, Window
Behavior, Closing Windows. This states that when you close the window in a single-window
application, the application should quit. Note that this differs from the normal behavior of Mac
applications where they continue running with the menu on-screen after all windows are closed.
This behavior allows new windows to be created in the application and is similar to that of a
Windows MDI container when all child windows are closed, but it doesn’t make sense in a single
window application, such as this sample text editor.

You can follow the Apple guideline by setting up a delegate for your application object (the
NSApplication object in the Interface Builder Document window). The delegate can respond
to selected messages on behalf of the application object and control these aspects of
shutdown. You can look up the NSApplication delegate messages either in the Monobjc API
documentation (http://api.monobjc.net/html/T_Monobjc_Cocoa_NSApplication.htm), which
also has links to the event handler type definitions, meaning you’ll know exactly what
parameters to define, or in the Cocoa documentation
(http://developer.apple.com/mac/library/documentation/Cocoa/Reference/NSApplicationDele
gate_Protocol/Reference/Reference.html).

http://monobjc.net/
http://api.monobjc.net/html/T_Monobjc_Cocoa_NSApplication.htm
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/NSApplicationDelegate_Protocol/Reference/Reference.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/NSApplicationDelegate_Protocol/Reference/Reference.html

Brian Long Developing for Mono with Delphi Prism

You’ll need to handle the applicationShouldTerminateAfterLastWindowClosed: message
at the very least to indicate that the application should disappear after the window is closed.
However, given this application is a text editor (notwithstanding the fact that it can’t save or
load) you should also handle applicationShouldTerminate: and get confirmation from the
user that the application should close. You’ll also need a delegate for the window object and
handle its windowShouldClose: message for the same reason. If the user closes the application
through the menu, then the application will send a applicationShouldTerminate: message.
If the user closes the window, then the window will send a windowShouldClose: message (and
if the response is that the application should close, the application will also send a
applicationShouldTerminate: message).

Note: In Objective-C a message that has parameters includes a : suffix in its name.

The delegate for both the application and the window object in this case will be our main
window controller. To set up this delegate relationship you use Interface Builder. Simply
Ctrl+drag from the object (in the Document window) that will be sending the messages (the
application or window object) and drop on the delegate object (the main window controller). A
blue line will form during the drag operation and when you drop a connection box will pop up
listing all the available outlets in the controller. Selecting the currently sole item in the list,
delegate, sets up the relationship.

With both delegate relationships set up we can look at the code of a Monobjc application. The
Program.pas file contains the program entry point and executes standard code to kick-start a
Monobjc application by loading the Cocoa framework, loading the main .nib file and starting off
the main event loop.

The controller class, MainWindowController, is actually spread across several files thanks to the
partial class feature. The one you’ll be focusing your attention on mostly is
MainWindowController.pas where you’ll add your action methods as well as helper methods.
Another part of it lives in MainWindowController.Designer.pas, where a couple of constructor
overloads can be found as well as action methods for a couple of system action messages
(these methods are just declarations without implementation thanks to them being declared as
partial empty methods; you can choose to implement them in the controller class if you see the
need). The other partial class definition is found in within the .nib bundle, in
Interface.nib\designable.nib\designable.pas. This partial class will surface the action methods

- 45 -

Developing for Mono with Delphi Prism Brian Long

- 46 -

and outlets you declare in your controller in Interface Builder, and you’ll see this happening
later.

Note: if you rename the project (or save as a new name) then the namespace in Designable.pas
will be automatically updated, but the namespace in the other two files containing partial
definitions of your controller class won’t change. This means the compiler will now find two
separate controller classes with the same name but in different namespaces. It is therefore very
important to update your unit namespaces when you rename your project.

Depending on what you have done with the controller in Interface Builder dictates what you
might find in the class definition here. You may also find representations of other classes set up
(explicitly or implicitly) in Interface Builder (such as NSFontManager).

For the current requirement you need to implement three delegate message handling methods
(along with any helpers required for the job). Here is some sample code:

type
 MainWindowController = public partial class(Monobjc.Cocoa.NSObject)
 private
 method OKtoTerminate: Boolean;
 public
 [ObjectiveCMessage('windowShouldClose:')]
 method WindowShouldClose(window: NSWindow): Boolean;
 [ObjectiveCMessage('applicationShouldTerminate:')]
 method ApplicationShouldTerminate(App: NSApplication): Boolean;
 [ObjectiveCMessage('applicationShouldTerminateAfterLastWindowClosed:')]
 method ApplicationShouldTerminateAfterLastWindowClosed(
 App: NSApplication): Boolean;
 end;

method MainWindowController.OKtoTerminate: Boolean;
begin
 var msgResult: Integer := AppKitFramework.NSRunAlertPanel(
 'Cocoa Text Editor', 'Really quit?', 'No', 'Yes', nil);
 Result := msgResult = NSPanel.NSAlertAlternateReturn;
end;

method MainWindowController.WindowShouldClose(window: NSWindow): Boolean;
begin
 exit OKtoTerminate();
end;

method MainWindowController.ApplicationShouldTerminate(App: NSApplication): Boolean;
begin
 if NSApplication.NSApp.MainWindow = nil then exit True;
 exit OKtoTerminate();
end;

method MainWindowController.ApplicationShouldTerminateAfterLastWindowClosed(App:
NSApplication): Boolean;
begin
 exit True;
end;

Note: in order for the world of Objective-C and Cocoa to connect up to Delphi Prism methods
(actually any Mono methods) in a Monobjc application, you must mark them with the
ObjectiveCMessage attribute. You may have noticed that the message handling methods in

Brian Long Developing for Mono with Delphi Prism

MainWindowController.Designer.pas also use this attribute. Also be very careful to include the
: suffix if the original message has parameters otherwise it will be an incorrect message
signature.

The logic follows the remit outlined earlier. If the window is closed, the OKtoTerminate()
helper is called to present a confirmation dialog (alert panel) to the user. The first two
parameters of NSRunAlertPanel() are a title and some text to draw on the panel. Then you
have the default button text, the alternate button text and text for a third button. In this case No
is the default button and there is no third button. You return True or False from this method
(which is then returned from WindowShouldClose()) based on which button was pressed. If Yes
was pressed, then the window will close.

Whether the window was closed or the user chooses the Quit menu item on the application
menu, ApplicationShouldTerminate() will be called. To decide whether you need the
confirmation box you check if the application’s main window still exists and proceed
accordingly.

Note: NSApplication.NSApp is a convenient way to get a reference to the application object.

Finally, ApplicationShouldTerminateAfterLastWindowClosed() returns True to ensure that the
application does indeed terminate on cue.

INTERACTING CONTROLS EXAMPLES
To try and get some familiarity with Monobjc and Cocoa
we will again run through some simple tutorials on the
web, looking at how you can achieve the same effects in
Delphi Prism. It’s worth noting from the off that you will
find in Cocoa tutorials that actions and outlets are
defined in code in Xcode, and then sucked into Interface
Builder automatically. With Delphi Prism you have to
take the opposite approach. Since Interface Builder
knows nothing of Delphi Prism files you must manually
add outlets and actions in Interface Builder and then
have Delphi Prism generate the declarations in

- 47 -

Developing for Mono with Delphi Prism Brian Long

Designable.pas for us using its Visual Studio custom tool; this emits Designable.pas after
looking at what’s in the .nib files.

The first simple tutorial we’ll try and emulate is from The Unix Geek at
http://theunixgeek.wordpress.com/2007/11/11/the-cocoa-tutorial-everyone-needs. This tutorial
just familiarizes us with setting up communication between the UI and the code via a controller;
it involves a button writing to a text field.

Start a new Monobjc project and in Interface Builder delete the toolbar and add a Button (any
of the various types available) and a Text Field from the Library window. You should also update
the text of the menu items that contain the application name and remove the Monobjc
assembly references that aren’t required. Now you need to add an outlet and an action to the
controller. The outlet will be connected to the Text Field to allow it to be accessed from the
code. The action will be a method that responds to the button being pressed.

To add an outlet to the custom controller go to the Classes tab on the Library window and
locate the MainWindowController class, either by scrolling through the list of classes, or by
reducing that list with the search box at the bottom of the window. When selected the lower
half of the Library window shows information about the MainWindowController class, including
its inheritance hierarchy (which is empty as the class simply inherits from NSObject), a summary
of its definition, and a list of outlets and actions. In the Outlets tab use the + button to add an
outlet called words. In the Actions tab add an action called sayHello: (don’t forget the :
suffix).

Now you connect the controller outlet to the Text Field by Ctrl+dragging from the controller in
the Document window to the Text Field either in the Document window or on the
representation of your application window. When you release the mouse a list of potential
outlets will be shown and you can select words.

To connect the button to the controller’s action just Ctrl+drag from the button (on the window
or on the document) to the controller and release, then select sayHello:.

- 48 -

http://theunixgeek.wordpress.com/2007/11/11/the-cocoa-tutorial-everyone-needs

Brian Long Developing for Mono with Delphi Prism

You can see all the connections of the
controller summarized on the Connections tab
of the Inspector if you select the controller in
the Document window. In fact you can also set
up the connections from here if you prefer.
Given a new outlet or action you simply drag
the circle on the right side of the window and
drop it on the pertinent control on the
Document or window.

In the Controller Connections screenshot you
can see that the controller is also acting as a
delegate for the application object to again
enable correct closing behavior when the sole
window is closed.

Having changed the UI definition in the .nib it is necessary to run the nib import custom tool to
update Designable.pas using the context menu item shown earlier. This produces this updated
controller partial class:

type
 [ObjectiveCClass]
 MainWindowController = public partial class
 public
 var [ObjectiveCField] words: NSTextField;
 [ObjectiveCMessage('sayHello:')]
 method sayHello(aSender: NSObject); partial; empty;
 end;

You can see the words outlet correctly declared as an NSTextField, and the partial declaration
of the sayHello() method. Both have appropriate Monobjc attributes to ensure that
Objective-C will be aware of them.

- 49 -

Developing for Mono with Delphi Prism Brian Long

- 50 -

All that is left is to implement sayHello() in MainWindowController.pas. Remember that
making changes to Designable.pas is quite futile as you will lose any edits next time the custom
nib tool is run.

type
 MainWindowController = public partial class(Monobjc.Cocoa.NSObject)
 public
 method sayHello(aSender: NSObject); partial;
 [ObjectiveCMessage('applicationShouldTerminateAfterLastWindowClosed:')]
 method ApplicationShouldTerminateAfterLastWindowClosed(
 App: NSApplication): Boolean;
 end;

method MainWindowController.sayHello(aSender: NSObject);
begin
 //Give the text field a new value
 words.StringValue := 'Hello world';
 //Ensure it is updated ASAP
 words.NeedsDisplay := True;
 //Make the app speak as well, just for the sake of it
 var Speech: NSSpeechSynthesizer := new NSSpeechSynthesizer();
 Speech.StartSpeakingString(words.StringValue);
end;

method MainWindowController.ApplicationShouldTerminateAfterLastWindowClosed(
 App: NSApplication): Boolean;
begin
 Result := True;
end;

As you can see, getting the text field updated is quite straightforward after the outlet
connection is made. In addition to writing a new value in the text field the code also speaks the
new value, just for sheer extravagance.

This next example comes from a tutorial by Korrupted aka DaxTsurugi at
http://www.insanelymac.com/forum/index.php?showtopic=14778 and shows how the UI can get
“additional” functionality without writing code. In this case a slider control will populate a text
field with its position. Start a new Monobjc project, delete the toolbar, edit the menu items and
remove the unnecessary Monobjc assembly references. Add a Horizontal Slider and a Text Field
onto the window. You can set up the slider using the Attributes tab of the Inspector. In this case
the most important setting is Continuous, which means that it will keep send messages to
anyone listening as you change the position, rather than waiting until you stop.

http://www.insanelymac.com/forum/index.php?showtopic=14778

Brian Long Developing for Mono with Delphi Prism

To get the functionality,
Ctrl+drag from the slider
to the text field and
choose the slider’s
takeIntegerValueFrom:
received action. What this
is saying is when the slider
is moved to a new position
it tells the text field to set
its value to an integer
value taken from the slider
position. That’s it - the
example is finished!

- 51 -

an invoke.

The text field has a
number of these actions
you can trigger, as well as
some outlets as you can
see to the left here.

Taking advantage of the
functionality offered by

the controls to avoid writing unnecessary code is a useful
part of the learning process with Cocoa. The Text View
control has many actions you c

COLOR CHOOSER EXAMPLE
Let’s now look at a slightly more ambitious example, using
the same outlet and action connection principles just
several times over. This example mirrors a tutorial by
Michael Beam at
http://macdevcenter.com/pub/a/mac/2001/06/15/cocoa.html and builds up a color value editor
as shown below. The sliders and the text fields can all update the color shown in the color well
control. If a text field is edited, the corresponding slider is updated and vice versa. Clicking the
color well control displays a color chooser panel (that’s standard behavior for a color well
control); choosing a color on the color panel also updates all the controls on the window.

http://macdevcenter.com/pub/a/mac/2001/06/15/cocoa.html

Developing for Mono with Delphi Prism Brian Long

As usual you start with a Monobjc project, remove the toolbar, edit the menus and remove the
unnecessary Monobjc assembly references. Then the UI can be laid out: four Labels, four Text
Fields, four Horizontal Sliders and a Color Well. Next you need nine outlets and 6 actions
declared in the controller class (on the Classes tab of the Library window). You can see the
names of all the outlets and actions, and also see how they are connected up to the relevant
controls in this screenshot and they will all be emitted into Designable.pas when you run the
custom tool on Designable.nib:

- 52 -

Brian Long Developing for Mono with Delphi Prism

The code isn’t very exciting, but does the trick. Note that this time you have an implementation
of the AwakeFromNib() message handler, declared as partial empty in
MainWindowController.Designer.pas. This executes as soon as the nib has been fully loaded
and all the objects defined within have been instantiated.

 MainWindowController = public partial class(Monobjc.Cocoa.NSObject)
 private
 redValue: Single := 0.5;
 greenValue: Single := 0.5;
 blueValue: Single := 0.5;
 alphaValue: Single := 0.5;
 method updateRedUIControls;
 method updateBlueUIControls;
 method updateGreenUIControls;
 method updateAlphaUIControls;
 method UpdateColorWell;
 protected
 public
 method AwakeFromNib; partial;
 method setRed(aSender: NSObject); partial;
 method setBlue(aSender: NSObject); partial;
 method setGreen(aSender: NSObject); partial;
 method setAlpha(aSender: NSObject); partial;
 method updateControls(aSender: NSObject); partial;
 end;

- 53 -

Developing for Mono with Delphi Prism Brian Long

- 54 -

method MainWindowController.AwakeFromNib;
begin
 updateRedUIControls();
 updateGreenUIControls();
 updateBlueUIControls();
 updateAlphaUIControls();
 UpdateColorWell();
end;

method MainWindowController.setRed(aSender: NSObject);
begin
 redValue := NSControl(aSender).FloatValue;
 updateRedUIControls();
 UpdateColorWell();
end;

method MainWindowController.setBlue(aSender: NSObject);
begin
 blueValue := NSControl(aSender).FloatValue;
 updateBlueUIControls();
 UpdateColorWell();
end;

//Similar code for green & alpha

method MainWindowController.UpdateColorWell;
begin
 colorWell.Color :=
 NSColor.ColorWithCalibratedRedGreenBlueAlpha(
 redValue, greenValue, blueValue, alphaValue);
end;

method MainWindowController.updateControls(aSender: NSObject);
begin
 var color: NSColor :=
 NSColorWell(aSender).Color.ColorUsingColorSpaceName('NSDeviceRGBColorSpace');
 redValue := color.RedComponent;
 blueValue := color.BlueComponent;
 greenValue := color.GreenComponent;
 alphaValue := color.AlphaComponent;
 updateRedUIControls();
 updateGreenUIControls();
 updateBlueUIControls();
 updateAlphaUIControls();
end;

method MainWindowController.updateRedUIControls;
begin
 redField.FloatValue := redValue;
 redSlider.FloatValue := redValue;
end;

method MainWindowController.updateBlueUIControls;
begin
 blueField.FloatValue := blueValue;
 blueSlider.FloatValue := blueValue;
end;

//Similar code for green & alpha

Brian Long Developing for Mono with Delphi Prism

- 55 -

COCOA UI TECHNIQUES - ERROR INDICATION BY WINDOW SHAKE
You may have encountered a neat feature in the OS X login screen, whereby if you enter
incorrect details it indicates this not with an error box, but by shaking the login window
horizontally a few times. If this UI mechanism is good enough for OS X then it’s good enough to
include in your own applications to indicate certain error states. We don’t have any Monobjc
examples that involve error states so let’s shoe-horn the shaky window idea into the Cocoa text
editor from earlier. When the user is asked if they wish to quit, if they say No we’ll shake the
window to emphasize the point.

Moving the window around in this animated way is achieved with help from the Core Animation
framework. The code below is a translation from http://www.cimgf.com/2008/02/27/core-
animation-tutorial-window-shake-effect and shows a useful comparison between Objective-C
Cocoa calls and their Monobjc equivalents.

method MainWindowController.ShakeAnimation(frame: NSRect): CAKeyframeAnimation;
const
 numberOfShakes = 4;
 durationOfShake = 0.5;
 vigourOfShake = 0.05;
begin
 //Create an animation, and the define a path for it to follow
 var animation: CAKeyframeAnimation := CAKeyframeAnimation.Animation;
 var shakePath: IntPtr := CGPath.CreateMutable();
 var identityTransform: CGAffineTransform :=
 CGAffineTransform.CGAffineTransformIdentity;
 CGPath.MoveToPoint(shakePath, var identityTransform,
 NSRect.NSMinX(frame), NSRect.NSMinY(frame));
 for I: Integer := 1 to numberOfShakes do
 begin
 CGPath.AddLineToPoint(shakePath, var identityTransform,
 NSRect.NSMinX(frame) - frame.size.width * vigourOfShake, NSRect.NSMinY(frame));
 CGPath.AddLineToPoint(shakePath, var identityTransform,
 NSRect.NSMinX(frame) + frame.size.width * vigourOfShake, NSRect.NSMinY(frame));
 end;
 CGPath.CloseSubpath(shakePath);
 animation.path := shakePath;
 animation.duration := durationOfShake;
 exit animation;
end;

method MainWindowController.ShakeWindow;
begin
 //Add our animation to the animation dictionary, with key 'frameOrigin'
 mainWindow.Animations:= NSDictionary.DictionaryWithObjectsAndKeys(
 ShakeAnimation(mainWindow.Frame), new NSString('frameOrigin'), nil);
 mainWindow.Animator.SetFrameOrigin(mainWindow.Frame.origin);
end;

function MainWindowController.OKtoTerminate: Boolean;
begin
 var msgResult: Integer := AppKitFramework.NSRunAlertPanel(
 'Cocoa Text Editor', 'Really quit?', 'No', 'Yes', nil);
 Result := msgResult = NSPanel.NSAlertAlternateReturn;
 //If we are not closing, let's shake the window
 if not Result then
 ShakeWindow();
end;

http://www.cimgf.com/2008/02/27/core-animation-tutorial-window-shake-effect
http://www.cimgf.com/2008/02/27/core-animation-tutorial-window-shake-effect

Developing for Mono with Delphi Prism Brian Long

You might note that various global functions in the original code are now static methods. Also,
the second parameter to MoveToPoint() is declared as a var parameter and so the null of the
original call has to be replaced with a reference to an identity transform in order to perform no
actual transform on the move target.

The logic in the code is to create a path that describes the motion you want to impose on the
window, which is then applied to an animation, When you want the window to shake you apply
the animation to the origin of your window’s frame, causing the window to be moved following
the animation path.

COCOA UI TECHNIQUES - CONFIRMATION BY SLIDE-IN SHEET
In the Correct Closure section on page - 44 - we added in a confirmation process using a popup
NSPanel. It is actually more common in Mac applications to see the use of sheets that slide in
from the top of the window, but serving exactly the same purpose. In the screenshot below you
can see an alert sheet in use - notice the Dock icon bouncing up and down to get our attention
to this application.

- 56 -

Brian Long Developing for Mono with Delphi Prism

- 57 -

The primary difference between the alert panel and the alert sheet, programming-wise, is that
the alert panel pops up, and the NSRunAlertPanel() function doesn’t return until the user
chooses an option and so dismisses the panel. However, with the alert sheet, the call to
NSBeginAlertSheet() returns immediately. When the user chooses an option on the sheet
another method is triggered. This method must be marked with the ObjectiveCMessage
attribute and be passed to NSBeginAlertSheet() as a special type of parameter called a
selector. In Objective-C selectors are obtained by using @selector. In Monobjc you can call
ObjectiveCRuntime.Selector(). Here’s the modified code:

type
 MainWindowController = public partial class(Monobjc.Cocoa.NSObject)
 private
 terminating: Boolean := False;
 method OKtoTerminate: Boolean;
 public
 [ObjectiveCMessage('windowCloseConfirmationDelegate:')]
 method WindowCloseConfirmationDelegate(sheet: NSWindow;
 returnCode: Integer; contextInfo: IntPtr);
 end;

method MainWindowController.OKtoTerminate: Boolean;
begin
 AppKitFramework.NSBeginAlertSheet(
 'Cocoa Text Editor', 'No', 'Yes', nil, mainWindow, Self,
 //Pass delegate selector here to have it called as soon as user presses a button
 nil,
 //Pass delegate selector here to have it react after sheet closes
 ObjectiveCRuntime.Selector('windowCloseConfirmationDelegate:'),
 nil, 'Really quit');
 //The sheet will hang about for a bit, so we'll say "No" for now,
 //and act accordingly when the user shuts the sheet with a button
 exit False;
end;

method MainWindowController.WindowCloseConfirmationDelegate(sheet: NSWindow;
returnCode: Integer; contextInfo: IntPtr);
begin
 //Now the sheet has been used we can decide whether to terminate the app or not
 if returnCode = NSPanel.NSAlertAlternateReturn then
 begin
 terminating := True;
 NSApplication.NSApp.Terminate(Self);
 end
 else
 ShakeWindow()
end;

Developing for Mono with Delphi Prism Brian Long

A sheet will slide down from the top of the window if the window is wide enough to
accommodate it. If it’s not, the sheet inflates out in an animated way, which is aesthetically
pleasing.

SUMMARY
This white paper has shown how Delphi Prism can be utilized to take existing skills with both the
.NET platform and the Delphi language and produce applications that run on Linux and/or Mac
OS X. Cross platform development has many issues to take into consideration and there are
various levels at which existing code can be re-used.

After reading this paper you should have a good picture of what your options are and the
potential of your code base. Where native-looking applications are required, some learning of
new GUI toolkits is necessary; however this can pay dividends with careful setup of your
architecture, with an eye to maximizing the re-use of UI-less business logic.

ACKNOWLEDGEMENTS
Thanks are due to the following people for help in understanding various technical areas and
overcoming various technical hurdles: marc hoffman, Richy King, Carlo Kok, Adrian Milliner and
Steve Scott.

- 58 -

Brian Long has spent the last 1.5 decades as a trainer, trouble-shooter and mentor focusing on
the Delphi, C# and C++ languages, and the Win32, .NET and Mono platforms. In his spare time
Brian is re-discovering and re-enjoying the idiosyncrasies and peccadilloes of Unix-based
operating systems. Besides writing a Pascal problem-solving book in the mid-90s, he has
contributed chapters to books, written countless magazine articles and acted as occasional
Technical Editor for Sybex. Brian has a number of online articles that can be found at
http://blong.com.

© 2009 Brian Long Consulting and Training Services Ltd. All Rights Reserved.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change
Manager™, Embarcadero™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

http://blong.com/
http://www.embarcadero.com/

	Introduction
	Microsoft .NET, ECMA and Mono
	Cross-platform Development
	Licensing Considerations
	Getting Started
	Compiler
	Linux and OS X
	Mono
	Mono Source
	Xcode and Interface Builder
	Shared Folder

	First Foray with Console Applications
	Platform & Runtime Identification

	Application Deployment
	Leave As Is
	Change the Behavior of .exe Files
	Scripts
	Bundled Executables
	Mac OS X Application Bundles

	Data Access
	The Problem of GUI Applications
	GUI Toolkits
	WinForms
	Mac Application Icons

	GTK#
	Tweak the GTK# Project Code
	GTK# Examples
	Simple GTK# Example
	Dialog Example
	TreeView Example
	GTK# Bundled Executable
	GTK# Mac OS X Application Bundle

	Cocoa#
	Monobjc
	.nib Files
	Interface Builder
	Simple Text Editor
	Monobjc and Snow Leopard
	Correct Closure
	Interacting Controls Examples
	Color Chooser Example
	Cocoa UI Techniques - Error Indication By Window Shake
	Cocoa UI Techniques - Confirmation By Slide-in Sheet

	Summary
	Acknowledgements

