

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Whitepaper

An Introduction to Embarcadero®
C++Builder® 2010
Volker Hillmann, adecc Systemhaus GmbH,

February 2009

An Introduction to C++Builder 2010

Embarcadero Technologies - 1 -

CONTENTS
An Introduction to Embarcadero® C++Builder® 2010 .. 1

Contents ... - 1 -

Embarcadero C++Builder 2010 .. - 4 -

Reasons for C/C++ as a language ... - 5 -

The ISO standard ... - 6 -

The Development Environment ... - 7 -

IDE Insight wizard .. - 8 -

Project Manager .. - 9 -

Virtual folders ... - 10 -

Sorting the display ... - 10 -

Settings ... - 11 -

Build configurations ... - 12 -

Creating the applications and libraries, cleaning .. - 12 -

The “From here” menu item ... - 12 -

Preprocessor, assembler, memory dump .. - 12 -

Source text editor .. - 12 -

Text search ... - 13 -

Refactoring ... - 14 -

Code completion and parameter support ... - 15 -

Code folding .. - 17 -

Templates ... - 20 -

Source code formatting ... - 24 -

C++ Class Explorer ... - 25 -

Navigating in the source text .. - 26 -

Adding new elements to a class ... - 27 -

Displaying the references .. - 27 -

Graphic display of classes ... - 27 -

Tool Palette .. - 28 -

Tool Palette in design mode ... - 28 -

Tool Palette in the code mode ... - 29 -

An Introduction to C++Builder 2010

Embarcadero Technologies - 2 -

Structure view .. - 29 -

Structure view in design mode ... - 29 -

Structure view in the code mode .. - 30 -

Object Inspector .. - 30 -

Editing the properties of the VCL components ... - 30 -

Editing the events of the VCL components ... - 31 -

Form Designer ... - 32 -

Debugger ... - 33 -

Working with breakpoints ... - 34 -

Further control options and views .. - 35 -

New features in the Builder 2010 .. - 37 -

Attaching to a running process ... - 38 -

Important files .. - 38 -

Creating a Console Application ... - 39 -

Visual Component Library – the RAD Framework ... - 40 -

The unit .. - 41 -

The form ... - 41 -

Properties of a form ... - 42 -

Events for a form .. - 49 -

Controls .. - 51 -

Important controls in the “Standard” category ... - 51 -

Win32 controls .. - 53 -

Additional ... - 54 -

Important properties of the components .. - 56 -

Important component events ... - 57 -

Creating a VCL form application .. - 58 -

Expanding the application – working with the VCL components - 59 -

Fundamental comment on using the VCL.. - 69 -

Unicode .. - 70 -

Unicode in the VCL components ... - 72 -

Unicode in the source text .. - 72 -

An Introduction to C++Builder 2010

Embarcadero Technologies - 3 -

String literals for Unicode constants in the source text... - 72 -

Unicode in the input and output stream .. - 74 -

Converting Unicode in the national character set ... - 76 -

Creating database applications .. - 78 -

Creating database applications .. - 78 -

Data access with the BDE ... - 78 -

Data access with ADO ... - 79 -

Data access with dbExpress.. - 80 -

Data-sensitive VCL components and data access .. - 81 -

An example database “Training” ... - 83 -

Setting up a “Training” database ... - 83 -

Establishing the database structure ... - 84 -

Establishing the value ranges .. - 88 -

Refining the data model .. - 90 -

Creating a program for working with the data .. - 91 -

Gesture and Touch Control .. - 93 -

Improvements to the new C++ standard (C++0x) in C++Builder 2010 - 94 -

Improvements to the new C++ standard (C++0x) in C++Builder 2010 - 94 -

Compiler enhancements ... - 94 -

Scoped enums .. - 94 -

RValues .. - 95 -

Type inference - decltype .. - 95 -

Improved control .. - 96 -

The Boost library in C++Builder 2010 .. - 97 -

Example with lexical casts ... - 99 -

List of tables ... - 102 -

List of figures .. - 102 -

List of source text ... - 104 -

About the Author ... - 105 -

An Introduction to C++Builder 2010

Embarcadero Technologies - 4 -

EMBARCADERO C++BUILDER 2010
Embarcadero® C++Builder® 2010 is one of the leading, integrated RAD C/C++ development
environments for generating native applications under Microsoft® Windows. This unique
development environment combines the considerable flexibility of a RAD environment with the
efficiency of the ISO-standardised programming languages C and C++. As a result, the leading
programming language C/C++, which has already been designed to cover several paradigms,
has been further extended. The current compiler already supports the large number of
properties of the new ISO C++ standard C++0x which is being adopted in the coming months.
Additionally, some of the Boost libraries will be supported directly, enabling C++Builder 2010
to connect more powerfully with the C/C++ community.

The application area of C++Builder 2010 ranges from fast prototyping to large-scale
applications across all economic sectors, regardless of client or server programs. The
supported target platforms range from Microsoft® Windows 2000 operating system through the
current version of Microsoft® Windows 7 operating system. .

The integrated development environment (IDE) includes a powerful editor, which not only
adapts to your individual habits as a developer, also supports syntax displays for the various file
types, code templates, code completion, code folding, and automatic formatting. It is also
equipped with a class browser, a visual designer for the user interface, an integrated help tool,
and it is includes with an efficient debugger. The Project Manager, in which several applications
and libraries can be jointly coordinated, includes wizards for creating special applications or
objects as well as a history of the changes made to the source files.

The Designer provides the components of the supplied RAD framework VCL in the form of a
Tool Palette so they can be easily inserted using a mouse. You can then edit the property values
in a special area using the Object Inspector. The settings are saved parallel in a special file
format instead of in the source text of the application.

C++Builder can be used to create various types of applications by selecting the application
type from the New Items dialogue. Alongside the classic Microsoft Windows form application
(GUI) you can also create text-orientated console applications or service applications. As the
programming languages C and C++ play a key role in the creation of program libraries, both
static and dynamic libraries can be generated using C++Builder.

An Introduction to C++Builder 2010

Embarcadero Technologies - 5 -

Figure 1: Selecting the target in the New Items dialogue

The New Items dialogue also includes the wizards which are used to generate special
applications. With C++Builder you can also create applications for use with a web server,
whether as a simple application or the implementation of a SOAP server. This also makes it
possible to integrate in the infrastructure of large companies (SOA).

REASONS FOR C/C++ AS A LANGUAGE
C/C++ is a programming language, which, with the aid of a compiler, is translated into native
machine code. This makes it possible to generate highly efficient code. While C remains rather
restricted to system programming, C++ has been developed to become an universal language
with a stronger, more static typification based on C, and directly supports multiple
programming styles. Today, C++ combines the object-orientated with the procedural, the
abstract and the generic programming. It is particularly the generic programming that enables a
high degree of flexibility. In doing so, the programmer has the choice, and styles can be
combined at will. As a conscious effort has been made to reject platform-specific properties,
C++ is not just as fast as C, it is just as easy to port.

By contrast with many other programming languages, C++ is not owned by one company. The
language was developed right from the start in collaboration with several companies, and has
been standardized by ISO since 1998. Many companies and universities, including Adobe,
Apple, Microsoft, IBM, Embarcadero, HP and Google, were involved in its further development.

An Introduction to C++Builder 2010

Embarcadero Technologies - 6 -

The C++ concept enables both machine-orientated but also highly abstract programming. In
the second case, the benefits lie in a considerable expressiveness and flexibility. A criticism
often heard is the lack of free storage management. C++ does actually possess an adaptable
free storage management in which you can seamlessly integrate an automatic garbage
collector. This means that C++ is also implemented widely in the industrial sector and is very
suitable for large-scale projects. The compatibility with C, previous lack of which has often been
criticised, ensures a very rapid distribution.

C/C++ is widely used as a programming language in the UNIX field, and is therefore also
available for Linux. With the GNU C/C++ compiler, many platforms can enjoy a very efficient
implementation for the programming language in the open source area, therefore securing
investments in C++ programs independently of commercial companies.

THE ISO STANDARD
The programming language has been standardised under the designation “ISO/IEC JTC1 SC22
WG21”. One of the great advantages of C++ is the open standard and the vast number of
people, companies and universities involved in its further development. This enables a
continuous and practical advancement of the language.

The first standard was agreed in 1998. After a small step in 2003, the new standard, C++0x, will
be concluded in the coming months.

The members of the Committee originate from the areas of scientific research and industry.
Herb Sutter, one of the software architects from Microsoft and known from the “Guru of the
Week” series, recently became the chairman of the Committee. This is a very clear indication –
Microsoft marketing backs C#. The most important products are mainly written in C and C++. If
you trace the names of the Standards Committee members, you will discover, for instance,
companies like HP, Apple, Google, IBM, Embarcadero, Adobe, Intel, Oracle (Sun), Red Hat,
SGI, AT&T, … . Some of the greatest universities in the USA, like the Texas A&M University, the
Indiana University and the Washington University, are also involved in its further development.
Added to this are major library and tool manufacturers, e.g. boost, Rogue Wave and
Dinkumware.

An Introduction to C++Builder 2010

Embarcadero Technologies - 7 -

THE DEVELOPMENT ENVIRONMENT
The individual parts of the program are linked to each other within the development
environment. When you launch C++Builder, it appears in the default layout. By contrast with
the older versions 5 and 6, the individual parts are combined (docked) in one main window.

The following figure shows the default layout of the development environment.

Figure 2: Development environment in the default layout

The main menu and toolbar are located in the upper area of the application, the workspace in
the central area, and additional windows to the left and right. The workspace features an
embedded Form Designer in which forms can be edited visually. The Structure view, the Object
Inspector and the Tool Palette allow you to work on the form with VCL components, and these
are arranged around the workspace.

The lower area of the workspace includes a selection area. Here you toggle between the form
view, the declaration and the implementation. You can edit the source text in the editor by
using the syntax support, code completion and integrated tooltips.

An Introduction to C++Builder 2010

Embarcadero Technologies - 8 -

As the majority of the applications are made up of more than one source text file and libraries, a
further part of the environment, the Project Manager, is used to coordinate the associated
source files and libraries.

With C++Builder 2010 you can return to the classic view as is customary in older versions
(Builder 5 + 6). Many developers have had problems with the changeover to the new default
layout which has been used as of C++Builder 2006. This has a selection field alongside the
menu bar. In the classic layout, the windows are once again loose (undocked) on the screen,
and the Tool Palette is again located at the top right. This makes it easier for developers to
switch from an older version to C++Builder 2010.

Figure 3: Development environment in the classic mode

As standard, the design interface is still fixed in the workspace - even in the classic layout. But
this can be adapted. To do this, you select the area “Environment options” under “Tools >
Options” and then go to the “VCL designer” page. Here you disable the option “Embedded
designer” and then restart the development environment. This then undocks the design
interface, as in the previous versions.

C++Builder 2010 helps you to search for new properties. Pressing the function key “F6”
launches the IDE Insight wizard which then supports you in the search for options and
properties.

IDE INSIGHT WIZARD
The “IDE Insight wizard” is a new feature in C++Builder 2010 development environment. This
little tool can help you search for information in various categories incredibly quickly. The

An Introduction to C++Builder 2010

Embarcadero Technologies - 9 -

searched text is entered in the input field and the search takes place incrementally. When the
required property appears in the display range of the dialogue, you simply double click on this
and the system jumps to the dialogue you are searching for or the respective command is
executed.

Figure 4: IDE insight

If, for example, you enter “console”, and the entry “Console Application” appears, double
clicking on this with the left mouse button launches the wizard for creating a console
application.

You can find similar quick searches in other systems. The operating systems Microsoft®
Windows Vista and Microsoft® Windows 7 have a similar help function under the Start button.

PROJECT MANAGER
This is the central point in which you work with projects and project groups. As standard, the
Project Manager is located in the right section of the development environment. You can open
only one project group at a time in C++Builder 2010, but several projects can be located within
this group. A project group has the extension “*.groupproj”.

A project contains all the information that is required to generate an application or a library. In
addition, C++Builder 2010 saves all the source files, resources, libraries and settings for the
compiler and the linker in the project file. This is written in an XML format and, in the current
versions, has the extension “*.cbproj”.

The following figure shows the Project Manager with two projects. The information is shown
hierarchically.

Figure 5: Project Manager

An Introduction to C++Builder 2010

Embarcadero Technologies - 10 -

In this example, the project group “TestGruppe” has been opened. This contains the two
projects “Testprojekt.exe” and “testkonsole.exe”. The project “Testprojekt.exe” is enabled
(shown in bold) and the nodes expanded.

In the Project Manager, you can generate new projects or add existing ones.

VIRTUAL FOLDERS
To achieve a better overview, you can set up virtual folders and simply drag & drop the files into
these. There then follows a grouping according to contents, but the files are only displayed
under this folder. A further advantage of the virtual folder is that you can display the files in this
without the sometimes annoying physical path.

You can disable the view of the virtual folder without actually deleting it. If a virtual folder is
deleted, the files still remain in the project.

SORTING THE DISPLAY
In the previous versions it was possible to change the order only by drag & drop. In doing so,
there was another trick - the files that were being dragged with the mouse also had to be
dragged to the left on the structure lines before they were saved. While some developers
prefer an alphabetic sorting, others use an arrangement according to content.

This is why C++Builder 2010 now has the possibility of sorting the files in the view. You can now
arrange the files according to the names, the date of update, the path, the type or the order of
build. You can find the selection in the Project Manager toolbar or in the respective context
menu.

The order of build plays a key role and can always be changed by drag & drop or the respective
entries in the context menu of the Project Manager. C++Builder 2010 has a special view in
which you can manage the order of build.

An Introduction to C++Builder 2010

Embarcadero Technologies - 11 -

Figure 6: Managing the order of build in the Project Manager

SETTINGS
The settings play a very important role in creating the projects. Both the compiler and the linker
are called as external programs. Even though the key principle of C++ is for developers to be
able to work without a respective development environment, and programs and libraries are
very often also generated in batch, it is difficult to keep specifying all these parameters. This is
why C++Builder makes available a comfortable management of the options and saves this in
the project files.

Figure 7: Project settings

An Introduction to C++Builder 2010

Embarcadero Technologies - 12 -

If applications and libraries are created from the Project Manager, the development
environment will then use these settings accordingly.

Careful: The selection box “Default” is located in the lower area of the dialogue. If this
selection is enabled, all the settings are adopted in a template which is then used each time a
new project is generated.

BUILD CONFIGURATIONS
In doing so, the settings are also hierarchically summarised in groups, the “build
configurations”. As standard, C++Builder 2010 recognises three groups, the key settings are
saved in the base configuration, but deviating ones saved in the debug or release
configurations. You can, however, set up other configuration sets. You can save these settings in
project-independent files (option groups *.optset) and then use them again in other projects.

CREATING THE APPLICATIONS AND LIBRARIES, CLEANING
There are two variants to consider when creating applications and libraries. When generating a
project, all the files are recompiled and then linked together at a later point. When updating,
only the files that have been changed since the last generation / update are recompiled. And if
only one file has been recompiled, the linker is then launched.

In the case of a cleaning, all the interim files are deleted, so they will have to be recompiled
afterwards in any case.

THE “FROM HERE” MENU ITEM
The menu item “From here” is a new feature in the Project Manager. With this function you can
regenerate, update or adjust all the projects following the one you have selected.

PREPROCESSOR, ASSEMBLER, MEMORY DUMP
Further areas which have been enhanced in the current version of C++Builder are the
preprocessing (C preprocessor), assembling and the display of the memory dump of a module
or an application. The first two areas already existed in the previous versions and are considered
standard in a C/C++ compiler. They give the developer the option to control macros and
further optimize the source code.

The memory dump doesn´t just show the assignment of the main memory, but also the
methods and libraries used.

SOURCE TEXT EDITOR
The source text editor enables you to work directly with the program source text. While some
parts of the source text are inserted and edited by C++Builder itself, others are edited manually
by the developer. As you would expect from an efficient editor, there are various modes. Text
can either be added or overwritten. Coloured markings on the border indicate whether this is
changed source text or whether this has already been saved.

An Introduction to C++Builder 2010

Embarcadero Technologies - 13 -

TEXT SEARCH

Searching in the source text window
As it is very important for a developer to find information quickly within the source text, you can
search for text in the source text window. With C++Builder 2010 this option has been improved
to include a search input area in the lower area of the source text window. Go to the “Find”
entry under the “Search” menu to enable this area.

Figure 8: Searching in the source text window

The input field is a selection area in which you can display the last search query. As you can see
in the figure, there are several search options. You can differentiate between uppercase and
lowercase, search for whole words, search in the selected area and use regular expressions.
The text references found are shown in colour and the number of matches is displayed in the
lower area. Use the arrow keys to switch between the found matches.

As an alternative, you can also search incrementally, but this does not support the additional
options.

Text search in projects and files
There are more options available in the “Find in Files...” entry in the “Search” menu. A modal
dialogue opens.

An Introduction to C++Builder 2010

Embarcadero Technologies - 14 -

Figure 9: Find in Files

This selection enables you to search in all the files of the current project or project group but
also only in the files which are currently open or in the specific directories. You can also use the
options described above “Case sensitive”, “Whole words only” and “Regular expressions”
here. The search results are displayed in the message window and can be grouped according to
files.

Searching and replacing text
It goes without saying that C++Builder gives you the option to search for text and replace this
with other text. Go to the “Replace…” entry in the “Search” menu for this. A modal dialogue
opens in which you can enter the text phrases and options.

Figure 10: Replace Text

REFACTORING
Refactoring is the restructuring of the source text (structure improvement) whilst maintaining the
behaviour. This should improve the maintainability and expandability of the programs.
C++Builder 2010 supports this via the “Refactoring” area; you can search for references of
variables and carry out automatic renaming. You can display all the respective positions prior to
renaming.

An Introduction to C++Builder 2010

Embarcadero Technologies - 15 -

Figure 11: Refactoring

As many developers initially start with the automatic allocation of names for components, this
option is very important, ensuring you can obtain a project in a legible form at a later date.

CODE COMPLETION AND PARAMETER SUPPORT
The source text window features some additional aids which aim to support the developer in
writing source text. The most important are the code completion and the parameter support.
These two services belong to the “Code Insight” area and can be switched on or off in the
options accordingly. Moreover, you can regulate the delay before the support is enabled.

The “Code Insight” area includes other properties. For example, while debugging an
application you can display variable content with a tooltip or automatically close brackets. In
addition to this, you can control the behaviour of the code templates here.

Important: In larger projects it makes sense to disable some of the options in this area, as these
could cause considerable delays when processing the source text.

An Introduction to C++Builder 2010

Embarcadero Technologies - 16 -

Figure 12: Options for “Code Insight”

With code completion, the development environment searches for known objects and
properties and makes these available in a selection dialogue. These can be adopted
immediately without having to enter the full identifier.

Figure 13: Code completion

An Introduction to C++Builder 2010

Embarcadero Technologies - 17 -

With parameter help, the development environment displays the names and types of call
parameters for the methods entered.

Figure 14: Parameter help

CODE FOLDING
As standard, the source text window offers the option of “folding together” the functions and
classes so as to offer a better overview. However, C++Builder 2010 also gives you the option to
add other regions and to provide these with a description. For example, you can bracket
algorithms and then unfold or fold them. If a region is folded, the source text window shows
only the framed description.

//===
// Example program C++Builder 2010
// adecc Systemhaus GmbH
// Copyright (c) 2008-2009
//===
// random and bind with regions
//===

#pragma hdrstop
#include <tchar.h>

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <vector>
#include <random>
#include <functional>
#include <algorithm>

An Introduction to C++Builder 2010

Embarcadero Technologies - 18 -

// Help functions for sorting
template <typename T>
bool is_less_than(T a, T b) { return a < b; }

// Help class for output of figures in groups
class TOutputHlp {
 private:
 int iCount;
 int iMax;
 public:
 TOutputHlp(int para) : iCount(0), iMax(para) { };

 TOutputHlp(TOutputHlp const& ref) {
 iCount = ref.iCount;
 iMax = ref.iMax;
 }

 virtual ~TOutputHlp(void) { };

 void Reset(void) {
 std::cout << std::endl;
 iCount = 0;
 return;
 }

 template <typename T> void operator () (T const& val) {
 std::cout << std::setw(3) << val;
 if(++iCount >= iMax) {
 iCount = 0;
 std::cout << std::endl;
 }
 return;
 }
 };

//---

#pragma argsused
int _tmain(int argc, _TCHAR* argv[]) {
 TOutputHlp output(10);
 std::vector<double> values;
 #pragma region dice algorithm
 std::tr1::minstd_rand rand_gen(std::time(static_cast<std::time_t *>(0)));
 std::tr1::uniform_int<int> uniform distribution(0, 60);
 std::tr1::variate_generator<std::tr1::minstd_rand,std::tr1::uniform_int<int> >
 generateValue(rand_gen, uniform distribution);
 for(int i = 0; i < 40; i++) values.push_back(generateValue());
 #pragma end_region

 #pragma region output
 std::cout << "Output of generated random numbers" << std::endl;
 for_each(value.begin(), value.end(), output);
 output.Reset();
 #pragma end_region

An Introduction to C++Builder 2010

Embarcadero Technologies - 19 -

 #pragma region sort ascending and output
 std::sort(value.begin(), value.end(), is_less_than<double>);
 std::cout << "Sort ascending values" << std::endl;
 for_each(value.begin(), value.end(), output);
 output.Reset();
 #pragma end_region

 #pragma region sort descending and output
 std::sort(value.begin(),value.end(),std::tr1::bind(is_less_than<double>,_2,_1);
 std::cout << "Sort descending values" << std::endl;
 for_each(value.begin(), value.end(), output);
 output.Reset();
 #pragma end_region

 return 0;
 }

Listing 1: Random numbers with code folding

If the region is visible, it is recognised by the character [-] in the border. The area is marked by a
line. Otherwise, the [+] symbol precedes it.

Figure 15: Regions in the source text window

As with the majority of the editor options, you can also switch off folding. Go to the “Code
folding” checkbox under the “Editor Options” tab (or use the shortcut “Ctrl+Shift- K+O”).

An Introduction to C++Builder 2010

Embarcadero Technologies - 20 -

Figure 16: Editor Options

To hide a region, use the mouse to click on the [-] symbol or use the shortcut “Ctrl+Shift - K+E”.
To show, click on the [+] symbol or use the shortcut “Ctrl+Shift - K+U”. You can also make all
the hidden areas visible again by using the shortcut “Ctrl+Shift - K+A”.

TEMPLATES
With code templates you can manage frequently recurring source text and accelerate the input.
The possibilities have been further enhanced compared to the previous version. Today the
templates are saved in an XML format and are available for the different source formats. You
can add templates automatically (“Code Insight”) or manually (shortcut Ctrl+J).

You work with templates via the” View” menu. Refer to the entry "Templates" in the “View”
menu. The window used to edit the templates then appears at the Tool Palette position. Here
you can see any already predefined templates.

An Introduction to C++Builder 2010

Embarcadero Technologies - 21 -

Figure 17: Development environment with code templates

To manually trigger an existing template, enter the name in the source text and then press the
shortcut Ctrl+J. The source text is then added accordingly. If the name is incomplete or missing,
a selection window appears showing the queried templates. As an alternative, you can double
click with the left mouse button on the desired template in the template window; this is then
adopted at the cursor position.

You can work with the templates via the toolbar or the context menu in the template window.
Here you can create new templates, delete those which are no longer required or simply edit an
existing one.

Creating new templates
To create a new template, select the respective icon in the toolbar of the template window or
click on the “New” entry in the context menu. An XML file showing the basic structure for the
new template appears in the code window.

By default, new templates are saved in the user’s documents folder. Only here is it assured that
the necessary authorizations for generating new files are available. To publish this template in
the development environment, you must first copy the xml file to the subdirectory
“ObjRepos\en\Code_Templates\c” of the respective installation directory of C++Builder 2010.
The subdirectory “de” of the respective localisation (German here) and “c” corresponds to the
language for which the template is being used.

In our example, we want to create a new template for the documentation of files in the format
of “Doxygen”. Doxygen is a project with which programs can be documented in C/C++. This is

An Introduction to C++Builder 2010

Embarcadero Technologies - 22 -

distributed under the terms of the GNU- GPL and can be downloaded from the Internet. I have
deliberately chosen this example, as we are always hearing about how complex the
documentation is, which is why many developers will not use it.

The necessary information for this is located within the source text, so it is no longer necessary
to synchronise between source code and documentation. To describe the information for a file,
in a source file for Doxygen there is the following format.

/** @file
 * @brief file with definition of the class TSysTime for querying the system time
 * @author Volker Hillmann
 * @author adecc Systemhaus GmbH
 * @date 15.05.2006
 * @version Version 1.3
 * @since Version 1.3
 */

Listing 2: Doxygen comment for a file

Of course, there are further commands, e.g. to document errors and warnings or to manage a
ToDo list. Refer to the Doxygen homepage for more information.

We often hear the criticism that the source text is often easy to overlook on account of the
extensive documentation. Here, C++Builder offers the option of individual code folding, so that
the areas are written in the regions and can be folded accordingly in order to edit the source
text.

 In doing so, you can save descriptions and notes and also define points which are then used in
the code snippet of the template. The following figure shows the new template “DoxyFile”.

An Introduction to C++Builder 2010

Embarcadero Technologies - 23 -

Figure 18: Editing code templates in the code window

If you now create a new unit and then enter the name “DoxyFile” followed by the shortcut
“Ctrl+J”, “DoxyFile” is overwritten by the new template. The following figure illustrates this.
The points entered in the template are framed and will be overwritten when entered. Provided
you are within the inserted template, you can then use the tab key to toggle between points.

An Introduction to C++Builder 2010

Embarcadero Technologies - 24 -

Figure 19: Inserting a code template

As the example shows, by using the code templates you can build a skeleton in order to save a
lot of time when working with the source text and to introduce respective standards. As the
templates are saved in xml files, these can be changed easily.

SOURCE CODE FORMATTING
Developer teams are divided in terms of the nature in which the source code can be best
formatted. Some will write the opening brackets at the top, others always in the next line. Some
developers leave a space between the identifiers and the operators, others, however, don´t.

C++Builder 2010 finally puts an end to this discussion. In the options you can establish how the
source code should be formatted. For this purpose, the appropriate options are set in the areas
“Indentation”, “Spaces” and “Line breaks”.

An Introduction to C++Builder 2010

Embarcadero Technologies - 25 -

Figure 20: Options for code formatting

Now you can automatically format the source text via the context menu in the code window or
with the shortcut “Ctrl+D”. If only a specific area of the source text is selected, then only this
selection will be edited by the automatic formatting.

C++ CLASS EXPLORER
The older versions of C++Builder 5 and 6 were provided with a Class Explorer. However, as this
is an offshoot of the Delphi Class Explorer, and Delphi does not cover the possibilities of C++
class hierarchies, there were always problems when it came to complex applications. It was
particularly difficult to solve the multiple inheritance. This is why the last versions did not include
the Class Explorer, but this was requested by a lot of developers.

However, we see its return as a special C++ Class Explorer in C++Builder 2010.

An Introduction to C++Builder 2010

Embarcadero Technologies - 26 -

Figure 21: C++ Class Explorer – normal view

When the Class Explorer starts up, the project is scanned and the necessary information
searched for. To enable a better overview, the classes are immediately subdivided into
categories.

Category Description
RTL Classes, variables and functions of the runtime environment
VCL Classes, variables and functions of the VCL (if available in the project)
STL Classes, variables and functions of the STL (if available in the project)
Project User-defined classes and variables in the project

Table 1: Categories in the C++ Class Explorer

You can also display enumerations (enum) and self-defined types (typedef) in the Class Explorer.

NAVIGATING IN THE SOURCE TEXT
If you click in the left area of the Class Explorer a class or variable, a view which displays the
respective source text opens in the right, lower area of the Class Explorer. A list of the variables,
properties and methods is shown in the right, upper area. In this list you can also see in which
file and at which position the respective element can be found. The inherited properties are
also shown here.

If you now click on the entries at the top, the view is synchronized in the right, lower area.

By using commands in the toolbar or the context menu you can now switch to the declaration or
definition in the code window. It is then possible to edit as usual, so that with the aid of the
Class Explorer you can very quickly navigate in the source text of the project.

An Introduction to C++Builder 2010

Embarcadero Technologies - 27 -

ADDING NEW ELEMENTS TO A CLASS
You can also add new properties within the Class Explorer. The appropriate commands are
available in the toolbar of the Class Explorer for this purpose. The following figure shows the
wizard for adding a new method.

Figure 22: Adding a new method in the Class Explorer

This wizard inserts the definition of the method in the respective class and other specifications, e.g. for
visibility or polymorphism, can be carried out here. If the method is not abstract (purely virtual), a
function body is also generated in the source file.

Wizards are provided for inserting data elements and VCL properties.

DISPLAYING THE REFERENCES
The “References” tab of the Class Explorer displays all the source text positions for which the
properties selected in the left area are used. Unfortunately, it is not possible to change on the
spot from here on. Future versions will certainly see more enhancements for the new Class
Explorer.

GRAPHIC DISPLAY OF CLASSES
A further tab shows you a graphic display. The class selected in the left area will be displayed
on the “Graph” tab. You can also select several classes to show class hierarchies.

The following figure illustrates the class graph of an example application. Unfortunately, no
usage links are displayed here, and partial inheritance is not recognized. I´m sure we´ll see a
more in this regard in future versions.

An Introduction to C++Builder 2010

Embarcadero Technologies - 28 -

Figure 23: C++ Class Explorer in the graph view

TOOL PALETTE
The Tool Palette is dependent on the view selected in the workspace.

TOOL PALETTE IN DESIGN MODE
In design mode, the Tool Palette includes all the installed visual and non-visual VCL
components. These are arranged in groups (categories, palettes). With a click of the mouse you
can select the desired VCL components and place it on the currently edited form.

Figure 24: Tool Palette in design mode

An Introduction to C++Builder 2010

Embarcadero Technologies - 29 -

One of the great advantages of the new Tool Palette is the quick search mode. If you enter the
name (or part of this) in the input field in the upper part of the Tool Palette, then only those VCL
components which meet this entry are displayed. This saves time and you don´t have to toggle
between the various categories in order to find the VCL component you are looking for.

TOOL PALETTE IN THE CODE MODE
If you are working in the code window, the VCL components are hidden. The Tool Palette then
includes an alternative view of the familiar New Items dialogue. From here you can create new
projects or add to the existing project parts, for example, a form or a unit.

Figure 25: Tool Palette in the code mode

STRUCTURE VIEW
The information shown in the Structure view is dependent on the selection in the workspace.

STRUCTURE VIEW IN DESIGN MODE
If you work in the VCL designer, in Structure view all the VCL components which are located on
the form are displayed hierarchically in a tree structure. All entries are displayed under the root
(form). With that, the individual levels of the container are displayed and the controls are
arranged within the container. Individual levels can be shown or hidden in the view.

Figure 26: Structure view in design mode

An Introduction to C++Builder 2010

Embarcadero Technologies - 30 -

If you click on an element in the Structure view it will be selected accordingly in the designer
and in the Object Inspector, and vice versa. With drag & drop you can move the controls
between the containers. Containers and controls can also be deleted, cut out or inserted in the
view.

STRUCTURE VIEW IN THE CODE MODE
In the code mode, the Structure view refers to the structure of the source code which is open in
the workspace. Therefore, this area is often referred to as the “Code Explorer”.

If a header file is being edited in the code editor, you can see in the Structure view the classes,
the properties and the methods that are defined in this header file. This gives you an overview,
and, similar to the Class Explorer, the Structure view helps to navigate more quickly in the
source text. By double clicking on a property or method you jump to the precise position in the
source text.

Figure 27: Structure view in the code mode

A source file displays the methods and variables that are being used in this file.

OBJECT INSPECTOR
The Object Inspector is used to check and change the properties and the behaviour of the
selected form and the VCL components inserted in this. The Object Inspector area includes a
selection box in which the currently selected VCL component is displayed. You use this
selection box to select a different VCL component from the list. Alternatively, click on the
desired VCL component directly in the designer or use the Structure view.

EDITING THE PROPERTIES OF THE VCL COMPONENTS
The published properties of the VCL components can be edited on the “Properties” tab. Here
you can change the sorting and opt for a grouping based on content as opposed to an
alphabetically sorted list.

An Introduction to C++Builder 2010

Embarcadero Technologies - 31 -

Figure 28: Object Inspector with properties

If the property is an enumeration, the values of the enumeration are shown in a selection box.
In the case of yes / no values, an additional selection box appears in the value field. If the
property is a VCL component, a [+] symbol precedes the name. You can expand this property
and therefore also access the child properties.

If a property is a reference (pointer) to an instance of a different VCL component within the
application, then the symbol [+] precedes this property and the name of the property is written
in red. You can also expand this property and access the child properties of the other instance.
To avoid any misunderstandings here, these names are also shown in colour (green). If an
instance has not yet been assigned, a selection box showing all the suitable instances appears
in the value field.

You double click on the field with the value of the property to search for the next possible value.

EDITING THE EVENTS OF THE VCL COMPONENTS
The handling methods for the events are set on the “Events” tab in the Object Inspector.

Figure 29: Object Inspector with events

An Introduction to C++Builder 2010

Embarcadero Technologies - 32 -

In doing so, any methods which may already be available and are suitable are displayed in a
selection box. To generate a new method, you double click with the left mouse button on the
value field of the desired event. The development environment then writes the definition in the
class and generates a suitable function body for this event handler. An automatic name is
generated here. The new method is linked with the event in the Object Inspector and the
source text with the function body is opened in the workspace.

If the name of the method is changed in the Object Inspector, this is also synchronized
accordingly in the definition and implementation in the code.

FORM DESIGNER
The Form Designer is the core of RAD and the visual development takes place here. The
windows of the application are generated and edited here in collaboration with the Tool
Palette, the Structure view and the Object Inspector. As we already saw in the description of the
Object Inspector, code fragments are generated and adopted in the code editor.

You can click on the VCL components that are provided in the Tool Palette and then place them
on the form. The designer automatically generates identifiers which are made up of a
designation for the respective VCL components and a consecutive number within the project
(e.g. button1, button2, ...). In doing so, VCL components which are controls can be directly
placed on the form or added to a container (e.g. a group or a panel). The mouse is used to align
the controls or change their size, but there are also automatic methods available for arranging
and aligning the elements within the form. All visual VCL components appear at runtime in the
precise manner in which they are arranged in the design mode.

Elements can also be deleted, cut out, copied or pasted in the view.

The hierarchical structure of the container and controls on a form is shown in the Structure view
and the properties of the controls are changed in the Object Inspector.

An Introduction to C++Builder 2010

Embarcadero Technologies - 33 -

Figure 30: Form Designer

DEBUGGER
 According to the current state of technology, it is not possible to write fault-free programs.
While syntax errors can be found very quickly in program creation, the content errors are much
more difficult to recognize. Modern development environments usually offer developers a
special program (debugger) using which you can check the program flow and access important
values which are otherwise not visible on the screen.

An Introduction to C++Builder 2010

Embarcadero Technologies - 34 -

Figure 31: Development environment in debug layout

In C++Builder, the debugger is embedded in the development environment. When a program
in the environment is launched, the debugger is automatically enabled, the view changes to the
“Debug Layout” (you can also set up an independent debug layout).

A debugger requires special information to access the program information. This allows access
to the variables, but also a synchronisation between the program flow and the respective
position in the source text. If this information is missing, only the assembler code remains for
debugging. If the program is compiled in debug mode, the compiler creates this information
and the linker adopts it in the application.

WORKING WITH BREAKPOINTS
You can set breakpoints (at which the program execution will be interrupted) directly in the
source text. To set a breakpoint, simply click on the border to the left in front of the desired
position. The breakpoint is shown as a red point. To remove this, simply click on the point
again. During the program execution, all possible positions at which the program can be
stopped will appear in the code window denoted by a small blue point on the left border.
Alternatively, you can also use the keyboard in order to set a breakpoint by pressing the F5 key
when the cursor is at the desired position.

All the active breakpoints with additional information are displayed in the “Breakpoint List”
view. Here you can delete or disable breakpoints or set some additional values.

An Introduction to C++Builder 2010

Embarcadero Technologies - 35 -

Figure 32: Debugger with the breakpoint list

FURTHER CONTROL OPTIONS AND VIEWS
You can choose from additional control options during debugging. You can execute the
program up to the current source text position (Run to Cursor F4) or proceed through the
program line by line. If you execute the program line by line, you can jump into the subroutines
((Trace Into F7)) or proceed with the same level (Step Over F8).

All the local variables which are currently located on the stack and their associated values are
displayed in the “Local Variables” view. All the important variables that you wish to watch
during debugging can be inserted in the “Watch List” view. To adopt a variable in the list of
watched expressions, right click on this in the source text and then select the entry “Debug /
Add watch at Cursor” from the context menu. Alternatively, you can also use the shortcut
“Ctrl+F5”.

Figure 33: Debugger – Watch List

An Introduction to C++Builder 2010

Embarcadero Technologies - 36 -

Via the "Debug / Evaluate / Modify” menu item or the shortcut “Ctrl+F7” a dialogue opens in
which you can view the value of a variable and you can usually also change it.

Figure 34: Debugger – evaluate and modify

Via the “Debug / Inspect” menu item of the context menu (Alt+F5) you launch the Debug Inspector with
detailed information about the object. To obtain even more detailed information, you can expand this
dialogue by simply double clicking with the left mouse button on the subentry.

Figure 35: Debugger – Debug Inspector

In the “Call Stack” you can view the methods which were called until the breakpoint was
reached.

Figure 36: Debugger – Call Stack

An Introduction to C++Builder 2010

Embarcadero Technologies - 37 -

 By double clicking on a method in the call stack, the code view switches to the respective call position
and you can view the parameters with which the method was called.

In the “Event Log” you can control the program flow and see which modules have been loaded and
which processes were started.

NEW FEATURES IN THE BUILDER 2010
The previous versions had issues with displaying values for structured classes. A date would be
displayed in the storage form of a floating point value, and a string as a structure. With
C++Builder 2010 we see considerable improvements here and this data is now shown correctly.
You can also add views for own classes by means of a special API.

Improvements have also been made in the area of threads. Now you can freeze individual
threads or let them run independently of the others, therefore avoiding any interactions. Now,
when debugging applications with threads, you can concentrate on what really matters.

If, “Tooltip expression evaluation” and “Tooltip symbol insight” are selected in the “Code
Insight” options, in debug mode you simply hover the mouse over a variable in order to view
the values and information directly as brief comments.

Figure 37: Debugger – Tooltip expression evaluation

You can use the structure information to access subordinate information. Additional information
is recognised by the [+] symbol preceding the name of the variable.

An Introduction to C++Builder 2010

Embarcadero Technologies - 38 -

ATTACHING TO A RUNNING PROCESS
Within the development environment you can also attach to a running process. If no debugger
information is available and the source text is not accessible, only the assembler code of the
process is displayed. In the debugger you can interrupt program execution at any time and free
the memory.

IMPORTANT FILES
As the name already indicates, C++Builder is a development system for the programming
language C/C++. But C++Builder also includes some other files, and the following table offers
an overview of the key file types. Some file types have been adapted to the current versions of
C++Builder so as to enable a clear separation from the older versions.

Name Description
groupproj Project group, incorporates several projects (formerly *.bpg)
cbproj Project file, incorporates associated files (formerly *.bpr)
c Source text file for C source file
cpp Source text file for C++ source file
cxx Alternative extension for C++ source text file
h Header file for C/C++, definitions
hpp Alternative extension for header file in C++
dfm Interface descriptions in the Delphi format
rc Interface descriptions in the Windows resources format
obj File with compiled source file (machine code)
res File with compiled resource (machine code)
lib Static library (machine code) or imported library
dll Dynamic link library (machine code)
exe Executable file (machine code)
tds File with symbol information for the debugger
pch Pre-compiled header file (formerly *.csm)

Table 2: File types for C++Builder

An Introduction to C++Builder 2010

Embarcadero Technologies - 39 -

CREATING A CONSOLE APPLICATION
The simplest way to start programming is to generate a console application. This is a text-based
application for the Microsoft® Windows operating system, but it will run only on this operating
system. Of course, text-based programs, which are restricted to the standard of C/C++, can be
used on any other platform that has a C/C++ compiler. A compiler is then used to compile the
sources on this platform.

The simplest method of generating a console application is to use the New Items dialogue and
the console wizards. Here you can select the source type and some other settings. It is no
longer possible to port any applications that use the VCL.

Figure 38: Wizard for the console application

The wizard uses the above settings to create the project file and the following source file with
the main function of the program.

//---
#include <vcl.h>
#pragma hdrstop

#include <tchar.h>

//---

#pragma argsused
int _tmain(int argc, _TCHAR* argv[]) {
 return 0;
 }
//---

Listing 3: Main function of the console application

Some would argue that the use of the header file <tchar.h> is new. This is usually adopted by
most C/C++ compilers, especially on the Microsoft® Windows platform, so as to support the
code transfer for international applications. The C standard extension in 1995 already intended
for the C runtime library to be supplemented to include Unicode support. This involved the
introduction of the integral data type wchar_t (wide character), which can represent any
international character set. As C++Builder was also working with Unicode now, it was necessary
to add this support for C/C++ programs.

An Introduction to C++Builder 2010

Embarcadero Technologies - 40 -

The header file <tchar.h> makes available mappings for generic text for most data types.
Therefore, the expression “_TCHAR” for compilers, which do not support Unicode, is translated
into “char” and “_tmain” becomes the familiar method “main”. Otherwise, the “_TCHAR”
becomes the type wchar_t and the expression _tmain becomes the method “wmain”.

VISUAL COMPONENT LIBRARY – THE RAD

FRAMEWORK
RAD is the abbreviation for Rapid Application Development. Here, large parts of the program
should be generated as quickly as possible in a visual environment without any direct
programming. Predefined classes (VCL components) are made available for this purpose. RAD
makes it possible to construct small and medium applications much more quickly. The VCL
forms the basis of the RAD properties of C++Builder.

C++Builder has adopted the VCL from the Delphi development environment. This is why the
object format of C++Builder had to be adapted accordingly. This also afforded a few syntax
expansions, e.g. the key word “__published”. From 1997 this did lead to a
compartmentalisation in the C/C++ world, but also created the prerequisites for RAD and the
use of various tools from the Delphi environment. The VCL was the requirement for both.

To make RAD possible, a new structure was introduced which was identified as a component
within the VCL. Data and methods can be brought together as a property and possess default
values. The programmer need only concentrate on any deviating property values. The
properties can be published (visibility “__published”) and then edited at design time in the
Object Inspector.

Added to this are new, pre-defined methods, which are known as events. These form a
program-specific connection to the messages. With that, the programmer must no longer deal
directly with the complex event handling of the Microsoft® Windows operating systems. The
main objective when designing the VCL was to hide the complex Windows API from the
programmer.

All VCL components are derived via a simple inheritance structure from the basic class
“TObject” and possess a property “Owner” in which the address of an instance is saved as an
ancestor. In this way, all objects that are generated from the VCL components can be
hierarchically linked. This means that the instances of the VCL components must always be
generated dynamically so that a true ownership can be developed by the “Owner”. When
deleting an object, all the associated instances are recursively deleted.

There are visual and non-visual VCL components. While the visual components correspond to a
concrete element on the screen (e.g. a menu, input field, button, …), the non-visual
components provide extra services (e.g. a link to a database, a special selection dialogue,...).
The visual VCL components possess a further property “Parent”. This refers to the

An Introduction to C++Builder 2010

Embarcadero Technologies - 41 -

superordinate container on the interface, so that the events of the operating system can be
passed on and handled accordingly.

THE UNIT
The majority of C++ programmers don´t have much to say about this term, at least in
connection with how it is used in C++Builder. The affinity of C++Builder with the proprietary
development environment, Delphi, provides a satisfactory explanation for this. Pascal, the
underlying programming language used here, stores the declarations and the implementations
in one single file, they are just located in different areas. This file is referred to as a unit. This is
different in C/C++, as declarations and implementations are separated. Nevertheless, this term
has been adopted by C++Builder as a source file and the associated header file are combined
to form a unit.

Nevertheless, C++Builder does not control this using the file name. The development
environment uses an include guard for this. The following listing shows the header file of the
empty unit with the name “TestUnit”.

//---

#ifndef TestUnitH
#define TestUnitH
//---
#endif

Listing 4: Header file of an empty unit with the name “TestUnit”

The include guard corresponds to the name of the header file (however, without the point). This
is mandatory in order for the development environment to link this file with the respective
source file to a logical unit. If the name of the file and the include guard are not the same, there
will be problems in the IDE. You can no longer toggle between the source and the header file,
in design mode the forms are not displayed and search operations do not work.

The files that belong to a unit are displayed in a code window, in the lower area of the
workspace you can toggle between the header and the source file (declaration) via the
respective tabs. Each unit can house an unlimited number of declarations.

THE FORM
The term “form” is used in C++Builder in association with the window objects of Microsoft®
Windows. In doing so, it doesn´t matter if this concerns a normal window or a dialogue. Each
GUI application has at least one window, the so-called main window. Even if the form is not
contained like the other VCL components in the Tool Palette, it is still a component. A form
carries other VCL components, the controls which can be placed on this at a later date.

C++Builder creates a unit for each form. Moreover, there is another file in which the properties
of the form class and those for the container and the controls that belong to this are saved. This

An Introduction to C++Builder 2010

Embarcadero Technologies - 42 -

file has a proprietary format adopted from Delphi. The standard extension for these files is
*.dfm.

As the form is a VCL component, the majority of properties can be edited in the Object
Inspector, without any direct programming. When setting up a new project, the main form is
generated alongside it.

You can also dock a form in a different container; this is then represented as part of this.

PROPERTIES OF A FORM
The following table contains an overview of the window properties which you can set in the
Object Inspector at design time. There are default values for these properties, so you only have
to worry about any deviating properties during the design.

An Introduction to C++Builder 2010

Embarcadero Technologies - 43 -

Name Description

Action

Action that is assigned to this form. An action must be contained in
a list, enabling a central management of responses to user inputs.

ActiveControl Control on the form that currently has the focus.
Align

Value

Description

alBottom

The form is aligned on the bottom border of the parent
container.

alClient The form assumes the entire area of the parent container.
alCustom User-defined alignment of the form.
alLeft The form is aligned on the left border of the parent

container.
alNone The window is not automatically aligned.
alRight The form is aligned on the right border of the parent

container.
alTop The form is aligned on the top border of the parent

container.

This property establishes the automatic alignment of the form to its
parent container. In doing so, you can arrange several windows with
the same property, one after the other. Possible values are:

AlignWithMargins Attribute that establishes that the relative distance between
controls on the form corresponds at least to the values set in the
property “Margin”.

AlphaBlend Attribute that establishes whether this form should be displayed
transparently. AlphaBlending does not work on all systems.

AlphaBlendValue Value between 0 and 255 which determines the degree of
transparency for the AlphaBlending. The value 0 means that the
form is completely transparent.

Anchors

Value Description
akLeft The left border of the window is anchored on the parent

container.
akTop The top border of the window is anchored on the parent

container.
akRight The right border of the window is anchored on the parent

container.
akBottom The bottom border of the window is anchored on the parent

container.

Anchor points. These properties establish the position of the form
after changes in size on the parent container.

AutoScroll Property that establishes that the scrollbars will appear
automatically if required.

AutoSize Attribute that establishes that the size of the form is automatically
adapted to the content.

An Introduction to C++Builder 2010

Embarcadero Technologies - 44 -

BIDIMode

Value Description
bdLeftToRight Text is read from left to right. The alignment is not altered.

The vertical scrollbar is shown on the right side of the
control.

bdRightToLeft Text is read from right to left. The alignment is altered. The
vertical scrollbar is shown on the left side of the control.

bdRightToLeft
NoAlign

Text is read from right to left. The alignment is not altered.
The vertical scrollbar is shown on the left side of the control.

bdRightToLeft
ReadingOnly

Text is read from right to left. The alignment and the
scrollbar do not alter.

Property that establishes the bidirectional mode. This determines
whether a form can automatically adapt its appearance if the
application is executed in a language environment in which text is
read from right to left.

BorderIcons This property determines which icons will be displayed in the title
bar of a window. The property has the following values:

Specific combinations of this property are dependent on the
property "BorderStyle".

Value Description
biSystemMenu The system menu is displayed.
biMinimize The minimize icon is displayed (icon).
biMaximize The maximize icon is displayed (full screen).
biHelp The help icon is displayed.

BorderStyle

Value Description
bsDialog The window is displayed as a dialogue. The size cannot be

changed, the system menu and the icons for minimizing and
maximizing are not displayed.

bsSingle The size for this type of window cannot be changed, but the
system menu and the icons for minimizing and maximizing
are available.

bsNone No visible frame, no change to the size.
bsSizeable The window will be displayed with a standard frame, the size

can be changed.
bsToolWindow

The window is displayed in the same manner as “bsSingle”,
but the title bar is smaller.

bsSizeToolWin

The window is displayed in the same manner as
“bsSizeable”, but the title bar is smaller.

This property determines the nature and function of the window
frame. (Attention: The size of windows can be changed only if they
have borders). The type of margin is established by an enumeration.

BorderWidth Property that establishes the border width of the window. Text and
graphics which belong to child controls are shown within this
border.

Caption The form caption is shown in the title bar.
ClientHeight Height of the client area in pixels.
ClientWidth Width of the client area in pixels.
Color Colour of the window (client area).

An Introduction to C++Builder 2010

Embarcadero Technologies - 45 -

Constraints

Value Description
MaxHeight Maximum height of the window.
MaxWidth Maximum width of the window.
MinHeight Minimum height of the window.
MinWidth Minimum width of the window.

Rules for the window (minimum size, maximum size)

Ctl3D Attribute that establishes whether this form is displayed three-
dimensionally.

Cursor Type of mouse pointer in the client area of the window.
CustomHint Component for user-defined display of hint texts in Vista style.
DefaultMonitor

Value Description
dmDesktop It is not attempted to display the window on a specific

monitor.
dmPrimary The window will be displayed on the monitor that is listed

first in the “Monitors” property of the global screen object.
dmMainForm The window is displayed on the same monitor as the main

form of the application.
dmActiveForm The window is displayed on the same monitor as the active

form.

In an environment with several monitors this property can establish
on which monitor the form will be displayed.

DockSite Property that establishes whether other controls can be docked in
this window.

DoubleBuffered Property that establishes whether the content of a window is drawn
directly (false) or written previously in a memory bitmap (true), which
is then transferred.

DragKind

Value Description
dkDock Automatic drag&dock function will be enabled at runtime.
dkDrag Automatic drag&drop function will be enabled at runtime.

Attribute that establishes how the form will behave when it is
dragged with the mouse (drag) (drag&drop or drag&dock).

DragMode

Value Description
dmAutomatic Automatic drag&drop or drag&dock function will be enabled

at runtime.
dmManual Drag&drop or drag&dock function will be disabled at

runtime.

Attribute that establishes when the form responds to the drag
operation by the user.

Enabled Attribute that establishes whether the window responds (true) or

not (false) to the keyboard and mouse events.
Font Font and attributes that should be used by the components in this

window.

An Introduction to C++Builder 2010

Embarcadero Technologies - 46 -

FormStyle

Value Description
fsMDIChild The window is a child MDI window.
fsMDIForm The window is a parent MDI window.
fsNormal The window is neither a parent nor a child MDI window.
fsStayOnTop The window will always be displayed in the foreground, apart

from if a different window with this property is being
displayed over this. Attention: If a window with this property
calls a further window of this type, none of the two will be
displayed in the foreground.

Type of window.

GlassFrame

Value Description
Enabled Determines that the glass effect can be extended to the

client area.
Left Specifies how far (in pixels) the glass effect will be extended

to the client area.
Top Specifies how far (in pixels) the glass effect will be extended

to the client area.
Right Specifies how far (in pixels) the glass effect will be extended

to the client area.
Bottom Specifies how far (in pixels) the glass effect will be extended

to the client area.
SheetOfGlass If this property is set, the GlassFrame will be extended to the

entire client area.

Property that controls the compatibility with the Windows Vista
Aero- System (glass effect). The properties of the TglassFrame
component are

Height Total height of the window in pixels.
Hint Hint text for the window – this text is displayed as a hint if the

property “ShowHint” is set.
HorzScrollBar For components which support horizontal scrollbars.
Icon Icon for the window. Is shown minimized at the top left, otherwise at

icon size if the window is minimized.
KeyPreview Attribute that establishes whether keyboard events are passed first

to the form and then to the controls (true) or first to the controls
(false).

Left Left position of the window on the screen (or relative to the parent
container) in pixels.

Margins

Value Description
Bottom Bottom border of the window.
Left Left border of the window.
Right Right border of the window.
Top Top border of the window.

Property that establishes the borders of the control. The possible
values are:

Menu Name of the component for the main menu of the window.
Name Name of the form (unique).
ObjectMenuItem This property enables access to a menu of an OLE object, which can

be enabled or disabled in accordance with the status of the object.

An Introduction to C++Builder 2010

Embarcadero Technologies - 47 -

OldCreateOrder This attribute controls whether the event OnCreate should be
triggered after the constructor (false) or during the constructor and
OnDestroy occurs before any destructors.

Padding

Value Description
Bottom Distance from the bottom border of the window.
Left Distance from the left border of the window.
Right Distance from the right border of the window.
Top Distance from the top border of the window.

Component establishes the distance of the controls from the
border.

ParentBIDIMode Attribute that establishes that the window adopts (true) or does not
adopt (false) the BIDIMode attribute of the parent container.

ParentCustomHint Attribute that establishes that the window adopts (true) or does not
adopt (false) the property “ShowHint” of the parent container.

ParentFont Attribute that establishes that the window uses (true) or does not
use (false) the font of the parent container.

PixelsPerInch Property that determines how the form is scaled in accordance with
the current screen resolution. If this value is changed, it could be
the case that the proportions are not maintained for all resolutions.

PopupMenu Name of the component that represents the PopupMenu of the
window.

PopupMode This property establishes how the window behaves in terms of the
Win32 style WS_POPUP. In the z-order, a window with the style is
always above the owner. In connection with the property
“PopupParent” you can avoid “hanging” applications.

Value Description
pmAuto Screen.ActiveForm used as with the “PopupParent”

property.
pmExplicit Direct assignment of a popup parent window. If this is not

specified (zero), then Application.MainForm will implicitly be
used as the PopupParent. If no Application.MainForm is
assigned, then the Application.Handle will be used as the
PopupParent.

pmNone No control (behaviour corresponds to that of older versions).

PopupParent Basic window for popup control.

An Introduction to C++Builder 2010

Embarcadero Technologies - 48 -

Position

Value Description
poDesigned The window is displayed at the same position and in the

same dimensions as in the design.
poDefault The dimensions and position of the window are established

by the operating system.
poDefaultPosO
nly

The window is displayed in the same dimensions as the
design; the position is determined by the operating system.

poDefaultSize
Only

The window is displayed at the position that was established
at design time. The dimensions are determined by the
operating system.

poScreenCent
er

The window is displayed in the same dimensions as the
design, but is displayed in the centre of the screen.
Attention: On systems with several monitors, you can move
the window to a different monitor (property
“DefaultMonitor”).

poDesktopCen
ter

The window is displayed in the same dimensions as the
design, but is displayed in the centre of the screen.
Attention: No adaptation to systems with several monitors.

poMainFormC
enter

The window is displayed in the same dimensions as the
design, but is displayed in the centre of the main window.
Attention: No adaptation to systems with several monitors.

poOwnerForm
Center

The window is displayed in the same dimensions as the
design, but is displayed in the centre of the window
specified by the “Owner” property.

Specifications for the dimensions and the position of the window.

PrintScale

Value Description
poNone No scaling is executed for printout. This can cause stretching

and compression.
poPrintToFit The window is printed out at the proportions shown on the

screen, but adapted to fit the size of the printed page.
poProportional The window is printed out in such a way that it looks about

the same on the screen and on the printout.

Scaling the dimensions of the form for printout.

Scaled This property establishes whether a scaling should (true) or should
not (false) be carried out in accordance with the difference in the
font at design time and at runtime. If “Scaled” is true, the window
changes its own and all child controls dimensions in order to
maintain the relation between the dimensions of the controls and
the height of the text displayed in the default font.

ScreenSnap This property establishes whether the borders of the window are
automatically aligned to the screen border if the user moves it. The
distance required for this is determined in the property
“SnapBuffer”.

ShowHint Attribute that establishes whether (true) or not (false) the hint text
should be displayed for the window.

SnapBuffer This property establishes the maximum distance (in pixels) between
the border of the window and the border of the screen, whereby no
alignment has yet taken place. This is used in connection with the
property “ScreenSnap".

Tag User-defined value.

An Introduction to C++Builder 2010

Embarcadero Technologies - 49 -

Table 3: Properties of a form

EVENTS FOR A FORM
Messages play a key role in the Microsoft® Windows operating system. In C++Builder, the
handling methods for events represent a link to these messages, and a set of events is
predefined for each form. While some of the events correspond to direct messages, others are
supplemented by the runtime system of C++Builder in such a way that programmers can better
influence the process without too much effort.

The following table contains the events that are defined for a form.

Name Description
OnActivate Event is triggered when the window has the focus.
OnClick Event is triggered when the user clicks with the left mouse button

on the window.
OnClose Event is triggered when the form is closed.

The further handling is determined by the “Action” parameter.

Value Description
caNone The window may not be closed, there is no further

processing.
caHide The window may not be closed, it is only hidden. The

application can continue to access the window. (Default
value for SDI windows)

caFree The window is closed and the memory freed.
caMinimize The window may not be closed, instead it is displayed as an

icon. (Standard for unordered MDI windows)

Top Top position of the window on the screen (or relative to the parent
container) in pixels.

Touch Component for the touch and gesture control.
TransparentColor Attribute that establishes that a colour in the form will be

transparent. If the entire form should appear transparent, then the
property “AlphaBlend” must be used.

TransparentColorVa
lue

Colour of the window that should be displayed as transparent.

VertScrollBar For components which support vertical scrollbars.
Visible Attribute that establishes whether (true) or not (false) the window is

visible.
Width Width of the entire window in pixels.
WindowMenu Use this property to access the window menu of the parent MDI

window. This is available in all MDI applications.
WindowState

Value Description
wsNormal The window is displayed as normal.
wsMinimized The window is displayed as minimized.
wsMaximized The window is displayed as maximized.

Value that establishes whether the window is displayed normal,
maximised or minimised.

An Introduction to C++Builder 2010

Embarcadero Technologies - 50 -

Name Description

OnCloseQuery

When exiting an application, the event “OnClose” is triggered only
for the main form.
Event is triggered before a window is closed. Within the event
handling you can check if the window can be closed – the result is
passed to the application by the “CanClose” parameter.

OnContextPopup Event is triggered if the user opens the popup menu via the mouse
or the keyboard (Shift+F10 or application key). (Windows message
WM_CONTEXTMENU).

OnCreate Event is triggered when the window is generated.
Take note of the “OldCreateOrder” property.

OnDblClick Event is triggered when the user double clicks using the left mouse
button on the form.

OnDeactivate Event is triggered when the form loses the focus. This event
corresponds to the “OnActivate” event.

OnDestroy Event is triggered when the window memory is freed. This event
corresponds to the “OnCreate” event.

OnDockDrop Event is triggered if a control is docked in this window. This event
can only occur if the property “DockSite” is set to true.

OnDockOver Event is triggered if a control is dragged over this window.
OnDragDrop Event is triggered if a control is dropped on this window.
OnDragOver Event is triggered if a control is dragged over this window.
OnEndDock Event is triggered after dragging a control (either by dropping or

cancelling).
OnGesture Event is triggered when the user performs a gesture associated with

this control.
OnGetSiteInfo Event is triggered before an “OnDockOver” event is triggered, and

returns the docking information to the control.
OnHelp Event is triggered when the window receives a help request.
OnHide Event is triggered when the window is hidden.
OnKeyDown Event is triggered when the user presses a key while the window

has the focus (note property “KeyPreview”). Windows message
WM_KEYDOWN.

OnKeyPress Event is triggered when the user presses a key. With this event, only
characters of the ASCII character set are returned, hence it is not
triggered in the case of special keys.
Windows message WM_CHAR.

OnKeyUp Event is triggered when the user releases a key.
OnMouseActivate Event is triggered when the user presses a mouse button over the

window, but the window does not have the focus.
OnMouseDown Event is triggered when the user presses a mouse button over the

window.
OnMouseEnter Event is triggered while the mouse pointer enters the window.
OnMouseLeave Event is triggered while the mouse pointer leaves the window.
OnMouseMove Event is triggered while the mouse pointer moves over the window.
OnMouseUp Event is triggered when the user releases a mouse button while the

mouse pointer is positioned over the window.

An Introduction to C++Builder 2010

Embarcadero Technologies - 51 -

Name Description
OnMouseWheel Event is triggered when the user turns the mouse wheel. If this

event is not available, an event “OnMouseWheelDown” or
“OnMouseWheelUp” is triggered depending on the direction of
rotation.

OnMouseWheelDo
wn

Event is triggered when the user turns the mouse wheel
downwards.

OnMouseWheelUp Event is triggered when the user turns the mouse wheel upwards.
OnPaint Event is triggered when the window must be redrawn. The child

controls are displayed only after this method has ended.
Windows message WM_PAINT

OnResize Event is triggered after the size of the window has changed.
OnShortCut Event is triggered if the user presses a key in order to dispatch

special keystrokes as ShortCut commands. Therefore, it is called
prior to the event “OnKeyDown”. If the keystroke is passed on, the
parameter “Handled” must be set to true.

OnShow Event is triggered when the window is made visible.
OnStartDock Event is triggered when the user starts to drag the window and the

property “DragKind” is set to the “dkDock” value.
OnUnDock Event is triggered when the window is undocked.

Table 4: Events for the form

In addition to this, you can also set the properties of child components.

CONTROLS
Controls are visual components that correspond to the elements of the user interface. Some of
these controls correspond to the Windows standard controls, while some are extensions or
combinations of others.

As described in the Form Designer section, you select the respective control and place it on the
form in the design view.

In C++Builder, these controls are divided into three separate groups:

• Standard

• Win32

• Additional

IMPORTANT CONTROLS IN THE “STANDARD” CATEGORY
This category contains the controls which are typical for all GUI environments. Independently of
this grouping, applications which have been created with the VCL and C++Builder 2010 are not
portable to another platform at this time.

Name Description
Frames Frames are containers for controls. They should support the

reusability and can be reinserted in windows (or in other frames).

An Introduction to C++Builder 2010

Embarcadero Technologies - 52 -

Name Description
MainMenu This non-visual VCL component is used to establish the main menu

for a window. Having inserted this in a form, you then double click
with the left mouse button on the component. This opens a wizard in
which you can edit the structure of the menu.

PopupMenu This non-visual VCL component is used to establish a popup menu
(context menu) for a window, or an area of a window. This menu
appears if the user presses the right mouse button or the respective
Windows key. Having inserted this in a form, you then double click
with the left mouse button on the component. This opens a wizard in
which you can edit the structure of the menu.

Label Control for displaying a text information in a window, e.g. as a
description for other fields.

Edit Control for displaying a standard input field in a window, suitable for
adding or removing text information.

Memo Control for displaying a multi-line input field in a window, particularly
suitable for extensive, unformatted text information.

Button Control for displaying a standard button in a window – can be
extended using different properties.

CheckBox Control for a check box in a window, which is either selected (clicked
on) or not. Zero values are also possible.

RadioButton Control for a radio button in a window. By using several radio
buttons, the user can be presented with alternatives which are
mutually exclusive. By default, all radio buttons in a parent container
are summarised so that only one of the options can be selected at a
time.

ListBox Control for displaying a scrollable list in a window. The user can
select an entry from the list and the position is returned via an index.

ComboBox The control combines an entry field with a scrollable list. It is
therefore classed as a combination field.

ScrollBar Control for displaying a scrollbar with which you can move areas of a
control or a window.

GroupBox Control for displaying a group field in the window. This component
is a parent container for other controls.

RadioGroup Control for a group field that contains only radio buttons. The radio
buttons must not be inserted manually; they are included in a list
“Items” in the component. The selected value is set by the property
“ItemIndex”.

Panel Control as an independent canvas (panel) in a window. This
component is a parent container for other controls and can be
emphasized three-dimensionally by a border. You can also use a
panel as a surface for docking other containers or forms.

ActionList This component is used to manage lists with actions. These can be
assigned to controls, e.g. menus or buttons. The necessary
properties are managed centrally by the action.

Table 5: Tool Palette – standard control elements

An Introduction to C++Builder 2010

Embarcadero Technologies - 53 -

WIN32 CONTROLS
The “Win32” category contains the controls, which are implemented together with the Win32
API, and are typical for Windows programs.

Name Description
TabControl Control for several tabs in a window. The component is not made up

of several pages which contain different controls, it is an
independent object.

PageControl Control for multiple-paged dialogue fields and tabs in a window. To
insert a new page, click with the right mouse button and select the
“New page” item at design time.

ImageList This component is used to summarise and manage several icons or
bitmaps. You access the individual graphics by means of an index
(0..n-1).

RichEdit This component is used to generate a standard RTF control which is
used to edit formatted text.

TrackBar Control with a track bar.
ProgressBar Control with a progress bar.
UpDown Control with up and down controller. This is made up of a pair of

arrow buttons with which you can change numerical values.
HotKey This component is used to establish shortcuts which enable direct

access to actions and controls.
Animate Control for displaying clips that consists of a sequence of image

frames.
DateTimePicker Control that is specifically used for entering date or time information.

This is not a standard component, so there could be problems with
the BIDI mode.

MonthCalendar Control with a standard calendar in which you can set a date or
respective date range.

TreeView Control with a tree view, the nodes of which you can expand or
collapse.

ListView Control with a list. You can establish column headings and set
various display modes.

HeaderControl Control for table headers, the size of which you can change at
runtime.

StatusBar Control for an information area on the lower area of the window. This
can consist of a text or several panels, one after the other.

ToolBar Control with a container for buttons. All buttons have the same
height and width. You can also add other controls.

CoolBar Control for generating a Windows rebar control. Coolbars are
containers for controls which can be moved and sized independently
of each other.
(Requires the files COMCTL32.DLL version 4.70 or higher).

PageScroller Control with a special, scrollable display area. If this is larger than the
parent container, arrows are added to the edges of the control to
enable scrolling.

ComboBoxEx Control with a combination field in which graphics and text indents

An Introduction to C++Builder 2010

Embarcadero Technologies - 54 -

can also be used in the drop down list. However, it is not possible to
sort the list.

XPManifest Component for supporting XP manifests in the application.
ShellRessources This component is used for forward compatibility for Windows Vista

system animations. As Vista programs are no longer allowed to
access system resources, independent copies of these must be
maintained. This component should be used only in programs that
are intended to be executed under Vista (and higher).

Table 6: Tool Palette - Win32 control elements

ADDITIONAL
This category contains additional controls. It mainly concerns enhancements for existing
controls to enable additional properties.

Name Description
BitBtn Control for bitmap buttons. These behave like normal buttons.

Frequently used standard buttons can be depicted using the “Kind”
property.
Up to version C++Builder 2009, normal buttons can show only text.

SpeedButton Control for individual buttons or groups which support graphics and
different modes (unpressed, pressed, disabled). In earlier versions
they were used to show a panel as a container toolbar.

MaskEdit Control with a masked input form. The predefined masks are used to
check the validity of the text entered by the user. The mask can also
be used to format the entered text.

StringGrid Control with a grid (table) of text fields. It provides properties and
methods for working with a table.

DrawGrid Control with a grid (table) of any data. The event handler
“OnDrawCell” must be implemented in order to display this data.

Image Control with a graphic element. This graphic could be an icon, a
meta file or a different graphic file. Version 2009 and above also
supports png graphics alongside bitmaps and jpeg graphics.

Shape Control for simple geometric figures. You can establish outlines and
fillings with this.

Bevel Control for borders and lines with a bevel. This lends the element a
three-dimensional effect that can appear either raised or lowered.

ScrollBox Control for an area in a window in which those controls that extend
beyond the thresholds of this area can be scrolled.

CheckListBox Control with a list box in which the entries contain additional
checkboxes which can be selected using the “Checked” property.

Splitter Control for dividing the client area of a form into resizable panes.
StaticText Control which behaves like a normal text field but that can be

handled like a window.
LinkLabel Control that contains HTML tags and links. The links appear as

underlined text (as it is in a browser), and you click on the text to

An Introduction to C++Builder 2010

Embarcadero Technologies - 55 -

Name Description
trigger the “OnLinkClick” event.

ControlBar Control that controls the arrangement of components in a toolbar.
This component serves to dock controls (usually toolbar elements).

ApplicationEvents Help class that enables you to visually assign the events of the
application.
(Events can also be assigned in the source text without the class).

ValueListEditor Control with a list of name / value pairs that can be edited.
LabeledEdit Control with an input field and associated label. For this purpose,

the input field is given the property “EditLabel” and you can control
the position by means of the properties “LabelPosition” and
“LabelSpacing”.

ButtonedEdit Control with an input field that has two embedded buttons. These
are optional and are referenced by the properties “LeftButton” and
“RightButton”.

ColorBox Control for a drop-down combo box in which the user can select
colours. The colour selection is controlled by the “Style” property.

ColorListBox Control for a scrollable list of all colours for which a constant is
predefined.

CategoryButtons Control for a group of buttons. These can be divided into categories
and offer more flexibility than former toolbars. Buttons can be
moved and copied.

ButtonGroup Control for a container with associated buttons. You can control the
display of the buttons with the property “ButtonOptions”.

DockTabSet Control for a set of tabs which is similar to the divider pages of a
notebook.

TabSet Control for a set of horizontal tabs. The actions are triggered by
clicking on the tab. The tab is automatically generated from the
string list of the property "Tabs".
(Provided only for backward compatibility).

TrayIcon Control for an icon in the system tray next to the clock. This
component provides methods for displaying the information in a
balloon or for reacting to mouse clicks accordingly.

FlowPanel Control for a container (panel) in which the child controls are
displayed at predefined positions. This is controlled by the property
“FlowStyle”.

GridPanel Control for a container (panel) in which the controls can be
positioned in a grid. When adding a new control, this is automatically
inserted in the next free cell.

BalloonHint Component for a control for displaying additional information
(balloon style hints). The appearance is controlled by the “Styles”
property. An instance of this component can be assigned to other
controls in order to display the hint text accordingly. Hint text is
separated using the “|” symbol. (Short text|Long text|Image ID)
The hints are displayed in Vista in the themed style, in XP (themes
enabled) in the Vista style or in XP (themes disabled) in the XP style.

CategoryPanelGrou
p

Control for a container with elements which can be hidden and
shown. The elements are of type “CategoryPanel” and are added

An Introduction to C++Builder 2010

Embarcadero Technologies - 56 -

Name Description
with the help of the context menu entry “New Panel”.

ActionManager This component is an auxiliary component, which provides methods
for managing and displaying actions.

ActionMainMenuBa
r

This component renders action entries and displays these as menu
items. It is a container; the respective entries are generated
dynamically. The layout is automatically managed by an instance of
“ActionManager”.

PopupActionBar This component extends the popup control by providing the option
to associate actions with each menu item.

ActionToolBar This component renders action entries and displays these as
toolbars. It is a container; the respective entries are generated
dynamically. The layout is automatically managed by an instance of
“ActionManager”.

XPColorMap This component is used to establish the appearance of the action
band components. The component contains a pre-defined
assignment for the colour values. This achieves a uniform, coloured
representation. Refer also to StandardColorMap and
TwillightColorMap.

StandardColorMap This component is used to establish the appearance of the action
band components. The component contains a pre-defined
assignment for the colour values. This achieves a uniform, coloured
representation. Refer also to XPColorMap and TwillightColorMap.

TwillightColorMap This component is used to establish the appearance of the action
band components. The component contains a pre-defined
assignment for the colour values. This achieves a uniform, coloured
representation. Refer also to XPColorMap and StandardColorMap.

TCustomizeDlg This component is used to generate a dialogue for customising the
actions in the action bands.

Table 7: Tool Palette – additional controls

IMPORTANT PROPERTIES OF THE COMPONENTS
Each individual control has its own unique properties but also common ones. The following
table contains the most important properties which are published by many controls.

Name Description
Align Alignment of the component within its parent component.
Anchors Anchor points
Caption Caption for the component.
Colour Colour with which the component will be displayed.
Cursor Shape of the mouse when it passes into the region covered by the

control.
Enabled Boolean value, component can be selected.
Font Font
HelpContext Integer with ID of the control for the context-sensitive help.
Height Height of the component in pixels.
Hint Hint text for this component.

An Introduction to C++Builder 2010

Embarcadero Technologies - 57 -

Left Left position of the component, relative to the parent container.
Name (Delphi) name of the component (case sensitive, no file name).
Tag Auxiliary property for the user-defined storing of information.
Top Top position of the component, relative to the parent container.
Visible Boolean value, whether or not component is visible.
Width Integer with width of the component in pixels.

Table 8: Important properties of control elements

As for properties, there is a series of events which are published by many components. The
following list contains the most important of these events.

IMPORTANT COMPONENT EVENTS

Name Description
OnActivate Is triggered when a component appears on the screen.
OnClick Is triggered when the component is clicked on (left mouse button).
OnClose Is triggered when the component is closed.
OnCreate Is triggered when the component is created.
OnDeactivate Is triggered when the component deactivated.
OnDestroy Is triggered when the component is destroyed.
OnEnter Is triggered when the component receives the focus.
OnExit Is triggered when the component loses the focus.
OnHelp Is triggered to provide help for the component.
OnHide Is triggered when the component is hidden.
OnKeyPress Is triggered when a key is pressed while the component has the focus.
OnMouseDow
n

Is triggered when a mouse button is clicked with the mouse pointer over
the component.

OnMouseMov
e

Is triggered when the mouse is moved while the mouse pointer is over
the component.

OnPaint Is triggered in order to redraw the component.
OnShow Is triggered when the component is displayed on the screen.

Table 9: Important events of controls

An Introduction to C++Builder 2010

Embarcadero Technologies - 58 -

CREATING A VCL FORM APPLICATION
To create a GUI application for Windows, you select the “VCL Forms Application – C++Builder”
item from the New Items dialogue. You open the New Items dialogue with the menu item “File
/ New / Other”. You can also use the respective menu item in the File – New menu or in the
Tool Palette. A wizard creates a new project file, a file with the source text for the project and
the files for the main form. The main window opens in the design view.

Figure 39: View of the IDE after creating a GUI project

Generally speaking, the files and components are created with a standard name and a
consecutive number (Project1, Project2, … or Unit1, Unit2,…). The numbering always refers to
the current directory. You can simply adopt these names and save the files accordingly.
However, you should always allocate descriptive names to professional projects.

Firstly, you must always save the files of a project immediately, and, in this example, the name
of the file with the main window is "MainForm.cpp" and the project is saved under the name
“TestApp.cpp”. In the Object Inspector you can change the properties of the main window,
having first of all assigned a descriptive name for the main window. In this example, it is given
the identifier “frmMain”. The following table shows all the changes that have been made to the
main window in the Object Inspector.

Components Property Value
frmMain Caption Test application for the C++Builder 2010

Name frmMain

Table 10: Settings for the main form

An Introduction to C++Builder 2010

Embarcadero Technologies - 59 -

The following listing shows the project source text for the new application. A main form is
automatically set up when you create a GUI application (“Application->CreateForm”).

The application object contains important application data. Within the VCL framework, for this
application object there is always an instance of the VCL component of type “TApplication” in a
GUI application. This object is used to initialise the application, generate the windows and
launch the event handling.

//---
// Test program
// adecc Systemhaus GmbH 2009
//---
#include <vcl.h>
#pragma hdrstop
#include <tchar.h>
//---
USEFORM("MainForm.cpp", frmMain);
//---
WINAPI _tWinMain(HINSTANCE, HINSTANCE, LPTSTR, int)
{
 try
 {
 Application->Initialize();
 Application->MainFormOnTaskBar = true;
 Application->CreateForm(__classid(TfrmMain), &frmMain);
 Application->Run();
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 catch (...)
 {
 try
 {
 throw Exception("");
 }
 catch (Exception &exception)
 {
 Application->ShowException(&exception);
 }
 }
 return 0;
}

Listing 5: Main program of the project

You can already launch this small application.

EXPANDING THE APPLICATION – WORKING WITH THE VCL COMPONENTS
The next step aims to expand the application. To do this, you add a second form in which
entries can be made which should then be processed in the main form.

An Introduction to C++Builder 2010

Embarcadero Technologies - 60 -

To add a form to the application, in the New Items dialogue you first select the area
“C++Builder Files” from the tree view on the left side, and then the item “Form” from the
entries on the right.

Figure 40: Creating a new form with the New Items dialogue

Alternatively, you can also generate a new form using the main menu. To do this, you select the
menu item “File / New / Form - C++Builder”. A form is then generated in the project and
opened for editing in design mode. In this example we have saved the form with the name
“DialogForm.cpp”.

The new window is a dialogue and should appear in the centre of the application´s main
window. You can edit this form accordingly in the Object Inspector. You can adjust the size of
the form by means of the properties “Height” and “Width” or you can use the mouse.

Components Property Value
frmDialog BorderStyle bsDialog

Caption Input dialogue for the test application
Name frmDialog
Position poMainFormCenter

Table 11: Settings for the dialogue form of the main application

In the next step, you add the necessary VCL components to the form. This example aims to
record personal data and an address. To do this, we position two groups (TGroupBox) on the
form. These are located in the “Standard” tab of the Tool Palette. To add a VCL component,
you left click on this in the Tool Palette and then left click at the position in the form where you
wish to insert the VCL component. Four label controls (“TLabel”), two input fields (“TEdit”), one
selection box (“TComboBox”), one control for inputting a date (“TDateTimePicker”) are added
to the first group and two buttons (“TButton”) outside this group. The control for inputting a
date is located in the “Win32” tab of the Tool Palette, while the others are located in the
“Standard" tab.

An Introduction to C++Builder 2010

Embarcadero Technologies - 61 -

We can align these controls accordingly at design time. There are several possibilities here.
Firstly, you can of course align all the controls using the mouse (left click in the control, hold
down and then drag the control) and you can also change the size (click a control, the control is
highlighted with bullets, drag one of the bullets in the desired direction). If a group of controls
has been previously selected (hold down the shift key, then click on the desired controls one
after the other) you can then move these as a group. Alternatively, you can use the keyboard.
After selecting a control, you can move it by simultaneously pressing the CTRL key and a cursor
key. You can change the size with the shortcut “shift + cursor key”. In both cases, guide lines
are displayed which show the position in relation to the other VCL components.

Figure 41: Working with VCL components, rough draft of the dialogue form

A third variant is the automatic alignment of groups. The menu item “Position / Align …” for
this is located in the context menu. The following figures show the options available to you
here.

Figure 42: Wizard for aligning VCL components

An Introduction to C++Builder 2010

Embarcadero Technologies - 62 -

The tab order that is used at runtime is very important when working with controls. In principle, the tab
order of the controls follows the same order in which they were inserted in the form. Moreover, a
property “TabOrder” (this can also be switched off using the property “TabStop”) is assigned to each VCL
component that is available with the TAB key. Nevertheless, it is difficult to constantly adapt these
property values when adding (or moving) new controls. Therefore, there is a dialogue in which you can
establish the order. This is located in the context menu of the design view under “Tab Order”.

Figure 43: Dialogue for editing the tab order

In the next step, you edit the controls in the Object Inspector. In the following table, the
descriptive names used in the application are listed in the left column and the default names as
shown in Figure 41 are listed underneath in brackets.

Component Property Value
grpPerson
(GroupBox1)

Caption Personal data
Hint Person | Enter the personal data here.
Name grpPerson
ShowHint true

lblName
(Label1)

Caption Name
FocusControl edtName
Name lblName

edtName
(Edit1)

Hint Name | Enter the name of the person here.
Name edtName
ShowHint true
Text edtName
TextHint Name

lblFirstname
(Label2)

Caption First name
FocusControl edtFirstname
Name lblFirstname

edtFirstname
(Edit2)

Hint First name | Enter the first name of the person here.
Name edtFirstname
ShowHint true
Text edtFirstname
TextHint First name

An Introduction to C++Builder 2010

Embarcadero Technologies - 63 -

Component Property Value
lblFormOfAddre
ss
(Label3)

Caption Salutation
FocusControl cbxFormOfAddress
Name lblFormOfAddress

cbxFormOfAddr
ess
(ComboBox1)

Hint Salutation | Select the salutation.
Items Mr

Mrs
Name cbxFormOfAddress
ShowHint true
Style csDropDownList
TextHint Sex

lblBirthday
(Label4)

Caption Date of birth
FocusControl dtpBirthday
Name lblBirthday

dtpBirthday
(DateTimePicker
1)

DateFormat dfShort
DateMode dmComboBox
Hint Date of birth | Enter the date of birth here.
Kind dtkDate
Name dtpBirthday
ShowHint true

grpAddress
(GroupBox2)

Caption Address of the person
Hint Address | Enter the address of the person here.
Name grpAddress
ShowHint true

lblStreet
(Label5)

Caption Street
FocusControl edtStreet
Name lblStreet

edtStreet
(Edit3)

Hint Street | Enter the street here.
Name edtStreet
ShowHint true
Text edtStreet
TextHint Street

lblCity
(Label6)

Caption City
FocusControl edtCity
Name lblCity

edtCity
(Edit4)

Hint City | enter the city here.
Name edtCity
ShowHint true
Text edtCity
TextHint City

lblZipCode
(Label7)

Caption Postcode

FocusControl edtZipCode
Name lblZipCode

edtZipCode
(Edit5)

Hint Postcode | Enter the postcode here.
Name edtZipCode

An Introduction to C++Builder 2010

Embarcadero Technologies - 64 -

Component Property Value
ShowHint true
Text edtZipCode
TextHint Postcode

btnOk
(Button1)

Caption Ok
Default true
Hint Confirm | End and accept data.
ModulResult mrOk
Name btnOk
ShowHint true

btnCancel
(Button2)

Caption Cancel
Hint Cancel | Close without accepting data.
ModulResult mrCancel
Name btnCancel
ShowHint true

Table 12: Working with VCL components, settings for the controls in the dialogue form

In the dialogue, the text fields show the names assigned in the Object Inspector. The controls
should be initialized before they are displayed. The forms in the VCL have some events (refer to
table 5 on page Error! Bookmark not defined.2), which are used here. You must use the event
“OnCreate” to initialise the form. To insert this method, select the form and then in the Object
Inspector under the “Events” tab you select the desired event “OnCreate”. Then double left
click on the value field. The method is then automatically inserted in the classes definition and
as an empty function body in the implementation section. You can edit it in the code window.
The following code shows the initialization of the controls.

void __fastcall TfrmDialog::FormCreate(TObject *Sender) {
 // Initialise data for the “Person” group
 edtName->Text = "";
 edtFirstname->Text = "";
 cbxFormOfAddress->ItemIndex = -1;
 dtpBirthday->Date = TDateTime::CurrentDate();
 dtpBirthday->Time = 0;

 // Initialise data for the “Address” group
 edtStreet->Text = "";
 edtCity->Text = "";
 edtZipCode->Text = "";

 return;
 }

Listing 6: Working with the VCL, initialising a form

In principle, all forms that are added to a project will be generated automatically when the
program starts and they then remain in the memory. If required, they are simply displayed and
then closed again. In many cases this can be impractical, as the start phase is delayed and the
memory requirement increases. You can change this in the project options. Select “Project /
Options“ and in the Options dialogue “Forms” on the left side. Here, with the help of the

An Introduction to C++Builder 2010

Embarcadero Technologies - 65 -

buttons, you can move the forms between the two lists “Auto-create forms“ and “Available
forms“. All the forms in the left list “Auto-create forms” are automatically generated when the
program starts, whereas those in the right list “Available forms” must be generated
independently as required. In addition to this, in the “Main form” combo box you can establish
which form should be used as main window.

Figure 44: Working with VCL components, forms in the project options

In this example, the dialogue form will not be generated automatically.

We have thereby built into our application a simple input dialogue for personal data. Now, this
dialogue must be called in the main program and the entries must be processed. For this
purpose, four controls are added to the main program. To display the events for the input form,
a multi-line text field is added (“TMemo”) and also two buttons (“TButton”). The two buttons
are arranged on a panel control (“TPanel”). The panel is positioned at the bottom border of
the window and the text field uses the entire, remaining area.

The following table shows the necessary settings for the inserted controls. These will now be
edited in the Object Inspector in accordance with the following specifications. Here too, the
default names of the controls are shown in brackets for guidance purposes.

Component Property Value
pnlButtons
(Panel1)

Align alBottom
Caption No caption (Delete the entry)
Name pnlButtons
ShowCaption False

memResult
(Memo1)

Align alClient
Lines No (Delete the entry in TStrings editor)

An Introduction to C++Builder 2010

Embarcadero Technologies - 66 -

Component Property Value
Name memResult

btnClose
(Button1)

Caption Close
Default true
Hint Close program | Close the program.
Name btnClose
ShowHint True
Width 113

btnPerson
(Button2)

Caption Personal information
Hint Personal information | Enter the personal data.
Name btnPerson
ShowHint True
Width 113

Table 13: Working with VCL components, properties of the controlsin the main form

Having set the properties, the main window should look like this.

Figure 45: Working with VCL components, main form with components

You must now write the handling routines for the two button controls. Double click with the left
mouse button on the button“btnClose”, and the method “btnCloseClick” for the event
“OnClick” is added to the classes definition and implementation section. The development
environment switches to code mode in order for the method to be edited directly. However, in
the Object Inspector you can select the “Events” tab, search for the desired event “OnClick”
there and then double click on the value field.

An Introduction to C++Builder 2010

Embarcadero Technologies - 67 -

Figure 46: Working with VCL components, event handling

As no checks are performed in the program, you just call the method “Close()” in the main
window in order to close the application.

Next, the input dialogue should be called and the data must be processed. You draw up the
handling methods in the same manner as you did for the first button. To be able to use the
personal dialogue in the main window, you must first of all add the definition of the dialogue to
the implementation section of the header file “DialogForm.h”. C++Builder has a very useful
function for this; via the main menu entry “File / Use unit” or the shortcut “Alt+F11” you can
open a dialogue in which all the program parts that have not yet been used are displayed and
can be added.

Figure 47: Working with the VCL, adding unused units

An Introduction to C++Builder 2010

Embarcadero Technologies - 68 -

The following source text shows the complete file “MainForm.cpp”.

// ---
#include <vcl.h>

#pragma hdrstop

#include "MainForm.h"
#include "DialogForm.h"

#include <sstream>
#include <memory>
using namespace std;
// ---
#pragma package(smart_init)
#pragma resource "*.dfm"
TfrmMain *frmMain;

// ---
__fastcall TfrmMain::TfrmMain(TComponent* Owner) : TForm(Owner) {
 }

// ---
void __fastcall TfrmMain::btnCloseClick(TObject *Sender) {
 Close();
 return;
 }

// ---
void __fastcall TfrmMain::btnPersonClick(TObject *Sender) {
 auto_ptr<TfrmDialog>dlg(new TfrmDialog(this));
 if (dlg->ShowModal() == mrOk) {
 wstringstream os;
 os << endl;
 if(dlg->cbxFormOfAddress->ItemIndex >= 0)
 os << dlg->cbxFormOfAddress->Text.c_str() << endl;

 if(dlg->edtFirstname->Text.Length() > 0)
 os << dlg->edtFirstname->Text.c_str() << " ";
 os << dlg->edtName->Text.c_str() << endl;

 os << dlg->edtStreet->Text.c_str() << endl;

 if(dlg->edtZipCode->Text.Length() > 0)
 os << dlg->edtZipCode->Text.c_str() << " ";
 os << dlg->edtCity->Text.c_str() << endl;

 os << endl
 << dlg->dtpBirthday->Date.DateTimeString().c_str() << endl
 << ends;
 memResult->Lines->Text = os.str().c_str();
 }
 else
 ShowMessage("Processing cancelled");

An Introduction to C++Builder 2010

Embarcadero Technologies - 69 -

 return;
 }
// ---

Listing 7: Working with the VCL, complete source text of the main window

Here the data processing is limited to output a C++ stream which is then displayed in the text
field “memResult”, which was added to the main form. Access to the controls takes place
directly. As the Delphi developers of the VCL have forgotten the necessary conversion functions
for the C++ standard types, unfortunately we always need to fall back on the method “c_str()“
in order to pass a VCL type to a C++ standard type.

The dialogue is generated dynamically and the address is saved in a smart pointer of type
“auto_ptr”. Smart pointers of this type have been part of the C++ standard since 1998. They
ensure that, when ending the method (leaving the scope), the memory with the input form will
be freed. In doing so, it is irrelevant whether the method ends properly or is cancelled after an
error. Thus, since 1998 C++ has seen the safe avoidance of memory errors without a garbage
collection, even if numerous comparisons with other commercial languages have actually left
this impression. With the standard extension C++0X, we are seeing more smart pointers
becoming standard.

FUNDAMENTAL COMMENT ON USING THE VCL
As a consultant in projects, I often find the comment in the source texts “Taken from the help”.
This is surprising, when you consider the magnitude and commercial significance of some of
these projects. As far as the help or this paper is concerned, it is not a question of showing how
the VCL components will be used in large-scale projects. The idea is to show how you can work
with these components. This is why these examples can be used at most to create a prototype.

Generally speaking, you must recognise that the basic programming language of C++Builder is
C/C++, and that all key parts must be written in this language. The VCL is merely a framework;
and VCL types have no place in the business logic of an application, and access to the VCL
components must be encapsulated accordingly. While the programming language C++ is
standardized, almost 30% of all applications today are still created using C/C++, and
development tools are offered by many manufacturers, the VCL framework and the
programming language used here, Delphi, is owned by one organisation.

Irrespective of this, large-scale applications should always be structured in independent layers
which are clearly separated from each other. This does not concern the use of proprietary
technology, which the VCL also offers in the area “dbExpress” (formerly “Midas”), or the
distribution across several computers, but the structuring of the application. In doing so, large-
scale applications should have at least one data layer, one business layer and one presentation
layer. It is also practical to have one independent layer with the classes which are used in the
application and a further one for the processes. It is particularly the separation of the processes
that is of importance today, as these are very dynamic and keywords like “SOA” are being
bandied about.

An Introduction to C++Builder 2010

Embarcadero Technologies - 70 -

UNICODE
Unicode is an international standard (ISO 10646) which should establish a long-term digital code
for each meaningful character or text element from all known written cultures and character
systems. The aim here is to eliminate the use of differing and incompatible encodings in the
various different countries or cultural areas. After the first standard in the year 1991 which
encoded only European, Near East and Indian characters, further versions followed in 1996,
1999, 2003, 2006 and 2008.

The Unicode is a multibyte character set (MBCS). Compared to earlier character sets, which
mainly encoded only a specific font system, it is the objective of Unicode to encode all the font
systems and characters that are in use. To achieve this, Unicode was initially defined as a 16-bit
character set with a total of 65,536 characters. This code area quickly became insufficient, so,
version 2.0 of Unicode saw an expansion to 17 planes each with a total of 65,536 characters,
making available a total area of 1,114,112 characters. The current Unicode 5.1 allocates 100,713
code points to individual characters.

There are several variants. The following table contains a few examples:

Variant Description
UTF-8 GNU, Linux, Unix, SMTP, WWW
UTF-16 Windows, OS X, Java, .Net
UTF-32 Simple encoding without variable byte length
UTF-EBCDIC Derived from EBCDIC for IBM mainframes

Table 14: Variants of Unicode

Working with Unicode always begins in the operating system. To use respective character sets,
these must be installed with a suitable keyboard layout. In the operating systems Microsoft®
Windows Vista and Microsoft® Windows 7, the language control is located in system tray of the
task bar.

An Introduction to C++Builder 2010

Embarcadero Technologies - 71 -

Figure 48: Unicode selection in the operating system

The new data type “UnicodeString” is inserted in the VCL in order to support the appropriate
character set. This, however, should not be confused with the data type “WideString”, which
corresponds to the Windows-specific data type “BSTR” which is used for the COM automation.

Up until now, the data type “String” used in the VCL framework (and in the majority of
programs which have been written using C++Builder) was a replacement for the VCL data type
“AnsiString” and was used as a character string data type in all VCL components. Since version
C++Builder 2009, the “String” type has become a pseudonym for the new data type
“UnicodeString”.

The C99 standard already introduced the data type “wchar_t” for displaying any country-
specific character set in the programming language C. This type was adopted accordingly in the
C++ standard, and the associated string type in the STL is “wstring”. This is located in the
header file “string”. Other types in C/C++ are “char16_t” for characters in the UTF-16 character
set and “char32_t” for the UTF-32 character set. As C++ uses a strict typification, it can cause
problems when changing to a current version of the C++Builder.

The VCL data type “UnicodeString” also internally uses the “wchar_t” character type, and so
the method “c_str()” of the class now also returns a pointer to this type.

An Introduction to C++Builder 2010

Embarcadero Technologies - 72 -

UNICODE IN THE VCL COMPONENTS
The following figure shows the use of Unicode in the VCL components.

Figure 49: Unicode in the VCL components

The component “btnShow” has been selected in the figure. The properties “Caption” and
“Hint” are character strings and these can be entered once you have switched to an
international character set. Thanks to the synchronisation between the Object Inspector and the
Form Designer, you can see immediate results. This enables Unicode to be seamlessly
embedded in the VCL framework and the RAD environment.

UNICODE IN THE SOURCE TEXT
Naturally, you can also use Unicode directly in the source text. However, there are some points
to consider.

STRING LITERALS FOR UNICODE CONSTANTS IN THE SOURCE TEXT
The following code shows a dialogue in Russian, in which a list will be filled according to a
selection in a listbox. As the use of the character sets is kept completely separate in C/C++,
when entering in the source you must specify a string literal, as the compiler will otherwise use a
national encoding. Common literals are “u” for UTF-16 and “U” for UTF-32. The literal “u8” for
UTF-8 is not supported. The literal used so far “L” for “wchar_t” encoding remains valid.

An Introduction to C++Builder 2010

Embarcadero Technologies - 73 -

#include <utility>
#include <memory>
#include <string>
#include <list>
using namespace std;

#include "OrtsauswahlForm.h"

void __fastcall TfrmUnicode::edtOrtLeftButtonClick(TObject *Sender) {
 typedef list<pair<String, String> > Orte;
 typedef Orte::iterator itOrte;
 typedef Orte::value_type valOrte;

 #pragma region Initialisierung
 Orte theOrte;
 theOrte.push_back(valOrte(u"Берлин", u"Berlin")); // Berlin : Deutschland

 theOrte.push_back(valOrte(u"Хельсинки", u"hɛlsiŋki")); // Helsinki : Finnland
 theOrte.push_back(valOrte(u"Бухарест", u"Bucureşti")); // Bukarest : Rumänien
 theOrte.push_back(valOrte(u"Москва", u"Москва")); // Moskau : Russland
 theOrte.push_back(valOrte(u"Рига", u"Rīga")); // Riga : Lettland
 theOrte.push_back(valOrte(u"Минск", u"Мiнск")); // Minsk : Weißrussland
 theOrte.push_back(valOrte(u"Афины", u"Αθήνα")); // Athen : Griechenland
 theOrte.push_back(valOrte(u"Никосия", u"Λευκωσία")); // Nikosia : Zypern
 theOrte.push_back(valOrte(u"Стамбул", u"İstanbul")); // Istanbul . Türkei
 theOrte.push_back(valOrte(u"Бейрут", u"بيروت")); // Beirut : Libanon
 theOrte.push_back(valOrte(u"Амман", u"عمان")); // Amman : Jordanien
 theOrte.push_back(valOrte(u"Дамаск", u"دمشق")); // Damaskus : Syrien
 theOrte.push_back(valOrte(u"Эр-Рияд", u"الرياض")); // Riad : Saudi-Arabien
 theOrte.push_back(valOrte(u"Иерусалим", u"ירושלים")); // Jerusalem : Israel
 #pragma end_region

 auto_ptr<TfrmOrtsauswahl> frm (new TfrmOrtsauswahl(this));
 for(itOrte it = theOrte.begin(); it != theOrte.end(); it++) {
 TListItem* item = frm->ListView1->Items->Add();
 item->Caption = it->first;
 item->SubItems->Add(it->second);
 }

 TListColumn *NewColumn;
 frm->ListView1->Columns->Clear();
 NewColumn = frm->ListView1->Columns->Add();
 NewColumn->Alignment = taLeftJustify;
 NewColumn->Caption = u"место";
 NewColumn->Width = 200;

 NewColumn = frm->ListView1->Columns->Add();
 NewColumn->Alignment = taLeftJustify;
 NewColumn->Caption = u"Место в языке страны";
 NewColumn->Width = 300;

 frm->Caption = u"Выберите место";
 frm->btnOk->Caption = u"Принимать";
 frm->btnCancel->Caption = u"Прекращение";

An Introduction to C++Builder 2010

Embarcadero Technologies - 74 -

 if(frm->ShowModal() == mrOk) {
 TListItem* item = frm->ListView1->Selected;
 if(item != 0) {
 edtOrt->Text = item->SubItems->Strings[0];
 }
 }
 return;
 }

Listing 8: Unicode in the source text

UNICODE IN THE INPUT AND OUTPUT STREAM
Input and output streams play a significant part in the programming language. The appropriate
operators are implemented for the standard data types, and there is of course a tremendous
advantage in the fact that no additional data conversions (e.g. integer to string with the VCL
method “IntToStr”) are required for the input and output. As Unicode and the international
character type “wchar_t” have been standard in C/C++ for over 10 years now, input and output
streams can be used.

The string streams are a special feature, in that character buffers can be used for the input and
output. Historically, the class “strstream” has been used (additional variants for input or output
only are “istrstream” and “ostrstream”), which is defined in the header file “strstream”. This
class is described in most C++ books. However, the buffer here is based on the national
character type “char” and it is therefore not possible to use it for Unicode.

Nevertheless, this type and its associated header file were changed with the 1998
standardisation. The class “strstream” is only available in C++ for compatibility reasons, but was
not extended any further. Unfortunately, many C++ books still use the old classes. The new
input and output streams are based on templates as a constituent of the STL.

The header file that should now be used in C++ programs is “sstream”, the respective class
“stringstream” (also here, with “istringstream” and “ostringstream”, there are appropriate
extensions which are specialized only for input or output). The national character set is used in
these classes and the main difference lies in the method “stringstream::str()”, which returns a
value of type “string” (the method “strstream::str()” returns a pointer to a character of type
‘”char”).

The header file “sstream” also has implementations for use with international character sets.
The respective type in the STL is “wstringstream” (additionally “wistringstream” and
“wostringstream”). Here the method “wstringstream::str()” returns a value of type “wstring”.

An Introduction to C++Builder 2010

Embarcadero Technologies - 75 -

For the following dialogue a handling routine is needed in order to output the data via a stream that has
been entered.

Figure 50: VCL dialogue with Unicode

#include <sstream>
using namespace std;

void __fastcall TfrmUnicode::btnShowClick(TObject *Sender) {
 wstringstream os;
 os << edtBemerkung->Text.c_str() << endl
 << edtOrt->Text.c_str() << ends;

 ShowMessage(os.str().c_str());
 return;
 }

Listing 9: Use of “wstringstream”

The source code above results in output shown in figure 50. As the method “wstrstream::str()”
returns a value of type “wstring”, and no conversion operators are available for the STL
standard types in the VCL, the method “wstring::c_str()” must still be called and this returns a
pointer to the data type “wchar_t”.

Figure 51: Use of "wstringstream", output of the handling method

An Introduction to C++Builder 2010

Embarcadero Technologies - 76 -

CONVERTING UNICODE IN THE NATIONAL CHARACTER SET
In C++ programs it can be necessary to convert the Unicode to the former national character
set. The following method shows how you can realise this in the C/C++ standardised methods.

#include <memory>
#include <cstdlib>

using namespace std;

int Konvertiere(std::string& target, String const& source) {
 size_t origsize = wcslen(source.w_str());
 size_t converted = 0;
 auto_ptr<char> ptrTarget(new char[origsize + 1]);
 do {
 size_t curconverted = wcstombs(ptrTarget.get() + converted,
 source.w_str() + converted, origsize);
 if(curconverted == -1) curconverted = strlen(ptrTarget.get()) - converted;
 converted += curconverted;
 if(converted < origsize) {
 ptrTarget.get()[converted] = '?';
 converted += 1;
 }
 }
 while(converted < origsize);
 ptrTarget.get()[origsize] = 0;
 target = ptrTarget.get();
 return (int)converted;
 }

Listing 10: Converting Unicode in a string

In the source text example above, all the characters which cannot be converted to the national
character set are converted into a “?”. This is then followed by the conversion. In critical
applications, it can make sense to trigger an exception in this case and handle this as an error.

There are automatic type conversions for data types “AnsiString” and “UnicodeString”. For this
purpose, the handling method implemented in Listing 9: Use of "wstringstream" will be
changed, but first the contents of the input fields will be converted to the type “AnsiString”.

#include <sstream>
using namespace std;

void __fastcall TfrmUnicode::btnShowClick(TObject *Sender) {
 AnsiString strBemerkung = edtBemerkung->Text;
 AnsiString strOrt = edtOrt->Text;
 wstringstream os;
 os << strBemerkung.c_str() << endl
 << strOrt.c_str() << ends;

 ShowMessage(os.str().c_str());
 return;
 }

An Introduction to C++Builder 2010

Embarcadero Technologies - 77 -

Listing 11: Automatic conversion of “UnicodeString” to “AnsiString”

However, then all those characters that cannot be mapped to the national character set are lost
(without any warning). This results in the following output.

Figure 52: Output of Unicode after the automatic conversion to “AnsiString”

Therefore, in a productive application, it is always preferable to use a controlled conversion.

An Introduction to C++Builder 2010

Embarcadero Technologies - 78 -

CREATING DATABASE APPLICATIONS
One of the advantages of Embarcadero C++Builder is integrating corporate data in the
applications. This is where the Embarcadero application development products nicely
supplement the Embarcadero database tools. Here, C++Builder supports three principle
standards for access to the data sources:

• Borland Database Engine (BDE)

• ADO

• dbExpress

Each of these access methods is supported with VCL components for managing the connection
with the respective data source, e.g. a SQL server, and the access to tables, queries and
procedures.

DATA ACCESS WITH THE BDE
For compatibility reasons, the current versions still also support the BDE for access to local data
in the dBASE or Paradox format. The respective VCL components are located in the “BDE” area
of the Tool Palette.

Component Description
TTable VCL component for direct access to a table in the database.
TQuery VCL component for data access via a SQL statement, with

parameters and the result set which is based on the statement.
TStoredProc VCL component for data access with a stored procedure, with

parameters and the result set which is returned by the
procedure.

TDatabase VCL component for connection to the database, including
application-specific parameters (via a BDE alias) and transaction
control.

TSession VCL component for the global management of database
connections in an application.

TBatchMove VCL auxiliary component for executing database operations
(inserting, deleting, copying) on data record groups or complete
tables.

TUpdateSQL VCL auxiliary component for committing cached updates of
“read only” queries or stored procedures to the database.

TNestedTable VCL component for access to table data which exist as a field in
another table. This component is possible only for access to
special databases (Oracle as of version 8). A suitable BDE driver
must be available.

Table 15: VCL components for data access via the BDE

As there is no further development here, you should no longer use these VCL components. If
you have worked with data in xBase format up until now, there are some interesting alternatives

An Introduction to C++Builder 2010

Embarcadero Technologies - 79 -

e.g. the Sybase Advantage Database Server. VCL components are also available for this and
they can be fully integrated in the development environment.

DATA ACCESS WITH ADO
ADO (ActiveX Data Objects) is a Microsoft COM library for access to any data sources that
support OLE DB. Alongside a multitude of databases, this includes objects similar to tables, e.g.
the active directory of the operating system or the file system. This way, you can integrate a
multitude of independent data sources in the programs that have been created with
C++Builder. All database manufacturers which are to be taken seriously provide respective OLE
DB drivers for their systems.

The VCL components for access via ADO are shown in the category “dbGo”.

Component Description
TADOConnection This VCL component manages access to any ADO data

source and provides parameters and methods (e.g.
transactions, meta data).

TADOCommand This VCL component is used for data access via an ADO
command object. This component has parameters, but no
result set. Used for SQL DML commands like “Insert”,
“Delete” and “Update”.

TADODataSet This VCL component is used to access a retrieved data set.
This is a generic component which accesses tables directly
or the data via an SQL query.

TADOTable VCL component for direct access to tables. The component
has a result set.

TADOQuery This VCL component is used to access the data via a SQL
query. The component has parameters and a result set.
(For compatibility reasons, for BDE access, DML or DDL
commands can be executed via a function. However, it is
better to use “TADOCommand” here.)

TADOStoredProc This VCL component is used to access the data via a stored
procedure. This component can return either individual
values or result sets. The component has parameters and a
result set.

TRDSConnection This VCL component is used to map a RDS DataSpace
object in ADO. DataSpace objects are client-side proxies for
access to business objects in a multitier application and are
responsible for marshalling.

Table 16: VCL components for data access via the ADO

The Windows operating system is already equipped with the necessary support for the use of
ADO. Access is controlled by means of a simple character string and this is known as the
“ConnectionString”.

An Introduction to C++Builder 2010

Embarcadero Technologies - 80 -

DATA ACCESS WITH DBEXPRESS
The third variant, dbExpress, concerns a proprietary part of the VCL framework that has been
written in Delphi and using which you can directly access the client interfaces of the database
servers Oracle, Microsoft® SQL Server, DB2, Sybase, InterBase, MySQL and Firebird. This does
have some speed advantages, but restricts the possible data sources. Moreover, data access is
generally only unidirectional and the necessary interim drivers must be provided with the
application.

To set up a data connection via dbExpress you must have an appropriate driver and two
configuration files. The first file (dbxdrivers.ini) contains all the installed driver types (InterBase,
Oracle, DB2, MSSQL, etc.) as well as the respective dynamic libraries required for each driver.
This file also has the defaults for all the connection parameters. The second file
(dbxconnections.ini) contains named connection configurations.

The VCL components for access via dbExpress are shown in the category “dbExpress” of the
Tool Palette.

Component Description
TSQLConnection This VCL component is used to manage the access to

database servers with a dbExpress driver. The component
provides parameters and methods (e.g. transactions, meta
data).

TSQLDataSet This VCL component is used for unidirectional access to the
data from a dbExpress data source. This way, you can call
data from a table, a query or a procedure. Contrary to the
other variants, here you can also carry out commands which
do not return a data set (e.g. CREATE or INSERT). As access
is unidirectional, no data is buffered. This restricts the
navigation and filtering is not possible.

TSQLQuery This VCL component is used for the unidirectional access to
a query from a dbExpress data source. Statements which
return no data set are also possible. As access is
unidirectional, no data is buffered. This restricts the
navigation and filtering is not possible.

TSQLStoredProc This VCL component is used to access a saved procedure in
a dbExpress data source. As access to the data set is
unidirectional, no data is buffered. This restricts the
navigation and filtering is not possible.

TSQLTable This VCL component is used to access a stored procedure in
a dbExpress data source. As access to the data set is
unidirectional, no data is buffered. This restricts the
navigation and filtering is not possible.

TSqlServerMethod This VCL component is used to call DataSnap server
methods.

TSQLMonitor This VCL component is used to catch and save messages
between a dbExpress data source and a data connection.

An Introduction to C++Builder 2010

Embarcadero Technologies - 81 -

This logs all SQL statements.
TSimpleDataSet These are VCL components which retrieve data from a

dbExpress data source and manage it in an internal cache.
This adds unidirectional access and navigation possibilities
to the speed advantage. Changes are returned to the data
source.

Table 17: VCL components for data access via dbExpress

DATA-SENSITIVE VCL COMPONENTS AND DATA ACCESS
Alongside the VCL components for data access there is also a series of data-sensitive VCL
components with which you can display and edit data promptly and without any great
programming effort. In addition to the various input fields there is also a table representation
(grid) and a button element (navigator). These are directly linked to a data source and already
displayed with data at design time.

The respective VCL components are located in the “Data Controls” category of the Tool
Palette.

Component Description
TDBGrid This VCL component is used as a data-sensitive control that

displays the data of a data set in a table (grid). The data is
displayed in the table and can be edited, deleted or
inserted.

TDBNavigator This VCL component is used to scroll in a data set and
execute important operations (insert, delete, lock, update).

TDBText This VCL component is a data-sensitive control in which the
data of a field of a data set can be displayed. However, you
cannot edit the data.

TDBEdit This VCL component is a data-sensitive control in which the
data of a field of a data set can be displayed and edited.

TDBMemo This VCL component is a multi-line, data-sensitive control in
which the data of a field of a data set can be displayed and
edited. This component can be used to edit a field that
contains an extensive amount of text.

TDBImage This VCL component is a data-sensitive control in which
graphics that are stored in at data set can be displayed
(BLOB fields). The graphics can be copied, cut out, deleted
or inserted via the Windows shortcuts.

TDBListBox This VCL component is a data-sensitive control in which the
data of a field of a data set can be displayed and, by
selecting an entry from a list, edited.

TDBComboBox This VCL component is a data-sensitive control in which the
data of a field of a data set can be displayed and, by
selecting an entry in a combination field (list or input field),
edited.

TDBCheckBox This VCL component is a data-sensitive control in which the
data of a field of a data set can be enabled or disabled via a

An Introduction to C++Builder 2010

Embarcadero Technologies - 82 -

checkbox. This component is particularly suitable for
Boolean values.

TDBRadioGroup This VCL component is a data-sensitive control in which the
data of a field of a data set in an option group can be
displayed and edited. In doing so, only one value is valid at
any time.

TDBLookupListBox This VCL component is a data-sensitive control in which the
data of a field of a data set can be displayed and, by
selecting an entry from a list, edited. This list is defined by a
different data set.

TDBLookupComboBox This VCL component is a data-sensitive control in which the
data of a field of a data set can be displayed and, by
selecting an entry in a combination field, edited. This list of
the combination field is defined by a different data set.

TDBRichEdit This VCL component is a multi-line, data-sensitive control in
which the data of an RTF field of a data set can be displayed
and edited. This component is used to edit a field that
contains an extensive amount of formatted text.

TDBCtrlGrid This VCL component is a data-sensitive control that displays
the data of a data set in a freely-definable format. Each data
record is displayed in an area that is set once at design time.

Table 18: VCL components for data-sensitive controls

VCL components which are used to connect data sources (“TDataSource”) with the data-
sensitive controls described above are located in a different area. Other components are used
as support when working with data (e.g. “TClientDataSet” for the local caching of data sets in
the memory).

These are located in the area “Data Access” in the Tool Palette.

Component Description
TDataSource This VCL component is used to create a connection

between a data set component and a data-sensitive control.
TClientDataSet This VCL component is used to map an independent data

set in the memory. The data can be read and saved from a
different data source or a file. With the aid of a data set
provider, access can also take place by means of a multitier
architecture (remote data module).

TDataSetProvider This VCL component is used to read data from a data source
and returns updates to this. The component summarises the
data of the source data set and transfers this in one or more
data packages to a ClientDataSet or an XML broker. The
ClientDataSet converts the data in the data package into a
local copy and then manages this in the memory. Once the
access has concluded, the ClientDataSet summarises the
changed data and returns it to the provider. The provider
commits the changes in the database or the ClientDataSet.

TXMLTransform This VCL component is used to convert data between XML

An Introduction to C++Builder 2010

Embarcadero Technologies - 83 -

documents and data packages. This component can be
used directly or together with TXMLTransformProvider or
TXMLTransformClient. The auxiliary program
“xmlmapper.exe” is used to create transformations.

TXMLTransformProvider This VCL component is used to provide data from an XML
document and commits the updates.

TXMLTransformClient This VCL component is used to provide an adapter between
an XML document and a provider.

Table 19: VCL components for data access (independent)

AN EXAMPLE DATABASE “TRAINING”
The following examples require a database. Unfortunately, many developers forget that
programming with databases always starts with the creation of this database. It is particularly in
this regard that many developers have considerable shortfalls and some declare (without any
great theoretical basis) that normalization is no longer required these days. The data is usually
saved “surface-orientated”, i.e. in such a way that it will be displayed later. However, for an
extensible application that needs to be adapted to new requirements over a long period, it is
very important to have a clean structure of data. Many do not recognize the necessity of using
efficient tools for this.

SETTING UP A “TRAINING” DATABASE
This example uses the Microsoft® SQL Server 2008 as a database backend. You can download
an express version of this database free-of-charge from the Microsoft web site. The new
database “Training” was set up for the following examples. This database manages people and
addresses with the necessary value ranges. This database will be expanded to include
employees and departments.

So, in the same way as an efficient development system is very important for programmers, the
respective aids are also required for creating and managing a database. Embarcadero is an
independent database tool provider. The management tool “DBArtisan” has been used to
generate the database in this example. This program supports the database administrator in
the management of various database systems (Oracle, IBM DB2, Sybase, MS SQL, MySQL, …)
and can therefore also (but not only) be implemented in heterogeneous environments. A
respective test version is available on the Embarcadero web site.

The following figure shows the creation of the database using a wizard on Microsoft® SQL
server. This wizard guides the administrator through the set-up in several steps in which various
parameters are entered. At the end, “DBArtisan” creates a SQL script which is then saved or
directly executed.

An Introduction to C++Builder 2010

Embarcadero Technologies - 84 -

Figure 53: Setting up the “Training” database using DBArtisan

ESTABLISHING THE DATABASE STRUCTURE
The second step requires the database structure to be established. A modelling tool can be
used for this (e.g. the ER/Studio) and the entries can be entered either directly in the respective
interface or a SQL script containing the respective DDL commands is written. Modern design
tools offer the option of creating a logical database model with the respective rules and various
physical models for different SQL server backends. They also help with the documentation for
the database and with discussions by means of the graphical representation. Embarcadero
ER/Studio can be used for this purpose, and is also available as a free-of-charge test version to
download from the Embarcadero web site.

The following listing contains the structure description of the “Training” database (other
database servers could require deviating types, especially for free text and date values). The
modelling tools mentioned above usually offer the option to read scripts or reorganize existing
databases.

CREATE TABLE AddressTypes (
 ID integer NOT NULL,
 Denotation varchar(50) NOT NULL,
 Abbreviation varchar(10) NOT NULL,
 Description text,

An Introduction to C++Builder 2010

Embarcadero Technologies - 85 -

 UrgentValue smallint
);

CREATE TABLE Addresses (
 ID integer NOT NULL,
 AddressType integer NOT NULL,
 Street varchar(50) NOT NULL,
 StreetNumber varchar(10),
 City varchar(50),
 Zipcode char(10),
 Country integer
);

CREATE TABLE Countries (
 ID integer NOT NULL,
 Denotation varchar(50) NOT NULL,
 Abbreviation varchar(10) NOT NULL,
 Description text,
 UrgentValue smallint,
 ISOCode varchar(5)
);

CREATE TABLE Departments (
 ID integer NOT NULL,
 Denotation varchar(30) NOT NULL,
 Description text
);

CREATE TABLE Employees (
 ID integer NOT NULL,
 PersonnelNumber varchar(15) NOT NULL,
 Salery decimal(10, 2) NOT NULL,
 StartOfJob datetime NOT NULL,
 JobPosition integer,
 JobSpecification text,
 Department integer,
 SocialSecurityNumber varchar(20)
);

CREATE TABLE FormsOfAddress (
 ID integer NOT NULL,
 Denotation varchar(30) NOT NULL,
 Abbreviation varchar(10) NOT NULL,
 Description text,
 UrgentValue smallint,
 TypeSpecification integer NOT NULL,
 Salutation varchar(50) NOT NULL,
 Valediction varchar(50) NOT NULL
);

CREATE TABLE JobPositions (
 ID integer NOT NULL,
 Denotation varchar(50) NOT NULL,
 Abbreviation varchar(10) NOT NULL,
 Description text,
 UrgentValue smallint
);

CREATE TABLE PersonTypeSpecs (
 ID integer NOT NULL,
 Denotation varchar(50) NOT NULL,
 Abbreviation varchar(10) NOT NULL,

An Introduction to C++Builder 2010

Embarcadero Technologies - 86 -

 Description text,
 UrgentValue smallint
);

CREATE TABLE Persons (
 ID integer NOT NULL,
 Name varchar(30) NOT NULL,
 Firstname varchar(30),
 FormOfAddress integer,
 Birthday datetime,
 Notice text
);

ALTER TABLE AddressTypes ADD CONSTRAINT pk_AddressTypes
 PRIMARY KEY (ID);

ALTER TABLE Addresses ADD CONSTRAINT pk_Addresses
 PRIMARY KEY (ID, AddressType);

ALTER TABLE Countries ADD CONSTRAINT pk_Countries
 PRIMARY KEY (ID);

ALTER TABLE Departments ADD CONSTRAINT pk_Departments
 PRIMARY KEY (ID);

ALTER TABLE Employees ADD CONSTRAINT pk_Employees
 PRIMARY KEY (ID);

ALTER TABLE FormsOfAddress ADD CONSTRAINT pk_FormsOfAddress
 PRIMARY KEY (ID);

ALTER TABLE JobPositions ADD CONSTRAINT pk_JobPositions
 PRIMARY KEY (ID);

ALTER TABLE PersonTypeSpecs ADD CONSTRAINT pk_PersonTypeSpecs
 PRIMARY KEY (ID);

ALTER TABLE Persons ADD CONSTRAINT pk_Persons
 PRIMARY KEY (ID);

ALTER TABLE AddressTypes ADD CONSTRAINT uk_AddressTypes_2
 UNIQUE (Denotation);

ALTER TABLE AddressTypes ADD CONSTRAINT uk_AddressTypes_3
 UNIQUE (Abbreviation);

ALTER TABLE Countries ADD CONSTRAINT uk_Countries_2
 UNIQUE (Denotation);

ALTER TABLE Countries ADD CONSTRAINT uk_Countries_3
 UNIQUE (Abbreviation);

ALTER TABLE Countries ADD CONSTRAINT uk_Countries_4
 UNIQUE (ISOCode);

ALTER TABLE Departments ADD CONSTRAINT uk_Departments_2
 UNIQUE (Denotation);

ALTER TABLE Employees ADD CONSTRAINT uk_Employees_2
 UNIQUE (PersonnelNumber);

ALTER TABLE FormsOfAddress ADD CONSTRAINT uk_FormsOfAddress_2

An Introduction to C++Builder 2010

Embarcadero Technologies - 87 -

 UNIQUE (Denotation);

ALTER TABLE FormsOfAddress ADD CONSTRAINT uk_FormsOfAddress_3
 UNIQUE (Abbreviation);

ALTER TABLE JobPositions ADD CONSTRAINT uk_JobPositions_2
 UNIQUE (Denotation);

ALTER TABLE JobPositions ADD CONSTRAINT uk_JobPositions_3
 UNIQUE (Abbreviation);

ALTER TABLE PersonTypeSpecs ADD CONSTRAINT uk_PersonTypeSpecs_2
 UNIQUE (Denotation);

ALTER TABLE PersonTypeSpecs ADD CONSTRAINT uk_PersonTypeSpecs_3
 UNIQUE (Abbreviation);

ALTER TABLE Addresses ADD CONSTRAINT fk_Addresses_Persons_Ref_1
 FOREIGN KEY (ID) REFERENCES Persons (ID);

ALTER TABLE Addresses ADD CONSTRAINT fk_Addresses_AddressTypes_Ref_2
 FOREIGN KEY (AddressType) REFERENCES AddressTypes (ID);

ALTER TABLE Addresses ADD CONSTRAINT fk_Addresses_Countries_Ref_3
 FOREIGN KEY (Country) REFERENCES Countries (ID);

ALTER TABLE Employees ADD CONSTRAINT fk_Employees_Persons_Ref_1
 FOREIGN KEY (ID) REFERENCES Persons (ID);

ALTER TABLE Employees ADD CONSTRAINT fk_Employees_JobPositions_Ref_2
 FOREIGN KEY (JobPosition) REFERENCES JobPositions (ID);

ALTER TABLE Employees ADD CONSTRAINT fk_Employees_Departments_Ref_3
 FOREIGN KEY (Department) REFERENCES Departments (ID);

ALTER TABLE FormsOfAddress ADD CONSTRAINT fk_FormsOfAddress_PersonTypeSpecs_Ref_1
 FOREIGN KEY (TypeSpecification) REFERENCES PersonTypeSpecs (ID);

ALTER TABLE Persons ADD CONSTRAINT fk_Persons_FormsOfAddress_Ref_1
 FOREIGN KEY (FormOfAddress) REFERENCES FormsOfAddress (ID);

CREATE INDEX idxAddresses_1 ON Addresses(Zipcode);

CREATE INDEX idxAddresses_2 ON Addresses(City);

CREATE INDEX idxAddresses_3 ON Addresses(Street, City);

CREATE INDEX idxEmployees_1 ON Employees(Department);

CREATE INDEX idxEmployees_2 ON Employees(SocialSecurityNumber);

CREATE INDEX idxEmployees_3 ON Employees(JobPosition);

CREATE INDEX idxPersons_1 ON Persons(Name, Firstname);

CREATE INDEX idxPersons_2 ON Persons(FormOfAddress);

CREATE INDEX idxPersons_3 ON Persons(Birthday);

Listing 12: SQL script for generating the database

An Introduction to C++Builder 2010

Embarcadero Technologies - 88 -

You must now execute this script on the respective database server. The respective databases
usually provide more or less suitable programs. Embarcadero can also offer an efficient,
independent program for this - “RapidSQL”. Again, you can use different data sources and
there is a SQL syntax representation, a code completion, and the data is shown in tables where
you can also edit it. You can save, print out or email the result sets.

The following figure shows “Rapid SQL” with the above script for generating the database.

Figure 54: Executing the SQL script with “Rapid SQL”

ESTABLISHING THE VALUE RANGES
Having created the basic structure of the database, you must then set the value ranges in the
following step. Also here you have the option to enter the data directly or to write a script. It is
preferable to use the second option for serious projects, as this can always be repeated and,
moreover, can also be a part of the documentation.

The following script establishes the value ranges for the application. The syntax may be slightly
modified for a different database backend. The command “GO” is particularly typical of
Microsoft.

/* === */
/* Fill the value tables with the necessary data */
/* === */

An Introduction to C++Builder 2010

Embarcadero Technologies - 89 -

INSERT INTO PersonTypeSpecs (ID, Denotation, Abbreviation, UrgentValue)
VALUES (1, 'male', 'M', 1),
 (2, 'female', 'F', 1),
 (3, 'group', 'G', 1);
GO

INSERT INTO FormsOfAddress (ID, Denotation, Abbreviation, TypeSpecification,
 Salutation, Valediction)
VALUES (1, 'Mr', 'Mr', 1, 'Dear Mr', 'Yours sincerely'),
 (2, 'Mrs', 'Mrs', 2, 'Dear Mrs', 'Yours sincerely'),
 (3, 'Family', 'Fam', 3, 'Dear family', 'Yours sincerely'),
 (4, 'Company', 'Co.', 3, 'Dear company', 'Yours sincerely'),

INSERT INTO AddressTypes (ID, Denotation, Abbreviation)
VALUES (1, 'Main address', 'AD'),
 (2, 'Billing address', 'RA'),
 (3, 'Delivery address', 'RA'),

GO

INSERT INTO Countries (ID, Denotation, Abbreviation, ISOCode)
VALUES (1, 'Federal Republic of Germany', 'BRD', 'DE');

INSERT INTO JobPositions (ID, Denotation, Abbreviation)
VALUES (1, 'Chairman', 'V'),
 (2, 'Head of department', 'AL'),
 (3, 'Head of group', 'GL'),
 (4, 'Employee', 'AN'),
 (5, 'Temporary worker', 'HK');
GO

Listing 13: Establishing the value ranges in the “Training” database

The following figure shows the “Training” database created so far as a logical model. Such
models help the developer to detect associations more quickly and find necessary information.
This saves time and avoids errors.

An Introduction to C++Builder 2010

Embarcadero Technologies - 90 -

Figure 55: Portraying and editing the data model in "ER/Studio"

REFINING THE DATA MODEL
Many programmers would say now that it is much more difficult to access the normalised data.
Some also maintain that the performance is worse. Such statements are usually the result of
unfamiliarity with relational databases.

This model therefore defines two views for the access to the personal and employee data. As
we would usually have to deal with more than one address in data records, the value table
defines three different address types. In the first view “vwPersonenDaten", the respective
records in the table "Addresses“ will be linked by a left join to the record from the table
“Persons”. The majority of SQL servers are not just capable of reading clear views; they also
allow to edit this data.

The second view summarises the data from the tables “Persons” and “Employees”, which have
an is-a relationship (in programming this corresponds to a generalization), by means of a
complete join. Then, the addresses are added as in the first view.

CREATE VIEW vwPersons (ID, Name, Firstnam, FormOfAddress, BirthDay, Notice,
 AD_Street, AD_StreetNumber, AD_City, AD_Zipcode, AD_Country,
 RA_Street, RA_StreetNumber, RA_City, RA_Zipcode, RA_Country,
 LA_Street, LA_StreetNumber, LA_City, LA_Zipcode, LA_Country)
AS
 SELECT Ps.ID, Ps.Name, Ps.Firstname, Ps.FormOfAddress, ps.BirthDay, Ps.Notice,

An Introduction to C++Builder 2010

Embarcadero Technologies - 91 -

 AD.Street AS AD_Street, AD.Street AS AD_StreetNumber, AD.City AS AD_City,
 AD.Zipcode AS AD_Zipcode, AD.Country AS AD_Country,
 RA.Street AS RA_Street, RA.Street AS RA_StreetNumber, RA.City AS RA_City,
 RA.Zipcode AS RA_Zipcode, RA.Country AS RA_Country,
 LA.Street AS LA_Street, LA.Street AS LA_StreetNumber, LA.City AS LA_City,
 LA.Zipcode AS LA_Zipcode, LA.Country AS LA_Country
 FROM Persons Ps LEFT JOIN Addresses AD ON (AD.ID = Ps.ID AND AD.AddressType = 1)
 LEFT JOIN Addresses RA ON (RA.ID = Ps.ID AND RA.AddressType = 2)
 LEFT JOIN Addresses LA ON (LA.ID = Ps.ID AND LA.AddressType = 3);

CREATE VIEW vwEmployees (ID, Name, Firstnam, FormOfAddress, BirthDay, Notice,
 PersonnelNumber, Salery, StartOfJob, JobPosition,
 JobSpecification, Department, SocialSecurityNumber,
 AD_Street, AD_StreetNumber, AD_City, AD_Zipcode, AD_Country,
 RA_Street, RA_StreetNumber, RA_City, RA_Zipcode, RA_Country,
 LA_Street, LA_StreetNumber, LA_City, LA_Zipcode, LA_Country)
AS
 SELECT Ps.ID, Ps.Name, Ps.Firstname, Ps.FormOfAddress, Ps.BirthDay, Ps.Notice,
 Es.PersonnelNumber, Es.Salery, Es.StartOfJob, Es.JobPosition,
 Es.JobSpecification, Es.Department, Es.SocialSecurityNumber,
 AD.Street AS AD_Street, AD.Street AS AD_StreetNumber, AD.City AS AD_City,
 AD.Zipcode AS AD_Zipcode, AD.Country AS AD_Country,
 RA.Street AS RA_Street, RA.Street AS RA_StreetNumber, RA.City AS RA_City,
 RA.Zipcode AS RA_Zipcode, RA.Country AS RA_Country,
 LA.Street AS LA_Street, LA.Street AS LA_StreetNumber, LA.City AS LA_City,
 LA.Zipcode AS LA_Zipcode, LA.Country AS LA_Country
 FROM Persons Ps JOIN Employees Es ON (Es.ID = Es.ID)
 LEFT JOIN Addresses AD ON (AD.ID = Ps.ID AND AD.AddressType = 1)
 LEFT JOIN Addresses RA ON (RA.ID = Ps.ID AND RA.AddressType = 2)
 LEFT JOIN Addresses LA ON (LA.ID = Ps.ID AND LA.AddressType = 3);

Listing 14: Generating a view to access personal data

Finally, you specify in the database the respective privileges for the user. In principle, the author
of the database possesses the necessary privileges. SQL servers provide a multitude of options
for controlling privileges. The following examples assume that the necessary authorizations are
available.

CREATING A PROGRAM FOR WORKING WITH THE DATA

The first step is to create a new VCL form application. This is explained in chapter “Creating a
VCL form application“ on page 50. The main form is saved under the name “MainForm.cpp”,
the project under the name “DatabaseApp”.

To enter the following values for the VCL form, select the form in the Object Inspector.

Component Description
Caption Database test application
Name frmMain

Table 20: Main form of the database application

The VCL framework has a special form type which is known as a data module. A data module
has a design area but this is not visible. This is where you can “collect” invisible components,
particularly the connection components for the data connections, but also the required
dialogue components, image lists and the like.

An Introduction to C++Builder 2010

Embarcadero Technologies - 92 -

To add a data module to the application, in the New Items dialogue you first select the area
“C++Builder Files” from the tree view on the left side, and then the item “Data Module” from
the entries on the right.

Figure 56: Creating a new data module via the New Items dialogue

In doing so, a data module is added to the project and in the IDE opened in design mode. In
this example, the data module is saved as “DMUnit.cpp“ and in the Object Inspector the name
of it is changed to “DM”.

An Introduction to C++Builder 2010

Embarcadero Technologies - 93 -

GESTURE AND TOUCH CONTROL
Many will probably be familiar with the quote from Bjarne Stroustrup: “I have always wished for
my computer to be as easy to use as my telephone; my wish has come true: because I can no
longer figure out how to use my telephone.” He said this in 1990, after attempting to use a
multifunction telephone. We also know that it has become significantly easier to use
multifunction telephones in recent years, and not least due to touch control. We are also
familiar with interaction by touching the displays on various automats.

We have had simple tablet computers which only respond to a simple touch (usually also only
by using a special stylus) for quite a while, and these were very expensive.

For many years now, Microsoft® has been working on a new, intuitive control for computers, the
project “Surface” has surprised insiders for some time with its increasingly new, and, for many,
at first very futuristic-sounding ideas. Microsoft® Windows Vista has already included a few
touch extensions, e.g. a touch keyboard.

And now with Microsoft® Windows 7 we can see a multi-touch control in the broad area of the
Windows computer. This has partially dissolved one of the oldest PC procedures - the
interaction of the user by means of the keyboard and the mouse. It goes without saying that the
hardware industry will respond very quickly with multi-touch-capable devices at favourable
prices. With this in mind, we as developers must adapt our applications to meet these new
technologies.

With C++Builder 2010 you are best equipped for this new challenge; as the only native C++
development environment it provides an integrated support for the touch and gesture control.
In doing so, it supports the operating systems from Microsoft® Windows 2000 onwards, a large
number of standard gestures are already specified and, alongside the touch (single, multi), it
also supports styluses and the mouse.

Most of the VCL components have been appropriately enhanced so they directly support the
gesture control. It also features a new VCL component with which you can add to your
application a soft keyboard that supports the respective language settings.

An Introduction to C++Builder 2010

Embarcadero Technologies - 94 -

IMPROVEMENTS TO THE NEW C++ STANDARD

(C++0X) IN C++BUILDER 2010
The new C++ standard represents the first major improvement to the language since 1998.
While 2003 saw an extension to the standard library, C++0x also made changes to the compiler
and added a new library with the name “TR1”.

One of the objectives of C++0x is to adapt to the new requirements for programming, e.g.
distributed algorithms and the mutual use of memory between the various applications. A
further objective was to make it easier to learn. And the most significant objective was for
programs which had been correct in terms of the previous standard, to also be correct with
respect to the new standard.

The new standard was originally planned for 2009, but this was delayed during the course of the
year and we´re not really expecting anything before 2010. Having said that, the major compiler
suppliers (including Embarcadero) have already implemented quite a lot of the standard for
which consent has been gained from the Committee.

COMPILER ENHANCEMENTS
The following enhancements have already been implemented in C++Builder 2009 and 2010:

• New data type for the 64-bit integer: long long
o long long value = 8446363626454LL;

• New literals
o wstring strVal = u“København“;

• RValues, move
o int && ref;
o more efficient handling of one-off data
o argument is no longer used by the caller

• Type traits, static_assert
o better error messages at compile time

• Type inference - decltype
o corresponds to the result type of a statement

• Scoped enums
o implicit cast to int prevented, perimeter of the namespace, possibility for forward

declaration
• [[final]], [[noreturn]]

SCOPED ENUMS
With the enumerations there was previously the problem that the values of the enumerations
had to have unique identifiers. It was therefore often the case that prefixes were written in front

An Introduction to C++Builder 2010

Embarcadero Technologies - 95 -

(e.g. in the VCL) or the enumerations were hidden within classes (e.g. in the STL the ios class), so
they only needed to have unique identifiers within the class.

enum WeekDay { // alternatively with type e.g. enum Weekday: char { …
 Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday };

std::string ToString(Weekday d) {
 switch(d) {
 case Weekday::Monday: return "Monday"; // possible use
 case Tuesday: return "Tuesday"; // but not mandatory
 …
 }
 }

enum class Month { // also with type specification, e.g. enum class Month: int { …
 January, February, March, April, May, June,
 July, August, September, October, November, December };

std::string ToString(Month m) {
 switch(m) {
 case Month::January: return “January"; // mandatory use
 case February: return “February"; // error
 …
 }
 }

Listing 15: C++0x scoped enums

RVALUES

TYPE INFERENCE - DECLTYPE
The programming language C++ uses a strict type system. You are therefore always forced to
clearly indicate the type of a variable. Unfortunately this isn´t always possible. This is why the
new C++ standard gives you the option of exploiting the types of return values and using these
for the establishment of a specific type. This way, you can generate a certain “type
independence” in many methods.

#include <iostream>
#include <typeinfo>

using namespace std;

template <typename T1, typename T2>
void Addiere(T1 t1, T2 t2) {
 typedef decltype(t1 + t2) sumtype;
 sumtype t = t1 + t2;
 cout << "[" << typeid(t1).name() << "] t1 = " << t1 << endl
 << "[" << typeid(t2).name() << "] t2 = " << t2 << endl

An Introduction to C++Builder 2010

Embarcadero Technologies - 96 -

 << "[" << typeid(t).name() << "] t = " << t << endl
 << endl;
 return;
 }

int main(void) {
 Addiere(5, 7);
 Addiere(8, 3.14);
 Addiere("Hello ", "World");
 return 0;
 }

Listing 166: C++0x – type inference with decltype

IMPROVED CONTROL
An objective of the new standard is to improve the quality of the programs and increase the
stability against errors. The command “static_assert” together with the methods known as
“type_straits” play a key role here.

#include <iostream>
#include <type_traits>
class TTest;
class TTest2; // derived from TTest

template <typename T> void Polymorphic(T* t) {
 static_assert(std::tr1::is_polymorphic<T>::value, "must be a polymorphic type");
 };
template <typename T> void HasVirtualDestructor(T* t) {
 static_assert(std::tr1::has_virtual_destructor<T>::value,
 "must have a virtual destructor");
 };

int main(void) {
 TTest testInstance;
 HasVirtualDestructor(&testInstance);
 Polymorphic(&testInstance);
 std::cout << "is_base_of<base, base> == " << std::boolalpha
 << std::tr1::is_base_of<TTest, TTest>::value << std::endl;
 std::cout << "is_base_of<base, derived> == " << std::boolalpha
 << std::tr1::is_base_of<TTest, TTest2>::value << std::endl;
 std::cout << "is_base_of<derived, base> == " << std::boolalpha
 << std::tr1::is_base_of<TTest2, TTest>::value << std::endl;
 return 0;
 };

Listing 17: C++0x – static-assert

An Introduction to C++Builder 2010

Embarcadero Technologies - 97 -

THE BOOST LIBRARY IN C++BUILDER 2010
The Boost library is a collection of more than 70 sub-libraries which is available to you without
restriction as a free library. Many of the libraries have been written by members of the Standards
Committee, and this was stimulated by Robert Klarer and Beman Dawes. The idea for this
library had its origin in 1998 when the first ISO standard for C++ was agreed. The name of the
library refers to the saying “Boost is better than java” (Schnaps is better than coffee). The
objective was to increase the productivity of C++ programmers and close gaps in the standard.
And this on key platforms on which C++ compilers are available.

As was already the case with the standard library "STL", a lot of the work in Boost has been
carried out using meta programming. Within the scope of the standardisation of C++, some of
these libraries have at present been declared as meeting the official C++ standard in the
Technical Report 1 (TR1); and Technical Report 2 (TR2) intends for more to follow.

The following table contains some of the important libraries and a brief explanation:

Library Description
Any Safe, generic container for individual values of different types.
Tupel Return of several function values.
Threads Portable multithreaded.
Interprocess Shared memory, memory mapped files, process-shared mutexes, …
Date Time Library for date and time based on generic program concepts.
Filesystem Portable functions for querying and changing the path, files and

directories.
Lexical Cast Conversion of values to character strings and vice-versa, implemented

as cast operator.
Format Supports the formatting of the arguments via a format string, similar

printf, but with 2 differences: Use of streams, type safe and support of
self-defined types.

asio Network programming, including sockets, timers, name resolution and
socket io streams.

Serialization Serialisation for persistence and marshalling (portable text, xml, binary).
Tokenizer Parsing of character strings in tokens.
Spirit Parser framework for EBNF syntax.
Math Various mathematical libraries.
Python Framework for integrating python scripts in C++ programs.

Table 21: Important Boost sub-libraries

Version 1.39 is being partially supported at present (current version is 1.41). However, this library
is also available for C++Builder 2007 (BCBport by Alisdair Meredith) and C++Builder 2009
(integrated version 1.35).

According to a statement from Embarcadero, the current version of C++Builder 2010 supports
the following libraries without restriction:

• algorithm/minmax

An Introduction to C++Builder 2010

Embarcadero Technologies - 98 -

• algorithm/string
• any
• array
• crc
• disjoint_sets
• format
• functional
• logic
• property_map
• signals
• static_assert
• system
• tokenizer
• tuple
• utility/swap

The following libraries are restricted, and this could cause problems:

• config
• conversion
• dynamic_bitset
• filesystem
• integer
• io
• optional
• timer
• type_traits
• regex
• functional/hash
• test
• math
• tr1
• mpl
• range
• function
• function_types
• unordered
• utility
• utility/enable_if
• iterator
• asio
• variant

An Introduction to C++Builder 2010

Embarcadero Technologies - 99 -

• numeric/interval
• exception
• circular_buffer
• parameter
• date_time
• concept_check
• assign
• numeric/conversion
• typeof
• spirit
• gil
• thread

The other libraries are not supported and are not included in the installation.

EXAMPLE WITH LEXICAL CASTS
The following brief example using lexical_cast demonstrates the usability of Boost. Maybe
you´ve often looked for a simple way to input different data. This is why this example is called
SimpleInput. This example is given for good reason, as time and again developers state that
they have to fall back on VCL routines in C++, as C++ has nothing comparable to offer.

Create the following form in C++Builder.

Figure 57: Form for the application “SimpleInput”

The structure of this dialogue is simple. Complete the input field, two labels and two buttons on
the form and then name the figure accordingly.

Components Property Value
Components Property Value
frmSimpleInput Caption frmSimpleInput

Name frmSimpleInput
Position poMainFormCenter

lblText

Caption lblText
Name lblText

edtText Name edtText
Text edtText

lblHint Caption lblHint

An Introduction to C++Builder 2010

Embarcadero Technologies - 100 -

Components Property Value
Components Property Value

Name lblHint
btnOk Caption Ok

Default true
ModalResult mrOk
Name btnOk

btnCancel Caption Cancel
ModalResult mrCancel
Name btnCancel

Table 22: Properties of the VCL components in the “SimpleInput” program

The method “SimpleInput” actually controls the form. As we want to generate an input
dialogue for different data types, we use this as a template.

The actual type cast is done in the operator lexical_cast, and, in the same way as the other cast
operators, the target type is specified in the angle brackets.

//---
// Example program VCL dialogue and boost
// boost::lexical_cast and boost::format
// adecc Systemhaus GmbH
// 2009
//---
#ifndef SimpleInputH
#define SimpleInputH
//---
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>

#include <string>
#include <memory>

#include <boost/config.hpp>
#include <boost/config/compiler/CodeGear.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/format.hpp>
//---
class TfrmSimpleInput : public TForm {
__published: // IDE-managed components
 TLabel *lblText;
 TEdit *edtText;
 TButton *btnOK;
 TButton *btnCancel;
 TLabel *lblHint;
private: // User declarations
public: // User declarations
 __fastcall TfrmSimpleInput(TComponent* Owner);

};

An Introduction to C++Builder 2010

Embarcadero Technologies - 101 -

//---
extern PACKAGE TfrmSimpleInput *frmSimpleInput;
//---
const std::string strMessageFormat = "%1%\n%2%\n%3% expected.";
template <typename T>
bool SimpleInput(std::string const& strCaption, std::string const& strText,
 std::string const& strHint, T& theValue) {
 std::auto_ptr<TfrmSimpleInput> frm (new TfrmSimpleInput(0));
 frm->Caption = strCaption.c_str();
 frm->lblText->Caption = strText.c_str();
 frm->lblHint->Caption = strHint.c_str();
 frm->edtText->Text = "";

 if(frm->ShowModal() == mrOk) {
 try {
 theValue = boost::lexical_cast<T>(frm->edtText->Text.c_str());
 }
 catch(std::exception& ex) {
 std::ostrstream os;
 os << boost::format(strMessageFormat) % ex.what()
 % frm->edtText->Text.c_str()
 % typeid(T).name()
 << std::ends;
 ShowMessage(os.str());
 }
 return true;
 }
 return false;
 }

Listing 18: The “TfrmSimpleInput” class and the “SimpleInput” method

If the type cannot be casted, the boost::lexical_cast triggers a standard exception.
Boost::format is used within the handling. This routine is reminiscent of the old C output
routines. The wildcards (%1%, %2%, …) are defined by means of a format string. Any type of
wildcard and any order of sequence in the text are permitted. The use takes place within
streams; the format and the parameters are separated by means of the character “%”.

An Introduction to C++Builder 2010

Embarcadero Technologies - 102 -

LIST OF TABLES
Table 1: Categories in the C++ Class Explorer .. - 26 -
Table 2: File types for C++Builder .. - 38 -
Table 3: Properties of a form ... - 49 -
Table 4: Events for the form ... - 51 -
Table 5: Tool Palette – standard control elements .. - 52 -
Table 6: Tool Palette - Win32 control elements ... - 54 -
Table 7: Tool Palette – additional controls ... - 56 -
Table 8: Important properties of control elements .. - 57 -
Table 9: Important events of controls ... - 57 -
Table 10: Settings for the main form ... - 58 -
Table 11: Settings for the dialogue form of the main application .. - 60 -
Table 12: Working with VCL components, settings for the controls in the dialogue form . - 64 -
Table 13: Working with VCL components, properties of the controlsin the main form - 66 -
Table 14: Variants of Unicode .. - 70 -
Table 15: VCL components for data access via the BDE ... - 78 -
Table 16: VCL components for data access via the ADO .. - 79 -
Table 17: VCL components for data access via dbExpress ... - 81 -
Table 18: VCL components for data-sensitive controls ... - 82 -
Table 19: VCL components for data access (independent) ... - 83 -
Table 20: Main form of the database application .. - 91 -
Table 21: Important Boost sub-libraries .. - 97 -
Table 22: Properties of the VCL components in the “SimpleInput” program - 100 -

LIST OF FIGURES
Figure 1: Selecting the target in the New Items dialogue ... - 5 -
Figure 2: Development environment in the default layout ... - 7 -
Figure 3: Development environment in the classic mode ... - 8 -
Figure 4: IDE insight ... - 9 -
Figure 5: Project Manager .. - 9 -
Figure 6: Managing the order of build in the Project Manager .. - 11 -
Figure 7: Project settings ... - 11 -
Figure 8: Searching in the source text window ... - 13 -
Figure 9: Find in Files ... - 14 -
Figure 10: Replace Text .. - 14 -
Figure 11: Refactoring .. - 15 -
Figure 12: Options for “Code Insight” .. - 16 -
Figure 13: Code completion .. - 16 -
Figure 14: Parameter help .. - 17 -
Figure 15: Regions in the source text window .. - 19 -
Figure 16: Editor Options ... - 20 -

An Introduction to C++Builder 2010

Embarcadero Technologies - 103 -

Figure 17: Development environment with code templates ... - 21 -
Figure 18: Editing code templates in the code window .. - 23 -
Figure 19: Inserting a code template .. - 24 -
Figure 20: Options for code formatting .. - 25 -
Figure 21: C++ Class Explorer – normal view ... - 26 -
Figure 22: Adding a new method in the Class Explorer .. - 27 -
Figure 23: C++ Class Explorer in the graph view ... - 28 -
Figure 24: Tool Palette in design mode .. - 28 -
Figure 25: Tool Palette in the code mode .. - 29 -
Figure 26: Structure view in design mode .. - 29 -
Figure 27: Structure view in the code mode ... - 30 -
Figure 28: Object Inspector with properties ... - 31 -
Figure 29: Object Inspector with events ... - 31 -
Figure 30: Form Designer .. - 33 -
Figure 31: Development environment in debug layout ... - 34 -
Figure 32: Debugger with the breakpoint list... - 35 -
Figure 33: Debugger – Watch List ... - 35 -
Figure 34: Debugger – evaluate and modify .. - 36 -
Figure 35: Debugger – Debug Inspector .. - 36 -
Figure 36: Debugger – Call Stack .. - 36 -
Figure 37: Debugger – Tooltip expression evaluation .. - 37 -
Figure 38: Wizard for the console application .. - 39 -
Figure 39: View of the IDE after creating a GUI project .. - 58 -
Figure 40: Creating a new form with the New Items dialogue .. - 60 -
Figure 41: Working with VCL components, rough draft of the dialogue form - 61 -
Figure 42: Wizard for aligning VCL components .. - 61 -
Figure 43: Dialogue for editing the tab order .. - 62 -
Figure 44: Working with VCL components, forms in the project options - 65 -
Figure 45: Working with VCL components, main form with components - 66 -
Figure 46: Working with VCL components, event handling .. - 67 -
Figure 47: Working with the VCL, adding unused units .. - 67 -
Figure 48: Unicode selection in the operating system .. - 71 -
Figure 49: Unicode in the VCL components ... - 72 -
Figure 50: VCL dialogue with Unicode .. - 75 -
Figure 51: Use of "wstringstream", output of the handling method - 75 -
Figure 52: Output of Unicode after the automatic conversion to “AnsiString” - 77 -
Figure 53: Setting up the “Training” database using DBArtisan .. - 84 -
Figure 54: Executing the SQL script with “Rapid SQL” ... - 88 -
Figure 55: Portraying and editing the data model in "ER/Studio" - 90 -
Figure 56: Creating a new data module via the New Items dialogue - 92 -
Figure 57: Form for the application “SimpleInput” ... - 99 -

An Introduction to C++Builder 2010

Embarcadero Technologies - 104 -

LIST OF SOURCE TEXT
Listing 1: Random numbers with code folding ... - 19 -
Listing 2: Doxygen comment for a file .. - 22 -
Listing 3: Main function of the console application ... - 39 -
Listing 4: Header file of an empty unit with the name “TestUnit” .. - 41 -
Listing 5: Main program of the project ... - 59 -
Listing 6: Working with the VCL, initialising a form .. - 64 -
Listing 7: Working with the VCL, complete source text of the main window - 69 -
Listing 8: Unicode in the source text ... - 74 -
Listing 9: Use of “wstringstream” .. - 75 -
Listing 10: Converting Unicode in a string .. - 76 -
Listing 11: Automatic conversion of “UnicodeString” to “AnsiString” - 76 -
Listing 12: SQL script for generating the database .. - 87 -
Listing 13: Establishing the value ranges in the training database - 89 -
Listing 14: Generating a view to access personal data .. - 91 -
Listing 15: C++0x scoped enums .. - 95 -
Listing 16: C++0x – type inference with decltype .. - 95 -
Listing 17: C++0x – static-assert .. - 96 -
Listing 18: The “TfrmSimpleInput” class and the “SimpleInput” method - 101 -

An Introduction to C++Builder 2010

Embarcadero Technologies - 105 -

ABOUT THE AUTHOR

Volker Hillmann is a founding director of the Berlin based software
company adecc Systemhaus GmbH, where he is a passionate and very
experienced C++ developer, software architect and database specialist.
Volker is the author of "Object-oriented programming with C++" from
Markt & Technik-Verlag, and is well known as a C++ and database
trainer, as well as a speaker at conferences and industry events. Volker
has a mathematics degree with specialized "databases and data security"
and has been developing applications using C and C++ since 1988.
adecc Systemhaus GmbH develops systems for insurance and financial
services using C++Builder and also offers training courses for C/C++,
C++Builder, and for working with databases.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change
Manager™, Embarcadero RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

http://www.embarcadero.com/�

	Contents
	Embarcadero C++Builder 2010
	Reasons for C/C++ as a language
	The ISO standard

	The Development Environment
	IDE Insight wizard
	Project Manager
	Virtual folders
	Sorting the display
	Settings
	Build configurations
	Creating the applications and libraries, cleaning
	The “From here” menu item
	Preprocessor, assembler, memory dump

	Source text editor
	Text search
	Searching in the source text window
	Text search in projects and files
	Searching and replacing text

	Refactoring
	Code completion and parameter support
	Code folding
	Templates
	Creating new templates

	Source code formatting

	C++ Class Explorer
	Navigating in the source text
	Adding new elements to a class
	Displaying the references
	Graphic display of classes

	Tool Palette
	Tool Palette in design mode
	Tool Palette in the code mode

	Structure view
	Structure view in design mode
	Structure view in the code mode

	Object Inspector
	Editing the properties of the VCL components
	Editing the events of the VCL components

	Form Designer
	Debugger
	Working with breakpoints
	Further control options and views
	New features in the Builder 2010
	Attaching to a running process

	Important files

	Creating a Console Application
	Visual Component Library – the RAD Framework
	The unit
	The form
	Properties of a form
	Events for a form

	Controls
	Important controls in the “Standard” category
	Win32 controls
	Additional
	Important properties of the components
	Important component events

	Creating a VCL form application
	Expanding the application – working with the VCL components
	Fundamental comment on using the VCL

	Unicode
	Unicode in the VCL components
	Unicode in the source text
	String literals for Unicode constants in the source text
	Unicode in the input and output stream
	Converting Unicode in the national character set

	 Creating database applications
	Data access with the BDE
	Data access with ADO
	Data access with dbExpress
	Data-sensitive VCL components and data access
	An example database “Training”
	Setting up a “Training” database
	Establishing the database structure
	Establishing the value ranges
	Refining the data model

	Creating a program for working with the data

	Gesture and Touch Control
	 Improvements to the new C++ standard (C++0x) in C++Builder 2010
	Compiler enhancements
	Scoped enums
	RValues
	Type inference - decltype
	Improved control

	The Boost library in C++Builder 2010
	Example with lexical casts

	List of tables
	List of figures
	List of source text
	About the Author

