
G E T T E C H N O L O G Y R I G H T

Java IDE Comparison Strategy Guide:
InfoWorld’s Java IDE of the Year

Takes on the Best That the
Industry Has to Offer

IT
 S

trateg
y G

uid
e

	 INSIDE

	 Introduction	 1

	 Java Development Productivity and
	 Quality Using Eclipse: A Comparative
	 Study of Commercial Eclipse-based IDEs	 2

	 Java IDEs Perk Up	 4
	

Application Factories: Moving from a Generic
	 IDE to an Application-specific IDE	 10

Compliments of:

I N F O W O R L D I T S T R A T E G Y G U I D E �

Java IDE

Introduction
When it comes to development environments for cre-

ating Java-based applications, there are two words to
keep in mind – Eclipse and JBuilder. The first leverages
the work by open source communities to build an ex-
tensible tools platform for software development. The
second leverages Eclipse to create commercial-grade
tooling for the enterprise. Eclipse is both a phenomenon
and an incredible success story. The Eclipse Foundation
and the Eclipse Project have become standards-bearers
both for open source in general, and software develop-
ment specifically.

The Eclipse Foundation is
incredibly vibrant and suc-
cessful, and it has created the
de facto standard platform for
building Java software. Doz-
ens of top-rated software and
hardware companies, from
IBM to Intel, from Oracle to SAP, from CA to Borland,
drive the Eclipse Foundation forward.

The Eclipse tools platform can be used on its own as a free
open-source development environment, but it also serves
as the foundation for many commercially available Inte-
grated Development Environments (IDE). Companies using
the Eclipse framework as the foundation of their product
offerings include IBM, Genuitec and CodeGear. Of course,
there are also tools and platforms available to enterprise
Java developers which are not based on Eclipse, but as this
IT Strategy Guild shows, the momentum is clearly behind
the Eclipse-based solutions.

If you’re looking for a commercial software develop-
ment platform for Java, you want one based on Eclipse.
But which commercial offering do you want? We’ll go
deep into the details, comparing CodeGear JBuilder

2007, IBM Rational Application Developer (IRAD) and
Genuitec MyEclipse against the free open-source Eclipse
platform. The results are startling and impressive:
the leader, JBuilder 2007, boosts productivity signifi-
cantly. In fact, for every dollar spent on JBuilder, an or-
ganization can expect a return of $90-$165 in savings
through increased developer productivity and improved
software quality.

What about Sun? It’s easy to think that Sun – which
created Java, and manages the Java Community Pro-

cess — would have a natural
advantage when it comes to
development tools. However,
the reality of the situation, as
verified by the InfoWorld Test
Center, proves otherwise.
Our in-depth review shows
how Sun NetBeans 5.5 fared

against the two biggest names in Java: IRAD 7.0 and
JBuilder 2007 Enterprise Edition. As the reviewer said,
“JBuilder … is a truly standout IDE.”

We close this IT Strategy Guide with a look at an ad-
vanced concept in Java development: Application Facto-
ries. We’ll show how these models transfer knowledge
between team members, so that everyone can under-
stand the intent of the architects, interface designers
and other senior developers throughout the organiza-
tion. Application Factories are a new approach to soft-
ware development and code reuse. This innovative de-
velopment metaphor and associated collection of tools
allows developers to focus more on the nature and pur-
pose of the application, and less on the underlying plat-
form, framework, and technologies being used.
— Alan Zeichick

… for every dollar spent on JBuilder,
an organization can expect a return of
$90-$165 in savings through increased

developer productivity and improved
software quality.

I N F O W O R L D I T S T R A T E G Y G U I D E �

Java IDE

Java Development Productivity
and Quality Using Eclipse:

A Comparative Study of Commercial Eclipse-based IDEs

The productivity benefits of using commercial Eclipse-
based Java IDE products from IBM (IBM Rational Appli-
cation Developer), Genuitec (MyEclipse), and CodeGear
(JBuilder) compared to the freely downloadable baseline
Eclipse configuration.

Report Prepared by CostXperts
The Cost Xpert Group, Inc. (www.CostXpert.com) spe-

cializes in software metrics and predictive models. Con-
sidered one of the top experts in the field of software
development cost analysis our services are focused on
helping clients substantially increase the probability of

completing software development projects successfully.
Our staff combines real-world software project man-

agement experience with technical training in areas
such as parametric cost analysis, system dynamic
modeling of software processes, knowledge based
modeling of risk, and both stochastic and determin-
istic optimization of project operations. Many of our
consultants are world-renowned leaders in their field
of expertise. The CostXpert Group has over 5,000 cus-
tomers including Boeing Corporation, Chevron Informa-
tion Technology, Ernst & Young, Hewlett-Packard, and
Unisys Corporation

I N F O W O R L D I T S T R A T E G Y G U I D E �

Java IDE

Executive Summary
Eclipse is both a phenomenon and success story in

the Java eco-system and in the overall software develop-
ment field. More than just a software development tool,
Eclipse represents an open source community dedicat-
ed to building a development platform and to offering
a wide range of extensible frameworks, tools and run-
times for building, deploying and managing software
across the application lifecycle.

The attraction of Eclipse can be attributed to many
factors including its open source model, flexibility, ex-
pandability, extensive commercial industry support,
and of course low cost; a baseline Eclipse configuration

for Java can be downloaded for free. Many vendors en-
hance this base configuration with value-added tech-
nologies and services for which they charge a license
or support fee.

For instance, companies such as IBM, Genuitec, and
CodeGear (Borland’s Developer Tools spin-off) have de-
veloped new Java IDE solutions based on Eclipse. Each
of these three Eclipse-based solutions has taken a dif-
ferent strategy and approach to enhancing the baseline
Eclipse configuration, delivering unique value to Java

developers. By comparison, some companies, such as
Sun Microsystems and JetBrains, license development
tools based on proprietary technologies developed inde-
pendently from Eclipse’s open framework.

The goal of this study was to objectively measure
the benefits of using commercial Eclipse-based Java
IDE products from IBM® (IBM Rational Application
Developer®), Genuitec® (MyEclipse®), and CodeGear
(JBuilder® 2007 Enterprise Edition). These benefits are
compared to the freely downloadable baseline Eclipse
configuration.

In this study, team configurations and projects of vary-
ing sizes and purposes were modeled and measured un-
der two scenarios: (1) building new Java software and (2)
enhancing/maintaining existing Java applications. The
study measured development cost, time to completion,
and resulting application quality. In all situations, all
three commercial IDEs (MyEclipse, JBuilder, and IRAD)
were found to offer substantial development cost sav-
ings and project quality improvements over the baseline
free Eclipse distribution.

For typical software development organizations, these
percentages translate into substantial net hard dollar
savings in terms of software development personnel,
time and quality. For the representative organizations
used in this study, the return on investment (ROI) of ac-
quiring JBuilder ranged from 90:1 to 165:1. That is, for
every dollar spent on JBuilder, an organization can ex-
pect a return of $90-165 in savings through developer
productivity and improved quality.

For a free download of this complete report, visit www.codegear.com/products/jbuilder.
No registration is required.

http://www.codegear.com/article/34209/images/34209/Java-Productivity.pdf

I N F OWO R L D . C O M 	 0 3 . 2 6 . 0 7 4

We test a triple shot of Java dev tools: IBM and Borland/CodeGear’s
Eclipse-based platforms and Sun’s open-source NetBeans

BY ANDREW BINSTOCK

J
ava IDEs are one of the most used app dev

tools in corporate development. They are also

among the most capable developer products

on the market. With that in mind, it’s time to

ask yourself: Are you using the Java IDE best

suited to your needs, or is it time to re-evaluate?

J

5 I N F OWO R L D . C O M 	 0 3 . 2 6 . 0 7

InfoWorld last did a head-to-head
comparison of these products
in March 2005 (infoworld
.com/2677) and since then,
the IDEs have all undergone
important changes. This
time, I decided to examine
the winner of that review
(Borland JBuilder) plus the
winners of InfoWorld’s Tech-
nology of the Year awards, in
the Java IDE product category,
for 2006 and 2007 — IBM Rational
and Sun NetBeans, respectively.

I was impressed by how much
these products have matured dur-
ing the past two years, but surprised
that they haven’t advanced further in
some respects. Other products in the
Java developer’s toolkit — static code
analysis, unit testing, and build man-
agement, for example — have seen
more progress in this time frame.

IBM Rational Application Developer
for WebSphere Software 7.0
Big Blue’s entry, colloquially referred
to as RAD 7, is based on Eclipse, the
open-source software framework
that also powers Borland/CodeGear’s
JBuilder product line. Eclipse was ini-
tially a Java IDE, but in recent years,
it’s been repositioned as a framework
into which manifold plug-ins can be
added, thereby constructing all sorts
of tools (many of which have nothing
to do with Java development).

Eclipse’s new framework orienta-
tion has raised some concerns that
the original Java IDE concept has been
deprioritized. This perception prob-
ably has some validity, but it’s offset
by the fact that Eclipse currently has
the largest community of Java plug-ins
currently available.

RAD 7 adds several components to
its modified Eclipse base. As befits

Diagrams, code, and Javadoc are all synchronized in
IBM’s Rational Application Developer 7.

IBM, many of these are oriented
toward enterprise applications. They
include portlet and portal develop-
ment tools, and extensive database
support. The database support, which
predictably favors IBM’s DB2, includes
the ability to write user-defined func-
tions (UDFs), stored procedures, and
SQLJ code—all unique capabilities
among the products reviewed here.

Diagramming and modeling are
limited, however: RAD 7 supports
only two UML diagrams (versus eight
for NetBeans and nine for JBuilder).
For fuller diagram support from IBM,
you must buy the more expensive IBM
Rational Software Architect.

With RAD 7, you can develop Web
services and Web service clients, gen-
erate WSDL, and even do unit test-
ing against a private UDDI service. In
addition, there is support for IBM’s
DADX, a DB2 XML extension for use by
Web services. Alas, the IBM-centricity
factors into the UDDI testing as well:
It supports only private registries that
use IBM-based technologies.

At the coding level, RAD 7 provides
a static analysis tool that incorpo-
rates more than 200 rules developed
by IBM regarding possible Java defects

and coding
errors. While
the other IDEs in this review offer
more rules, IBM’s solution flagged
errors that those productss did not
catch. The rules were enhanced by
good descriptions of the reasons for
the rules and sample code for fixing
the problems.

This extensive help reflects IBM’s
long-standing tradition of great
documentation. RAD has links to
comprehensive tutorials and IBM’s
Web site—well known in the devel-
oper community for its rich collec-
tion of articles—provides additional
resources.

If applications require a scripting
language to “glue” portions together,
RAD 7 has built-in support for Jython
(Java-based Python). Unfortunately,
the IDE cannot tell automatically what
is Jython and what is Java although
syntactically the languages are entirely
different. This can lead to actions that
make the IDE balk.

This flaw, small as it is, reflects a
frequent experience I had with RAD
7: many features are not implemented
well. For example, installing the soft-
ware was very difficult. After consid-

I N F OWO R L D . C O M 	 0 3 . 2 6 . 0 7 6

erable support from IBM, I got the
product installed correctly, although
the original problems were never
identified.

There’s more. An option to spell-
check comments and literals (a use-
ful capability) does not work because
IBM ships no dictionary; if the feature
is enabled, it marks all words as mis-
spelled. The code-checking tools occa-
sionally prescribe invalid corrections.
Dynamic help in dialogs frequently
takes you to the wrong level of help, so
you’re forced to navigate back to your
specific context.

Over time, the accumulation of
these problems makes this otherwise
good product frustrating to use.

I have one other complaint: IBM is far
behind the other vendors in supporting
existing Java standards. It is the only
IDE in this review that has no support
for either Java EE 5 or Java SE 6.

I’d recommend RAD 7 to sites
already heavily committed to IBM,
due to the product’s special support
for those products, especially DB2
and WebSphere. Sites that want the

IBM Rational Application Devel-
oper for WebSphere Software 7.0
IBM, ibm.com
Good	 7.9
	 Features (40%)	 8
	 Ease-of-use (20%)	 8
	 Integration (20%)	 8
	 Performance (10%)	 8
	 Value (10%)	 7
Cost: $4,120 (includes 12 months of support)
Platforms: Windows, Linux

Bottom Line: IBM’s RAD 7 is a robust,
capable IDE that integrates especially well
with other IBM technologies and has good
visual editors. However, it does not support
Java EE 5 or Java SE 6, and it has limited
modeling capabilities — two big drawbacks.

8
8
8
8

7

same IDE for developers in many
countries will also like RAD 7, as it is
implemented in far more foreign lan-
guages than any other IDE. However,
the comparatively high price and my
other complaints should encourage
sites to examine all options before
committing their dollars.

Borland/CodeGear JBuilder 2007
Enterprise Edition
JBuilder 2007 garnered first place in
our last round-up. This edition is the
first release since the product was
ported to the Eclipse platform. It is
shipped by CodeGear, a division of
Borland that focuses on IDE tools.

Due to Borland’s well-publicized
difficulties and the fact that this is
the first release on a new platform, I
expected a good product with rough
edges. Instead, I found a very smooth,
very robust IDE with many innovative
features. It’s safe to say that CodeGear
decided to throw everything it had at
this release, and succeeded brilliantly.

For Java coding, JBuilder has three
different sets of code auditors and

analyzers: the open-source PMD, Find-
bugs, and Borland’s own code-inspec-
tion tool. These work well together
(in fact, they run the risk of overflow-
ing the developer with flagged items),
although they lack actionable expla-
nations of the problem as well as the
thoughtful resolution recommenda-
tions found in IBM’s RAD7 product.

JBuilder bundles a metrics pack-
age that is more extensive than any
I’ve seen in any IDE. It generates more
than 80 different metrics, displaying
them diagrammatically or in spread-
sheet format. (Curiously, the metrics
do not include the maintainability
index, although all the metrics that
make up this index are computed.)
You can turn off the metrics you’re not
interested in and set thresholds for
those you do want to track. JBuilder
also saves metrics snapshots, so that
you can compare the current state of
the codebase with previous runs to
make sure the numbers are trending
in the right direction.

CodeGear integrates JBuilder’s Opti-
mizeIt suite of tools, which Borland

Borland/CodeGear JBuilder 2007
Enterprise Edition
Borland/CodeGear, codegear.com/jbuilder
Very Good	 8.6
	 Features (40%)	 9
	 Ease-of-use (20%)	 8
	 Integration (20%)	 9
	 Performance (10%)	 8
	 Value (10%)	 8
Cost: $1,999
Platforms: Windows (Linux, Mac OS ship in
May)
Bottom Line: JBuilder is a smooth, well-
designed, capable IDE. It offers excellent metrics
and code inspections plus stellar team integra-
tion tools. It works seamlessly with numerous
open-source tools, Java servers, and databases.
It is limited for the moment to Windows only.

9
8
9

8
8

Sun NetBeans 5.5
Sun Microsystems, netbeans.org
Good	 7.4
	 Features (40%)	 7
	 Ease-of-use (20%)	 8
	 Integration (20%)	 6
	 Performance (10%)	 8
	 Value (10%)	 10
Cost: Free
Platforms: Windows, Linux, Mac OS, Solaris

Bottom Line: Great collaboration tools and a
superior GUI designer distinguish this open-
source Java IDE, but missing features (some
of which will appear in the imminent 6.0
release) and lack of integration with enter-
prise technologies diminish NetBeans 5.5.

7
8

6
8

10

I was impressed by how much these IDEs
matured during the past two years, but surprised that

they haven’t advanced further in some respects.

7 I N F OWO R L D . C O M 	 0 3 . 2 6 . 0 7

offered for years as a separate product.
OptimizeIt provides numerous high-
resolution views into the performance
and memory consumption of the soft-
ware. It includes code coverage analy-
sis (although only as a percentage of
the class covered, rather than on a
line-by-line basis) and other insights
into what is happening beneath the
covers, including per-thread data.

JBuilder also offers impressive col-
laborative features. It sports a devel-
oper-oriented messaging system,
which helps with code reviews as well
as developer communication. It uses
a peer-to-peer design that, unfortu-
nately, works only with peers on the
same network segment.

For team coordination, JBuilder
provides TeamInsight, which is an
easily configurable portal server that
comprises key open-source tools:
Subversion, Bugzilla, Continuum,
and XPlanner. This portal is acces-
sible through a Web interface or via
JBuilder and includes numerous proj-
ect reports and metrics. Neither of the
other IDEs comes close to this level of
team integration.

JBuilder feels solid throughout — a
remarkable achievement given its sta-

Metrics in JBuilder 2007 can be shown spreadsheet style (top
circle) or in a Kiviat diagram (bottom circle).

tus as a first release on Eclipse. The
only bugs I ran into were frequent
help icons that did not work. My com-
plaints focus on features that are not
implemented, such as the lack of visual
designers for JSP or JSF (although
these are coming shortly). The prod-
uct also does not generate deployment
files for applications using DB2, which
is a curious omission. Finally, it cur-
rently ships on Windows only. Linux
and Mac versions are slated for May.

At $1,999 for the edition I reviewed,
JBuilder is not cheap, but it provides
tremendous bang for the buck. For
developers who don’t need all the
high-end features, there are profes-
sional and developer versions of
JBuilder available for $799 and $399
respectively.

Sun NetBeans 5.5
Sun’s NetBeans product is the only
completely open-source product in
this review, available at no cost from
netbeans.org. Unlike the other pack-
ages, NetBeans requires a little assem-
bly; you start with the core NetBeans
platform, and add several “packs,”
depending on your needs.

Currently, Sun offers an Enter-

prise pack and a Visual
Web pack (both used in

this review), a mobility pack
for J2ME programming, and a C/

C++ pack. A profiler (also included in
this review) is a separate pack. These
packs are supersets of the common
IDE plug-ins and generally provide
substantial new functionality. Once
I downloaded the packs, I installed
them with no difficulty.

When I first examined NetBeans,
several years ago, it was more of a tag-
along IDE with some good features,
rather than a true peer of the other
Java IDE products. This is no longer
the case, and NetBeans’ popularity
reflects this: A December 2006 survey
by BZ Research shows that NetBeans
enjoyed robust growth last year and
is now in second place behind only
Eclipse (which maintains a comfort-
able lead).

For enterprise computing, Net-
Beans provides several useful fea-
tures, including support for Java EE 5
in the form of Sun’s Glassfish project.
The IDE has good tooling for services-
based enterprise development be it
SOA or just plain Web services. For
example, NetBeans is the only product
reviewed here with full diagramming
and modeling capabilities for BPEL.

The enterprise services offerings
are offset, however, by lack of support
for common products. NetBeans does
not support IBM’s WebSphere app
server and it lacks integrated support
for any database other than JavaDB.
The latter point needs some clarifi-
cation, though: NetBeans will recog-
nize any JDBC-accessible database,
but it generates deployment files and
exploits DBMS-specific features only
for JavaDB.

Collaboration features are very
good. NetBeans has built-in facilities

I N F OWO R L D . C O M 	 0 3 . 2 6 . 0 7 8

for real-time collaboration between
developers, including chat and code-
sharing capabilities.

Unlike these features in JBuilder,
NetBeans’ design is server-based.
You can set up your own server for
this communication, or use one pro-
vided by Sun at no charge. You simply
login to Sun’s server and any develop-
ers in your group are displayed along
with their login status—a design that
is similar to presence awareness in
IM products.

As for GUI design, NetBeans bun-
dles Matisse, which is the best GUI
layout tool of its kind. As you drag
and drop widgets onto panels and
dialogs, they automatically arrange
themselves correctly. Guidelines for
optimal and alternative placements
pop up during the drag and drop
operations. Matisse then generates
code from the design.

This tool alone makes NetBeans the
IDE of choice for sites that do a lot of
Swing-based interfaces, as Matisse
works only with Swing. Fortunately,
due to steady advances in Swing per-
formance and look-and-feel, this is no
longer the limitation it once was.

Whereas the other Java IDEs in this
review all use their own proprietary
formats to store project metadata,
NetBeans smartly relies on Ant files
to hold project configuration data (in
fact, it uses Ant, the open-source Java
equivalent of make, to drive builds).
This has one important advantage: in
teams that use multiple Java IDEs, any
other IDE can load and run a NetBeans
project without having to convert it
manually or import it piecemeal.

There is a downside to the use of Ant
files: NetBeans supports only a single
runtime configuration. Most other
IDEs let you choose from as many run-
time configurations as you’re willing

IBM Rational Application
Developer 7

Borland/CodeGear
JBuilder 2007

Sun NetBeans 5.5
(Enterprise)

Diagrams and Visual Editors

UML Diagrams 2 9 8

Code-UML diagram
round-tripping

Class, sequence only Class, sequence only Class, sequence only

Other diagrams Browse, Topic EJB, Web services BPEL

WYSIWYG visual editors HTML, JSP, JSF HTML HTML, JSP, JSF1

GUI designers Swing, SWT, AWT Swing, SWT, AWT Swing

Java Coding

Support for Java SE 6 No Complete Minimal

Static code analysis tools Proprietary PMD, Findbugs, Proprietary None

Spell checking comments
and literals

Broken No No

Code metrics No Extensive No

Fix-n-go debugging/
remote debugging

Yes/Yes Yes/Yes Yes/Yes

Process to generate
Ant file

Complex Trivial Trivial

Testing and Tuning

Performance/memory
profilers

Yes/Yes Yes/Yes Yes/Yes

JUnit test generation Stubs No Stubs

Web services testing
tool/HTTP monitor

Yes/TCP/IP monitor Yes/Yes Yes/Yes

Enterprise Java

Support for Java EE5 None Complete Complete

Create files for J2EE
servers

Geronimo, JBoss, WebLogic,
WebSphere

Geronimo, Glassfish,
JBoss, Oracle, WebLogic,
WebSphere,

Glassfish, JBoss, Sun,
WebLogic

DBMS built-in support 9 9 (but not DB2) JavaDB only

Other data support SDO EJB3, Hibernate JPA

Miscellaneous

Collaboration features Minimal Extensive Good

Foreign languages
supported

Many Few Few

Platforms Windows, Linux Windows2 Windows, Linux, MacOS,
Solaris

1Requires freely available Visual Web Pack
2Linux and Mac versions ship in May

Java Support, Coding Set IDEs Apart

Borland/CodeGear has a more complete overall feature set, but NetBeans’ platform
support and IBM’s testing tools are areas of strength for their IDEs.

JBuilder feels solid throughout — a
remarkable achievement given its status

as a first release on Eclipse.

9 I N F OWO R L D . C O M 	 0 3 . 2 6 . 0 7

to write; not NetBeans. Instead, you
must change the one configuration
by hand each time you want to change
the parameters you pass to your appli-
cation. (The upcoming 6.0 release of
the IDE remedies this problem.)

I ran into no bugs using NetBeans
and it has a snappy feel except when
running instrumented code in the
profiler. My only complaint about
the user experience is that Sun does
not use anti-aliased fonts, so text is
more difficult to read than in Eclipse-
based solutions.

Clearly, NetBeans has an unusual
mix of features—some superbly
implemented, others entirely miss-
ing. If the mix of features appeals to
you, NetBeans is definitely your ticket.
Not only is it free, but it is snappier
than the Eclipse-based products and
easier to navigate, as it forgoes the
“views” design embraced by Eclipse
and simply uses windows. Also, Net-
Beans is frequently revved, enjoys a
very active community, and benefits
from a plug-in inventory second only
to that of Eclipse.

To be fair, NetBeans is most disfa-
vored by the timing of this review—the

company is preparing version
6 of its IDE, which fixes many of my
complaints including the fonts and the
run-time configuration. If you’re con-

sidering NetBeans, examine the
version 6 beta currently available
before making your decision.

Final Round-Up
So which of these IDEs should you

choose? If you’re running IBM’s
software stack or you have

multiple languages spoken
at your site, RAD 7 is your
best bet — as long as you
don’t need support for
Java EE 5 or Java SE 6.

If you want an inexpen-
sive solution or one that

runs on Mac OS and Solaris
(in addition to Windows and

Linux), your choice is NetBeans.
For all other situations, JBuilder 2007
is the clear choice — and a truly stand-
out IDE. i

The NetBeans Profiler shows per-thread metrics (middle pane) and
memory usage (in circles) in easy-to-read diagrams.

the key to choosing an IDE is selecting one that makes you as produc-
tive as comfortably possible. Here’s a brief overview of three alternatives to the
IBM, Borland/CodeGear, and Sun NetBeans products discussed in this review.

Eclipse. If you don’t need the advanced features of RAD 7 or JBuilder, you might
consider a vanilla version of Eclipse, which is available at no cost from eclipse.
org. If you need a few advanced features, consider MyEclipse from Genuitec
(infoworld.com/4546), which integrates many open-source tools (including Net-
Beans’ Matisse) into Eclipse for $54/year per seat.

JetBrains IntelliJ. This Java IDE is considered by many developers to be the most
productive and enjoyable environment for pure coding. IntelliJ is more intuitive
than the IBM, Borland, or Sun IDEs, which is how it earns its great reputation. It has
some unique features, too. For example, code rules are run in background, so that
errors or poor style show up as you code, and correcting the issues results in their
immediate removal from the screen. These rules are more numerous than in any of
the three products in this review. For sites that write a lot of Java code and do not
need modeling tools, IntelliJ is a very strong, inexpensive option.

Oracle JDeveloper. JDeveloper is a feature-rich and free (but not open-source)
Java IDE available at Oracle’s site (infoworld.com/5147). Like NetBeans, it is not
based on Eclipse. It has strong support for enterprise features including SOA and
Web services and, of course, special integration with Oracle’s database technolo-
gies and OC4J Java application server. — A.B.

More Tools to Try

I N F O W O R L D I T S T R A T E G Y G U I D E 10

Technology

Application Factories: Moving from a
Generic IDE to an Application-specific IDE

Development tools have come a long way over the last
few decades. Today’s IDEs are an indispensable part of any
developer’s tool box - most tout a rich array of features that
span the entire development lifecycle.

Tools vendors such as CodeGear have made significant con-
tributions to this evolution. For example, CodeGear JBuilder®
includes features such as a Visual Workbench for EJB, JPA and
Web services development; TeamInsightTM to manage com-
plex projects across multiple locations through distributed
development and collaboration tools; powerful code archeol-
ogy tools such as LiveSourceTM UML; code audit and metrics
tools; and OptimizeITTM performance management tools for
profiling, code coverage and JEE performance among others.

Now, what’s next for IDEs?
Let’s take a look at software development today.
Over the last few decades a ton of code has been writ-

ten, and thanks to open source, a large part of it is in the
public domain. The capability as well as the complexity of
applications has continued to grow exponentially. Most ap-
plications are developed in teams, often geographically dis-
tributed. Most applications have evolved over a number of
years with many nuances, patterns and best practices very
specific to each application, and with a tremendous flux
of personnel that leave their fingerprints on applications
throughout their evolution.

One of the biggest challenges in application develop-
ment today is to factor in application-specific information.
The answer lies in the ability to capture application evolu-
tion and developers’ knowledge of building and extending
the application as metadata so that it’s not lost in time or
translation. Once that can be done effectively, the combina-
tion of the application code with metadata pertaining to
application evolution can be meaningfully packaged into
reusable software asset libraries.

Through what we call “Application Factories”, the IDE can
be transformed to play a central role in capturing both the
application evolution and the developers’ knowledge.

What are Application Factories?
Let’s start by saying Application Factories are a set of tools to

enable producing and consuming of Application Modules.
What are Application Modules?
Application Modules are simply a collection of applica-

tion source artifacts as standard projects accompanied by
Application Factory Metadata.

What is Application Factory Metadata?
Application Factory Metadata is a repository of applica-

tion-specific artifacts. These artifacts capture the structure,
evolution, and logic used in the development and mainte-
nance of the accompanying application.

How is the metadata manifested in my day to day
development?

This manifestation takes several forms: new behavior
overlaid on existing views, new views, editors and con-
text actions. The logic captured as scripts contributes
new code-generation options. Code-generation in turn
leverages the Application Factory framework to enable
learning and archeology. All these capabilities working
together transform the IDE from a generic IDE to an Ap-
plication-specific IDE.

Let’s illustrate this phenomenon of transforming the IDE
from one that is generic to one that’s application-specific.

In most development tools today, you navigate the ap-
plication based on a generic explorer paradigm, super-
imposed by a domain – say Java projects and packages.
Diagramming tools navigate to resources based on a
modeling construct. Quick search tools jump to known
resources quickly. All of these tools are very useful, ge-
neric IDE tools which will work with any application.

Java IDE

I N F O W O R L D I T S T R A T E G Y G U I D E 11

Technology

 Application Factories will transform these very tools and
add additional ones by applying application-specific meta-
data. These tools not only let you navigate based on a gener-
ic construct, but let you both organize and navigate based
on an application-specific construct. Some of these help in
manifesting application comprehension, visualization and
anchored navigation. These are some of the features that
help others (and the original developer, six months later)
remember and understand the nuances of the application.
This is illustrated in Figure 1.

 Take another example to illustrate the transformation
from the generic to the application-specific using scripts.
(But how did the script get created in the first place? The
application module producer chose to use a script as an
efficient way to deliver new functionality. The Application
Factory producer tools help to create such a script. I will
discuss the process of creating scripts in Part 2 of this ar-
ticle. For the sake of this illustration assume that a module
contains the collected wisdom from people who needed to
do something similar on the same type of framework)

The illustration is a Web application module which con-
tains a script to add AJAX enabled type-ahead capability
to a HTML table in your web application. Application Fac-
tories surface the presence of that kind of metadata and
lets you execute it in the Application Factory framework,
prompting for user input as needed. As you do so, Appli-
cation Factories prepares by generating the code modi-
fications required and presents it in an optional learn
mode with various kinds of customization options. One

of the primary customizations available now is to modify
the code generation itself, adapting it as the application
evolves over time. On acceptance of the presented modi-
fications in the learn mode, the application is modified.
This is illustrated in Figure 2.

The examples above help illustrate how Application Fac-
tories with the help of metadata transform the IDE from a
generic tool to an application-specific tool. But, how do the
Application Module and the accompanying metadata get
created in the first place? This is where the consumer part
of Application Factories comes into play.

Using the Application Factories tools you can browse
pre-created Modules. The browsing of the module is again
anchored on metadata – allowing you to filter based on ar-
bitrary facets, resulting look and feel of the application, the
architectural view of the application’s internals and others.
A view of the module browser is shown in Figure 3.

Application Factories: Moving from a Generic IDE to an Application-specific IDEJava IDE

I N F O W O R L D I T S T R A T E G Y G U I D E 12

Technology

An Application-first
Development Model

The approach of creating application metadata to capture
the intent and knowledge of developers provides an appli-
cation-driven development model. The IDE now evolves to
take the role of manifesting the application-specific meta-
data with interactive, just-in-time tooling.

This approach to creating metadata that easily captures
the intent and knowledge of developers working on an ap-
plication provides a new model for designing software. Ap-
plications evolve over a number of years with many nuances,
patterns and best practices very specific to each applica-
tion. Many developers work on an application throughout
its lifecycle, gaining knowledge of its inner workings and
developing effective ways to maintain and enhance it. These
are invaluable assets to hold on to and deploy as modules.
Starting from such a base, developers can customize and
build applications more efficiently—thereby greatly reduc-
ing the cost and overhead associated with the complexity
of today’s applications.

Such a model addresses the core challenges in software

development today – avoiding constant relearn, capturing
valuable data about the application, application reuse, and
a meaningful software asset library.

For more information on Application Factories watch
for upcoming announcements at www.codegear.com and
read about CodeGear’s Eclipse-based JBuilder, JGear and
3rdRail IDEs. We invite you as well to join in discussions
and share best practices with the more than 6 million de-
velopers doing Java, Eclipse, Rails, Windows, PHP and da-
tabase development in our CodeGear’s Developer Network
- http://dn.codegear.com/
— Ravi Kumar

Ravi Kumar is principal architect in the Java tools group
at CodeGear and is responsible for the vision and archi-
tecture of CodeGear’s Eclipse-based JBuilder product line.
He was the driving force behind the JBuilder ProjectAssist
team system vision. He specializes in SOA, Web Services
and Database tooling. These days he is working on mak-
ing the new paradigm of Application Factories a reality in
future versions of CodeGear products.

Application Factories: Moving from a Generic IDE to an Application-specific IDEJava IDE

Congratulations

codegear
 for being named

Best Java ide

	CG_4-15.pdf
	Java Development Productivity and
	Quality Using Eclipse:
	A Comparative Study of
	Commercial Eclipse-based IDEs
	The productivity benefits of using commercial Eclipse-based Java IDE products from IBM (IBM Rational Application Developer), Genuitec (MyEclipse), and CodeGear (JBuilder) compared to the freely downloadable baseline Eclipse configuration.
	Added Dimension: Homogeneous Versus Cross Vendor Environments
	Representative Company Calculations
	Parametric modeling of software cost, schedule, and so on has been in existence since the early 1980s. It is employed by most major organizations to help estimate and manage software development projects. The Standish Group, Software Productivity Research, and others have found that the use of these techniques double the probability of projects reaching a successful conclusion. The parametric models used in this study have a design goal of a plus or minus 10% accuracy and are currently achieving an accuracy of plus or minus 7% in the field.

