

Americas Headquarters

EMEA Headquarters

Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

REST Servers in Delphi XE

Using DataSnap

Marco Cantù, http://blog.marcocantu.com

December 2010

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 1 -

EXECUTIVE SUMMARY
Representational State Transfer (REST) is a new architecture for Web Services that is
having a significant impact on the industry. Most of the new public web services from large
vendors (Google, Yahoo, Amazon, now also Microsoft) rely on REST as the technology for
sharing and merging information from multiple sources.

As implementing the REST architecture implies only using simple technologies (like HTTP
and XML), Delphi has historically had good support for it. Delphi 2010 added REST
support through the DataSnap infrastructure and Delphi XE pushes the model even further
with support for WebBroker integration and the creation of JavaScript proxies for the
methods exposed by the web service.

This paper delves into the development of REST servers in Delphi XE, showing how you
can use the features available in the box, how to extend them with extra Delphi support
code, and how to take advantage of the jQuery library. Within the various models offered
by DataSnap, our specific focus will be the development of Delphi REST servers, coupled
with browser-based applications written in JavaScript and based on jQuery. Keep in mind,
however, that the same REST servers could also be used by a variety of clients, including
mobile device-based applications.

INTRODUCTION: THE CONCEPTS BEHIND

REPRESENTATIONAL STATE TRANSFER
Over the last ten years we have witnessed the explosion of the Web, and now of so-called
Web 2.0. What we are only starting to see is the automatic interaction between different
web sites, between web sites and client applications, and between web sites and business
databases – a global interconnection that is often hard to fully understand.

On the Web, data is moving faster than we can browse it, so there is a strong demand for
programs that can find, track and monitor information coming from diverse sources such
as sales data, financial information, online communities, marketing campaigns, and many
others. At the same time, this server-side processing can be leveraged by custom client
applications and also by applications running natively in Web browsers.

The idea of a web service is rather abstract. When it comes to technologies, there are
currently two main solutions that are attracting developers. One is the use of the Simple
Object Access Protocol (SOAP) referenced at the site at http://www.w3.org/TR/soap/.
Incidentally, Delphi has had support for SOAP for several years now, with recent

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 2 -

extensions in Delphi XE. Another web service solution is the use of a REST
(Representational State Transfer) approach.

In this paper, we’ll focus exclusively on REST, because it is more flexible and best suited as
a back-end for client browser applications (but also in many other scenarios). The
introduction of this formal name and the theory behind it are fairly recent. What is relevant
to mention up front is that there isn't a formal REST standard.

The term REST, an acronym for Representational State Transfer, was originally coined by
Roy Fielding in his Ph.D. dissertation in year 2000, and spread very rapidly as synonymous
with accessing data over the web using HTTP and URLs, rather than relying on the SOAP
standard.

The idea is that when you access a web resource (either using a browser or a specific client
application) the server will send you a representation of the resource (an HTML page, an
image, some raw data…). The client receiving the representation is set in a given state. As
the client accesses further information or pages (maybe using a link) its state will change,
transferring from the previous one. In Roy Fielding's words:

"Representational State Transfer is intended to evoke an image of how a well-
designed Web application behaves: a network of web pages (a virtual state-
machine), where the user progresses through an application by selecting links (state
transitions), resulting in the next page (representing the next state of the
application) being transferred to the user and rendered for their use."

REST ARCHITECTURE’S KEY POINTS
So, if REST is an architecture (or even better, an architectural style) it is clearly not a
standard, although it uses several existing standards like HTTP, URL, plus many format
types for the actual data.

In contrast to SOAP, REST architectures use HTTP and its data format (generally XML or
JSON) exactly as they are:

 REST uses URLs to identify a resource on a server (while SOAP uses a single URL for
many requests, detailed in the SOAP envelope). Notice the idea is to use the URL to
identify a resource not an operation on the resource.

 REST uses HTTP methods to indicate which operation to perform (retrieve or HTTP
GET, create or HTTP PUT, update or HTTP POST, and delete or HTTP DELETE)

 REST uses HTTP parameters (both as query parameters and POST parameters) to
provide further information to the server

 REST relies on HTTP for authentication, encryption, security (using HTTPS)

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 3 -

 REST returns data as plain documents, using multiple mime formats (XML, JSON,
images, and many others)

There are quite a few architectural elements that are worth considering in this kind of
scenario. REST demands for system to be:

 Client/server in nature (nothing directly to do with database RDBMS here)

 Inherently stateless

 Cache-friendly (the same URL should return the same data if called twice in
sequence, unless the server side data changed), permitting proxy and cache servers
to be inserted between the client and the server. A corollary is that all GET
operations should have no side effect

There is certainly much more to the theory of REST than this short section covered, but I
hope this got you started with the theory. The practical examples coming next along with
Delphi code should clarify the main concepts.

REST TECHNOLOGIES AND DELPHI
Having said that there is not a REST standard and that you need no specific tools for REST
development, there are existing standards that REST replies upon and those are worth
introducing shortly (an in-depth description of each could take an entire book). The
specific focus here is Delphi support for these technologies.

The HyperText Transfer Protocol is the standard at the heart of the World Wide Web, and
needs no introduction. Granted, HTTP can be used not only by Web Browsers, but also by
any other application.

In Delphi applications the simplest way to write a client application that uses HTTP is to
rely on the Indy HTTP client component, or IdHttp. If you call the Get method of this
component, providing a URL as parameter, you can retrieve the content of any Web page
and many REST servers. At times, you might need to set other properties, providing
authentication information or attach a second component for SSL support (as we’ll see in
some examples). The component supports the various HTTP methods, beside Get.

Notice that to be on the safe side, you should generally make IdHttp requests inside a
thread. Because the Indy suite uses blocking threads, the user interface of your program
will be stuck until the requests are returned (which may take a long time in the case of a
slow web server or a large data transfer). I won’t generally use threads in the demos in this
paper only for the sake of simplicity, but that is the recommended approach.

On the server side, you can use multiple architectures for creating a web server or web
server extension in Delphi. You can create a standalone web server using the IdHttpServer

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 4 -

component or you can create web server extensions (CGI applications, ISAPI, or Apache
modules). Starting with Delphi XE, the WebBroker architecture supports both models
(while in the past it was limited to web server extensions). In fact, as you create a DataSnap
REST Server with the new Delphi XE Wizard, you will obtain a standalone web server,
indirectly based on the IdHttpServer component.

JSON IN DELPHI
While web services use either XML or JSON, Delphi REST servers default to the latter.
That’s why I want to end this introduction to Delphi and REST by providing a minimal
introduction to the JavaScript Object Notation, or JSON.

THE JSON NOTATION
JSON is a text-based notation used to represent JavaScript objects, so that they can be
made persistent or transferred from one application to another (or from one computer to
another). While a few years ago the consensus was to use XML as a notation to represent
complex data structures, in the last few years JSON has gained popularity because it is
more compact, more tied to programming language concepts, and very easy to parse in
JavaScript browser based applications... and by most other programming languages due
to a growing set of libraries and tools.

You can learn more about JSON by reading the RFC 4627 specification of the IEFT
(Internet Engineering Task Force) or looking to the official JSON home page:

http://www.ietf.org/rfc/rfc4627.txt
http://json.org

You can also keep reading for a short introduction, as JSON is relatively simple to
understand, with four primitive types and two structures. The primitive types are numbers,
strings, Booleans2 (true or false) and the null value.

The two JSON data structures are:

 JSON Objects - Collections of name and value pairs, enclosed in curly braces and
separated by commas (while the two elements of each pair are divided by a colon).
The collections represent records or objects.

 JSON Arrays - Lists of values within square brackets and separated by commas. The
lists represent arrays or collections.

Here are simple examples of the two notations, an object with two pairs (all strings
including pair names are indicated by double quotes) and a list of two values, a number
and a string:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 5 -

{ "Name":"Marco",
 "Value":100
}

[22, "foo"]

Of course, you can combine these constructs at will, so you can use objects and arrays as
values of a pair and as elements of an array:

{ "Me": {
 "FirstName":"Marco",
 "LastName":"Cantù",
 "Wife": "Lella",
 "Kids": [
 { "Name":"Benedetta",
 "Age":11
 },
 { "Name":"Jacopo",
 "Age":7
 }
]
}}

JSON IN DELPHI 2010
While there have been a few JSON libraries for Delphi in the past, the first version with
native support is Delphi 2010. The native JSON support has been made available through
a series of classes defined in the DBXJSON unit, which (despite the name) can be used
even in applications that don’t relate at all with the dbExpress framework.

The DBXJSON unit defines classes that you can use to work with the various JSON data
types (individual values of different types, arrays, pairs, and objects) all inheriting from
TJSONValue:

 Primitive values include TJSONNull, TJSONFalse, TJSONTrue, TJSONString and
TJSONNumber.

 Data structures include TJSONObject (and the internal TJSONPair) and
TJSONArray.

Here is a simple code fragment, extracted from the JsonTests project, used to
demonstrate the output of the different primitive types. Notice that each temporary object
you create must be manually freed, hence the idea of adding the LogAndFree private
support method:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 6 -

procedure TFormJson.LogAndFree (jValue: TJSONValue);
begin
 try
 Log (jValue.ClassName + ' > ' + jValue.ToString);
 finally
 jvalue.Free;
 end;
end;

procedure TFormJson.btnValuesClick(Sender: TObject);
begin
 LogAndFree (TJSONNumber.Create(22));
 LogAndFree (TJSONString.Create('sample text'));
 LogAndFree (TJSONTrue.Create);
 LogAndFree (TJSONFalse.Create);
 LogAndFree (TJSONNull.Create);
end;

This is the corresponding output:

TJSONNumber > 22
TJSONString > "sample text"
TJSONTrue > true
TJSONFalse > false
TJSONNull > null

It is equally simple to use the other classes of the DBXJSON unit for creating arrays and
objects. An array is a structure to which you can add any value (including arrays and
objects):

procedure TFormJson.btnSimpleArrayClick(Sender: TObject);
var
 jList: TJSONArray;
begin
 jList := TJSONArray.Create;
 jList.Add(22);
 jList.Add('foo');
 jList.Add(TJSonArray.Create (TJSONTrue.Create));
 (jList.Get (2) as TJSonArray).Add (100);
 Log (jList.ToString);
 jList.Free;
end;

The JSON output shows the two nested arrays as follows:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 7 -

[22,"foo",[true,100]]

Note that the JSON containers (arrays and objects) own their internal elements, so you can
free the container to clean up the memory for the entire group of JSON values.

When you have an object, the only element you can add to it is a pair, but the value of the
pair can be any JSON value, including a nested object:

procedure TFormJson.btnSimpleObjectClick(Sender: TObject);
var
 jsonObj, subObject: TJSONObject;
begin
 jsonObj := TJSONObject.Create;
 jsonObj.AddPair(TJSONPair.Create ('Name', 'Marco'));
 jsonObj.AddPair(TJSONPair.Create ('Value',
 TJSONNumber.Create(100)));

 subObject := TJSONObject.Create(
 TJSONPair.Create ('Subvalue', 'one'));
 jsonObj.AddPair(
 TJSONPair.Create ('Object', subObject));

 Log (jsonObj.ToString);
 jsonObj.Free;
end;

The JSON representation of this object (with a little manual formatting to improve
readability) is the following:

{ "Name":"Marco",
 "Value":100,
 "Object": {
 "Subvalue":"one"
 }
}

PARSING JSON IN DELPHI
Creating JSON data structures using the DBXJSON classes and generating the
corresponding JSON representation is interesting, but it is even more interesting to know
you can do the reverse, that is parse a string with a JSON representation to create the
corresponding Delphi objects.

Once you have a JSON string, you can pass it to the ParseJSONValue class method of the
TJSONObject class, which returns a TJSONValue object. In cases where we know the

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 8 -

evaluation returns a JSON object we have to cast it back to the proper type. The
ParseJSONValue class method doesn't accept a string as parameter, but requires an array
of bytes with an ASCII or UTF8 encoding (this last feature was not included in Delphi 2010
and is new in version XE). In both cases, we need to take the string and turn it into an array
of bytes using the proper Encoding class:

TEncoding.ASCII.GetBytes(strParam) // a string converted to ASCII
TEncoding.UTF8.GetBytes(sUtf8) // any UTF8 (or Unicode) string

In case of a UTF8 string, you have to pass an additional parameter to the ParseJSONValue
method or call the sibling ParseJSONValueUTF8 method. Overall, the initial portion of the
btnParseObjClick (still part of the main form of the JsonTests example) is the following:

var
 strParam: string;
 jsonObj: TJSONObject;
begin
 strParam := '{"value":3}';
 jsonObj := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes(strParam), 0) as TJSONObject;

The remaining code outputs the entire object (getting back the original JSON
representation, if nothing went wrong), the last (and only) name/value pair and frees the
TJSONObject object (again, it is easy to cause memory leaks with this type of code):

Log (jsonObj.ToString);
Log (jsonObj.Get (jsonObj.Size - 1).ToString);
jsonObj.Free;

THE DATASNAP REST WIZARD IN DELPHI XE
Now that I have introduced some of the key concepts related with REST and JSON in
Delphi, it is time to start looking in practice into the REST support offered by DataSnap in
Delphi XE. (Notice that DataSnap support is available only in the Enterprise and Architect
editions of the product.)

Our starting point in writing a REST server will be the new DataSnap REST Wizard. As an
alternative, we could have created a more general DataSnap server application with HTTP
support, which is another option to obtain a REST server. However, only by using the first
approach, do we obtain an application with JavaScript support and ready-to-use HTML
templates. As we’ll see, this extended support provides a very good starting point for
turning our DataSnap REST server into a full-blown web application. Below you can see
the various DataSnap Wizards of Delphi XE:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 9 -

You can see there are three different types of servers, a plain DataSnap Server, a DataSnap
WebBroker Application, and a DataSnap REST Application. I’m going to demonstrate this
last option.

RUNNING THE WIZARD
To build our first simple REST server in Delphi XE, we can use the DataSnap REST
Application. As the first page of the wizard states (see image below), you can pick multiple
alternatives all based on the WebBroker architecture, more or less like in the DataSnap
WebBroker Application.

The two “stand-alone” options use the new WebBroker integration with the IdHTTPServer
component, so that the application will effectively be a custom Web server. The third
option is ISAPI. Potentially, though, you could also use other WebBroker options like the
(now deprecated) Web App Debugger and the Apache Module support.

For this first project I’ve selected the “Stand-alone VCL application” option, which is best
suited for testing and debugging. Since you are building a stand-alone web server, next
you should select a port, and test its availability. The default suggested by the wizard is
8080, but any available port on your machine will do. This is just a property of a server and
it is trivial to change it later on.

The third step is to select some of the features of the server, including authentication and
authorization support:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 10 -

Don’t worry if you don’t enable authentication now, as you can easily add it to the project
later on. On the other hand, it is generally a good idea to add a server class with some
sample methods the first time you use this wizard. The server class is the class exposing its
methods as REST service requests, and you can add one (or more than one) later in the
project.

Next, if you select a sample server class, the Wizard will ask you which base class to use.
The available options are a plain TComponent, a TDataModule container (in which you can
easily add non-visual components such as data access components), and a DataSnap
server module. This last option makes little sense for a DataSnap REST application, but it is
an interesting option for other types of DataSnap servers:

For this first project, I’ve chosen TComponent as the base class. In the last page of the
wizard, you can select the base folder for the project. While you are prompted to enter the
path of a folder, the folder name (the last element of the path you provide) will also double
as project name. Since a project name must also be a valid identifier, the folder name
cannot contain spaces and cannot start with a number.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 11 -

We need to specify a folder because the wizard generates a lot of support files in addition
to the Delphi project source files. These support files include JavaScript files, Cascading
Style Sheets, HTML templates, and even a few images.

THE CODE GENERATED BY THE WIZARD
With the settings above, Delphi will generate a project with three units. If you want to see
their source code, either follow the same steps in the wizard or look at the source code of
the RestXeOne included in the source code bundled to this white paper.

 A main form with limited management options. This form will be removed as you
change the project structure to an ISAPI DLL.

 A web data module (inheriting from TWebModule) hosting the DataSnap server
components, several other support components, and the core of the WebBroker
application.

 A unit with the server class, in which you add the methods of your REST server.

The main form has an edit box to easily change the server port at runtime, the start and
stop buttons, and a button for starting the server and opening its default page in the your
browser. This is the form at design time, before I made any change:

The Application Events component is used to update the user interface depending on the
status of the server, by handling the OnIdle event. There is another very important
element to this form, which is a TIdHTTPWebBrokerBridge object saved in a private field
(FServer). This is a class that inherits from TIdCustomHTTPServer and supports the
integration of this internal web server with the WebBroker architecture. The other two
units of the application, in fact, are totally neutral to the architecture and will be identical
for an ISAPI module or any other WebBroker application.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 12 -

THE WEB DATA MODULE GENERATED BY THE WIZARD
Let’s now look at these web data module generated by the DataSnap REST Wizard in
detail, before we add some code to the program and test it. A web module is the core
element of the WebBroker architecture. It can define multiple actions tied to pathnames,
can intercept other pathnames with dispatcher components, and might also do pre-
processing and post-processing operations on any HTTP request.

Here is a table with a summary of the pathnames and extensions the server will handle, the
component or action managing them, and the source of the information:

Path or Extension Component or Action Target

/ DefaultAction WebModuleDefaultAction method

/ServerFunctionInvoker ServerFunctionInvokerAction ServerFunctionInvoker page producer

/ReverseString ReverseStringAction ReverseString page producer

/datasnap* DSHTTPWebDispatcher1 DataSnap processing

/datasnap/rest DSHTTPWebDispatcher1 DataSnap REST processing

*.css, *.js, *.png WebFileDispatcher1 Folders of the file system

The default action has a very limited role (it will redirect the request or return the output of
the ReverseString page producer). This producer, also tied to its own pathname and
action, returns a sample HTML page will look into later on.

In this web module, the core role is played by the DSHTTPWebDispatcher component,
which is the entry point of the DataSnap and REST requests. This component intercepts
any request with a URL starting with ‘datasnap’ (by default), which are passed to the
DataSnap server component (DSServer) also included in the web module. For requests
starting with ‘datasnap’ and indicating a ‘rest’ path (again a default), the processing will be
diverted to the built-in REST engine. In other words, the requests starting with a
‘datasnap/rest’ path are considered as REST requests.

The complete set of component that the Wizard adds to this web module is visible in the
image below, depicting this module at design time:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 13 -

Here is a summary of the role of the various components:

 DSServer1 is the core DataSnap server component, gluing together all the various
components of this architecture. Despite the fact it has only a couple of properties,
its role is central.

 DSServerClass1 is the component that refers to the class exposing its methods as
REST services, creates and manages the lifetime of objects of this class. Its role
parallels that of a class factory in COM. The actual class this Server Class refers to is
returned in the OnGetClass event handler of the component, in a reference
parameter.

 DSHTTPWebDispatcher1 is the bridge between the WebBroker architecture and
the DataSnap server, as already described.

 WebFileDispather1 is a WebBroker component (new in Delphi XE) used to return
some of the support files (JavaScript files, images, Cascading Style Sheets)
generated by the Wizards, and others you can add. A pre-processing event handler
of this component will update the serverfunctions.js file every time you recompile
and re-execute the application. This JavaScript file contains the “proxy” interface to
the methods exposed by the REST server. The file is updated using the support
provided by the next two components.

 DSProxiGenerator1 is a new Delphi XE component that you can use to generate the
proxy interfaces for various programming languages (Delphi, C++, JavaScript).
These are helper classes you can use in those languages to invoke the methods of
the REST server easily, without having to manually create the calling URL. In this
case the Writer property of the component is set to ‘Java Script REST’. This
component works in conjunction with the next one.

 DSServermetaDataProvider1 offers to the DSProxiGenerator1 component the core
metadata of the server. This is a support component with basically no specific
settings.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 14 -

 ReverseString is a page producer referring to the ReverseString.html file in the
templates. This file provides a sample implementation of the user interface and
application you can write in HTML and JavaScript to have a complete web user
interface for one of your server methods. This will be the starting point for most of
our examination. More details of this file are in a following section.

 ServerFunctionInvoker is a second page producer this time hosting a generic user
interface generated from the metadata. The page produced will list all of the
methods of the server and let you enter parameters and see the result in JSON
format. This page is meant as a development and debugging tool, not for the end
user (in fact it will be displayed only if invoked locally).

There are many other technical details and configuration option for these components,
but given the scope of this paper, this description should be enough. Before we get to
examine the actual effect of running this server, there are two more elements we have to
consider: the code of the server class whose methods we are exposing and the role of the
HTML and JavaScript user interface (which we’ll investigate later).

THE SAMPLE SERVER CLASS GENERATED BY THE WIZARD
The third unit that is generated by the DataSnap REST Application Wizard is the sample
server class, the class surfacing methods to be called remotely via REST. This is the Delphi
class that is connected to the DSServerClass component through the OnGetClass event
handler mentioned earlier, and is where most of the actual code will end up.

The skeleton class that gets generated is very simple, and reflects the fact I asked for
sample methods in the wizard. Here is the code:

type
{$METHODINFO ON}
 TServerMethods1 = class(TComponent)
 private
 { Private declarations }
 public
 { Public declarations }
 function EchoString(Value: string): string;
 function ReverseString(Value: string): string;
 end;
{$METHODINFO OFF}

Notice that this class inherits from a plain TComponent base class and enables a special
compiler option which produces extra RTTI information for public methods (predating
Delphi 2010 extended RTTI): {$MethodInfo ON}.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 15 -

The EchoString and ReverseString method will simply return the parameter you are
passing or its reverse. We’ll see which data types you can pass and return in a later section.

COMPILING AND TESTING THE REST SERVER
We can now compile the server and see if it works. After compiling and running the
program, you can use its simple user interface to turn on the server, using the Start button.
Later on, we’ll open the default web user interface (with the Open Browser button), but
before we look at this, I want to explain the basics of how REST invocation works.

We can perform a test by opening a Web browser and manually enter the URL of one of
the server methods, which is made of the application location address and port
(localhost:8080), the REST path (/datasnap/rest) the name of the class (TServerMethods1),
the name of the method you want to execute (for example, EchoString), and the (optional)
parameters of the method:

localhost:8080/datasnap/rest/TServerMethods1/EchoString/hello%20world

In the URL the %20 is just a replacement for a space, but you can actually type a space in
your browser. Now you’ll see the JSON response of our REST server:

The JSON data returned by the server is an object with a “result” field containing an array
of values, including the function result and any parameter passed by reference (it is an
array because you can return multiple values).

THE HTML AND JAVASCRIPT SAMPLE CLIENT
Of course, typing such a URL in the browser would be a total nonsense, but this is the
starting point for building a browser based application. In fact, a sample of such an
application is generated by the DataSnap REST Application Wizard in terms of HTML and
JavaScript code. If we execute, in a browser, the default action of the custom web server,
we’ll see something like the following:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 16 -

This is the HTML page with the skeleton stored in the ReverseString.html file and returned
by the ReverseString page of the application’s web module. Press the button and you’ll
actually see the string reversed. The HTML of the page (if we ignore the extra code used
to manage login and described later) is quite simple:

<#serverfunctioninvoker>
<h1>DataSnap REST Project</h1>

<div>Page loaded at </div>
<div id="contentdiv" class="contentdiv">
 <table>
 <tr>
 <td>
 <input id="valueField" type="text" value="A B C" />
 </td>
 <td>
 <button onclick='javascript:onReverseStringClick();'>
 ReverseString</button>
 </td>
 </tr>
 </table>
</div>

The special tags with the # prefix are processed by the PageProducer’s OnTag event
handler, and are dynamically replaced by the Delphi application every time you ask for the
page. These tags include element like the class to invoke, the availability of the “server
function invoker” test page, and a few others:

procedure TWebModule2.ServerFunctionInvokerHTMLTag(
 Sender: TObject; Tag: TTag; const TagString: string;
 TagParams: TStrings; var ReplaceText: string);

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 17 -

begin
 if SameText(TagString, 'urlpath') then
 ReplaceText := string(Request.InternalScriptName)
 else if SameText(TagString, 'port') then
 ReplaceText := IntToStr(Request.ServerPort)
 else if SameText(TagString, 'host') then
 ReplaceText := string(Request.Host)
 // and so on...

As you can imagine by reading the HTML code above, a key role is played by the call to
the onReverseStringClick JavaScript function, which has the following code (part of the
same HTML file):

function onReverseStringClick()
{
 var valueField = document.getElementById('valueField');
 var s = serverMethods().ReverseString(valueField.value);
 valueField.value = s.result;
}

This function stores a reference to the input field, passes the value of this input field to the
ReverseString method call, and updates the field value with the result. The serverMehods
function returns an instance of the JavaScript proxy object defined in the ServerFunctin.js
source code file (the file that gets updated by the DSProxiGenerator component every
time you recompile and re-execute the server).

The proxy object makes the Delphi server methods easily available to the JavaScript
browser-based application, by encapsulating the HTTP request in an asynchronous call
(using the AJAX technique):

function TServerMethods1(connectionInfo)
 ...
 this.ReverseString = function(Value) {
 var returnObject = this.executor.executeMethod(
 'ReverseString', "GET", [Value], arguments[1],
 true, arguments[2], arguments[3]);
 if (arguments[1] == null) {
 if (returnObject != null && returnObject.result != null
 && isArray(returnObject.result)) {
 var resultArray = returnObject.result;
 var resultObject = new Object();
 resultObject.Value = Value;
 resultObject.result = resultArray[0];
 return resultObject;
 }

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 18 -

 return returnObject;
 }
 };

This is JavaScript code generated by Delphi from the RTTI of the classes exposed by the
REST server. The JavaScript method manages the parameter and the return value, passing
the first in the URL and extracting the second from the JSON object the REST function
returns. This makes it relatively simple to call the REST server functions from the JavaScript
browser application.

There are many other JavaScript support files that are used for the call, providing AJAX
support, JSON encoding and much more, but it will be very complex to delve into them
and that is beyond the scope of this paper.

CALLING THE REST SERVER FROM A DELPHI CLIENT
Now that we have built the server and we have seen how the server application can also
expose a web application to a browser client, we can also write a Delphi client application
for the same server. We can use two different approaches.

The first approach is to write a Delphi DataSnap client, using the specific REST client
support introduced in Delphi XE. The second approach is to create a custom REST client
and use the IdHTTP component to call the server and the DBXJSON support unit to parse
the result. In the RestXeOneClient demo, I’ll use both, starting with the “manual” one and
later getting to the automatic support, which should be generally preferred.

First, I’ve created a standard client VCL application and added to its main form a button,
an edit box, and an IdHTTP client component. In the button’s OnClick event handler I’ve
written the following code:

const
 strServerUrl = 'http://localhost:8080';
 strMethodUrl = '/datasnap/rest/TServerMethods1/ReverseString/';

procedure TRestClientForm.btnManualClick(Sender: TObject);
var
 strParam: string;
begin
 strParam := edInput.Text;
 ShowMessage (IdHTTP1.Get(strServerUrl + strMethodUrl + strParam));
end;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 19 -

This call builds a proper URL by concatenating the server address, the relative path to
reach the given method within the REST server, and the only parameter. If you enter the
text “Hello World” in the edit box, the call results in the following output:

Now what is more interesting is to extract the actual information from the JSON data
structure returned by the server, taking advantage of the JSON support available in Delphi
and specifically discussed in section “Parsing JSON in Delphi”.

As we have seen, the JSON data that our server returns is a string, but the REST server
support creates an object with a named value (or “pair”), and places the actual value in an
array. That’s why after parsing the result of the HTTP into a JSON data structure we need
to navigate from the object to the pair it contains and from pair to the single element array
it holds, as in the final version of the method:

procedure TRestClientForm.btnManualClick(Sender: TObject);
var
 strParam, strHttpResult, strResult: string;
 jValue: TJSONValue;
 jObj: TJSONObject;
 jPair: TJSONPair;
 jArray: TJSOnArray;
begin
 strParam := edInput.Text;
 strHttpResult := IdHTTP1.Get(strServerUrl +
 strMethodUrl + strParam);
 jValue := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes(strHttpResult), 0);
 try
 jObj := jValue as TJSONObject;
 jPair := jObj.Get(0); // get the first and only JSON pair
 jArray := jPair.JsonValue as TJsonArray; // pair value is an array
 strResult := jArray.Get(0).Value; // first-only element of array
 edInput.Text := strResult;
 finally
 jValue.Free;
 end;
end;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 20 -

Again, the complexity is due to the data structure returned by the server, as in other
circumstances it would be much easier to parse the resulting JSON and access to it.

USING THE REST CLIENT SUPPORT
To make it much easier to write the client code, and still rely on the plain REST interface
(and not the DataSnap HTTP support), we can use the new DataSnap REST Client Module
Wizard, introduced in Delphi XE. Before you run this Wizard, make sure the server
application is running and it not being executed in the Delphi debugger. You can obtain
this using the Run without Debugging command of the Delphi IDE.

As you run the wizard, in the first page it will ask you if the server is local or remote (and
you’d probably choose local) and in the second page which kind of architecture DataSnap
the server is based on:

For this example, you should choose “WebBroker stand alone server” as I’ve done above.
In the third page the wizard will ask you the server port, the DataSnap context (by default
“/datasnap”), and optional account information. As you press Finish, the wizard will add
two different units to your project:

 A client module unit with a data module hosting the DSRestConnection
component, with the REST connection configuration.

 A unit with the proxy classes for calling the server, different from the client classes
generated for a traditional DataSnap connection in that they use the
DSRestConnection rather than the DBXConnection for invoking the server.

Notice that you don’t need to manually create the proxy object, because this is done
automatically by the client module as you access a specific property added by the wizard
to refer to the proxy itself:

// property ServerMethods1Client: TServerMethods1Client
function TClientModule1.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 21 -

 GetServerMethods1Client: TServerMethods1Client;
begin
 if FServerMethods1Client = nil then
 FServerMethods1Client:= TServerMethods1Client.Create(
 DSRestConnection1, FInstanceOwner);
 Result := FServerMethods1Client;
end;

This means we can invoke the server simply by referring to the client module’s property
and invoking the method itself. Needless to say this version of the code is much simpler
than the direct call with manual JSON parsing that I wrote earlier:

procedure TRestClientForm.btnProxyClick(Sender: TObject);
begin
 edInput.Text := ClientModule1.ServerMethods1Client.
 ReverseString(edInput.Text);
end;

The two techniques produce the same exact result. The key concept to keep in mind here
is that as you develop a Delphi DataSnap REST Server, you are building a web application,
enabling Delphi client to call it, and also making it possible to call the server with any other
client, written in any language, as long as it can make an HTTP call and parse the JSON
result.

THE SERVER FUNCTION INVOKER
There is one last feature of the server generated by the DataSnap REST Application
Wizard that I haven’t discusses so far. This is the server function invoker, a generic
mechanism to test the various functions that the server makes available. This feature is
supported through the second page producer of the web module, a corresponding HTML
template, and a few JavaScript files.

Simply enter the path “/ServerFunctionInvoker”, or follow the link from the ReverseString
page, and you’ll get a HTML page with two areas, corresponding to the classes exposed
by the server: the administrative class DSAdmin plus the specific classes of the application,
in this case only TServerMethods1. Click on the plus sign on the side of the class and the
page will expand the list of the methods:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 22 -

If you now select a method, the JavaScript code behind the page will generate as many
input fields are there are parameters in the method. You can type a value, press a button
on the side, and see the pain JSON response:

This page gets automatically updated as you modify or extend the target server class, or
add further classes to the server, and can be very handy for debugging and testing.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 23 -

AUTHENTICATION AND AUTHORIZATION
Now that we have seen the basic features of DataSnap REST application, we can look into
a specific feature that is part of the wizard’s generated code (even in case you omit the
option): Authentication support.

Authentication management is tied to two other related topics. The first is session
management, that is figuring out how to determine if different (stateless) HTTP requests
come from the same client application. The second is authorization support, that is
determining which user is allowed to call which server side method. All three topics are the
subject of this section.

I’ll start by creating another DataSnap REST Application, this time enabling the
authentication and authorization options. In the resulting application, the web module will
have one extra component, DSAuthenticationManager. This is referenced by the
AuthenticationManager property of the DSHTTPWebDispatcher component.

SESSIONS
Before we look into the authorization support though, I have to introduce session
management in DataSnap. The first time a client calls the server, it creates a new session
ID and returns it in a custom header (‘dssession’). Subsequent requests from the client
should include a ‘Pragma’ header with the session ID, so that the server recognizes the
request comes from the same client.

A session lasts until it expires (by default 1200 seconds, that is, 20 minutes) or it is forced to
close using the special CloseSession URL. If you pass a session that doesn’t exist (for
example, because in the meantime you closed and reopened the server) you’ll receive an
exception and the session ID is reset.

Within the server-side code, you can access the current session using the call:

var
 session: TDSSession;
begin
 session := TDSSessionManager.GetThreadSession;

You can also attach name-value pairs to the session data, using string values and the four
methods PutData, HasData, GetData, and RemoveData.

When using a JavaScript client, the support code generated by the wizard manages the
session ID with a global JavaScript variable ($$SessionID$$) and passes it to each following
AJAX call in the same page. If you change the page or refresh it the session ID gets lost.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 24 -

You can, however, force the JavaScript support code to add this session ID to a browser
cookie, so that it remains available across pages. To do this, you have to add the following
call in the onLoad() JavaScript function of the each HTML file:

 initSessionData(true);

A second change you might want to do is to change way the loginRequired variable is
managed, but we’ll get to this extra line of code as we look into authentication.

AUTHENTICATION
The DSAuthenticationManager component has two key events, OnUserAuthenticate and
OnUserAuthorize. The first is called every time the server receives a request from a non-
authenticated user. After the user and its session are authenticated, the method is not
called again. This is how you can implement the method, if you are not looking for real
security:

procedure TWebModule2.DSAuthenticationManager1UserAuthenticate(
 Sender: TObject; const Protocol, Context, User, Password: string;
 var valid: Boolean; UserRoles: TStrings);
var
 session: TDSSession;
begin
 valid := (user = password) and (user <> '');

 if valid then
 begin
 Session := TDSSessionManager.GetThreadSession;
 Session.PutData ('username', user);

In general, you’ll look-up in a database or configuration file or operating system
mechanism to validate the users and their passwords. In this case I’m accepting any non-
empty username matching the password. I’m also adding the user name as an extra
session parameter, something not terribly useful as this information is already available in
the username property of the session.

As an aside, I’ve added an extra sever function, GetUserName, which returns both the
session user name and the extra session parameter I created above:

function TServerMethods1.GetUserName: string;
var
 Session: TDSSession;
begin
 Session := TDSSessionManager.GetThreadSession;
 Result := Session.GetData ('username') + ':' + Session.Username;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 25 -

end;

Session information aside, if you now try to invoke a REST URL directly from the browser,
you’ll receive a standard HTTP login request. The JavaScript user interface, instead, will be
informed by the server that there is an attached DSAuthenticationManager component,
using the <#loginrequired> field that is references in the JavaScript startup code:

var loginRequired;
function onLoad()
{
 loginRequired = <#loginRequired>;
Now on the server this value is process by the following code:

 else if SameText(TagString, 'loginrequired') then
 if DSHTTPWebDispatcher1.AuthenticationManager <> nil then
 ReplaceText := 'true'
 else
 ReplaceText := 'false'

When the loginRequired variable is enabled, the browser-based application hides the
standard user interface and displays a login form included in the standard HTML template.
This takes place in the ShowLogin function by hiding and showing one of the two portions
of the HTML page, the logindiv and the contentdiv.

The first time you open the main page of the web server, you’ll get a login prompt rather
than the expected user interface (notice that from this example onwards I’ve applied a
simple Cascading Style Sheet to the demos, to make them look somewhat nicer):

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 26 -

Login with the user name and the password, and you’ll see the standard interface. Now if
you refresh the page, the session information is lost and you’ll need to login again. As I
mentioned earlier, there is a way to fix the session management using a cookie, but you’ll
still get a login prompt because the login request depends on the presence of the
Authentication Manager, rather than on the current status of the session. This can be fixed
by replacing the initial JavaScript code with a test on the local session value:

var loginRequired = false;

function onLoad()
{
 initSessionData(true);
 showTime();
 loginRequired = (getSessionID() == null);

In other words, the login is required only if the client application doesn’t have a valid
session ID (the getSessionID() function also checks if the session ID is expired).

ROLES AND AUTHORIZATION
Once the server has authenticated the client application, it can execute any of the
methods exposed by the server. You can filter the available methods depending on the
user by handing the OnUserAuthorize event of the AuthenticationManager component.
This is powerful but quite tedious. Notice that if you decide to avoid using the
OnUserAuthorize event you have to remove the line generated by the wizard that sets the
valid reference parameter to True.

As a simpler alternative, the DataSnap architecture has built-in support for user roles. As
you authenticate a user, you can assign one or more roles to him or her. For this purpose
the OnUserAuthenticate event handler of the example has this extra code:

 if valid then
 begin
 UserRoles.Add ('standard');
 if user = 'admin' then
 UserRoles.Add ('admin');

Each user is added to the standard role, but the administrator also has the admin role. As
this is a string list, each user can be assigned to multiple roles. But how do we determine
which method can be called depending on the user role? This is accomplished by
attaching the TRoleAuth custom attributes to the server class as a whole or some of its
methods (Custom attributes is a language feature first introduced in Delphi 2010, and
covered, among other sources, in the help file and in my Delphi 2010 Handbook):

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 27 -

uses
 DSAuth;

type
{$METHODINFO ON}
 TServerMethods1 = class(TComponent)
 public
 [TRoleAuth ('admin')]
 function EchoString(Value: string): string;
 [TRoleAuth ('standard')]
 function ReverseString(Value: string): string;
 [TRoleAuth ('standard')]
 function GetUserName: string;

It is very important to notice that if you fail to add the DSAuth unit before this class
declaration, the compiler will not understand the custom attribute, will produce a vague
warning (Unsupported language feature: 'custom attribute') and the roles won’t be
enabled in your application. Consider also that the TRoleAuth attribute parameter can be
a comma-separated list of roles, and that there is a second optional parameter with a list
of denied roles you can use as an alternative.

With the specified settings, all users can call the ReverseString and GetUserName
methods, while the EchoString method is reserved for administrators. If another user tries
to call the EchoString method, the server will raise an exception which will bereturned in
the JSON response. This is an example of the error in the Server Function Invoker page in
the browser:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 28 -

THE DATA TYPES OF A DATASNAP REST SERVER
Now that I’ve given you an overview of sessions, authentication, and authorization in
DataSnap, it is time to move to a new topic. In this initial demo, server methods always
returned strings. Obviously, you can use more native types like Integers, characters, and
Booleans.

But what about returning more complex data types? DataSnap has support for passing
objects, datasets, and streams, plus the ability to manage the JSON response directly.
Also, some of these native structures have automatic support for filtering and caching.
These are all topics I intend to cover in this section of the article. To demonstrate these
features I’ve created a single large application with a server class returning many different
data types.

Notice that in this section I’ll mostly focus on the server side code and the generated
JSON data structures, while in a later section “jQuery and the Data Types Demo” I’ll
create an HTML client application showing how to call most of the methods of this server.
The reason for this delay is I want to introduce the jQuery library first, and then use it for
building the client side application.

ORDINAL TYPES
A DataSnap REST server can directly return native types, which are mapped to the
corresponding JSON structures whenever possible. Here are a few functions returning
basic types:

 public
 function AddInt (a, b: Integer): Integer;
 function AddDouble (a, b: Double): Double;
 function IsOK: Boolean;
 function GetLargeString (nCount: Integer): string;

These are sample results for these four methods (the last one returns a string with the
number of characters passed as parameter, with an x every ten elements – will see later on
why):

Executed: TServerMethods1.AddInt
Result: {"a":"1","b":"2","result":3}

Executed: TServerMethods1.AddDouble
Result: {"a":"1.5","b":"4.4","result":5.9}

Executed: TServerMethods1.IsOK
Result: {"result":true}

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 29 -

Executed: TServerMethods1.GetLargeString
Result: {"nCount":"20","result":"oooooooooxooooooooox"}

In the first three cases, the server is returning the value in the native JSON format (Number
or Boolean) and not a (quoted) string value. Other basic data types, such as sets or
enumerated values, cannot be returned directly. The same is true for dates. Some user-
defined data structures such as records are also not managed.

OBJECTS AND MARSHALING
One very important feature is the ability to return an object from a DataSnap server,
including a REST server. In Delphi 2010, you could accomplish this by explicitly using the
TJSONMarshal (and TJSONUnmarshal) support classes, while in Delphi XE this operation
takes place automatically.

Marshaling support is based on the use of RTTI for private fields. While Delphi developers
generally think of the data of an object as the set of its published properties (as happens
with components streaming and the DFM format), in this case the actual internal data of
the objects is considered. Of course, not all of the data types of the fields are mentioned,
or mentioned properly. As the comments in the DBXJSONReflect unit states:

These are the fields for which there is already a built-in conversion/reversion:
integer, string, char, enumeration, float, object. For these types the field values are
ignored and user conversion is expected: set, method, variant, interface, pointer,
dynArray, classRef, array.

For other field types, you can enable a conversion (and reversion) either by enabling a
ready-to-use conversion supplied in that unit or writing your own. The way you enable
conversions is by using the JSONReflect attribute. Although I have no time to consider all
options (and I’ll later also explain why), here are a couple of examples.

First, consider a simple object structure, like the following:

type
 TPerson = class
 private
 FAge: Integer;
 FLastName: string;
 FFirstName: string;
 procedure SetAge(const Value: Integer);
 procedure SetFirstName(const Value: string);
 procedure SetLastName(const Value: string);
 public

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 30 -

 property LastName: string read FLastName write SetLastName;
 property FirstName: string read FFirstName write SetFirstName;
 property Age: Integer read FAge write SetAge;
 end;

This is a method returning such an object:

function TServerMethods1.GetPerson: TPerson;
begin
 Result := TPerson.Create;
 Result.LastName := 'Smith';
 Result.FirstName := 'Joe';
 Result.Age := 44;
end;

And this is the resulting JSON data structure:

Executed: TServerMethods1.GetPerson
Result: {
 "result": {
 "type":"ServerMethodsUnit1.TPerson",
 "id":1,
 "fields": {
 "FAge":44,
 "FLastName":"Smith",
 "FFirstName":"Joe"
}}}

Now suppose you return an object like a TStringList. Getting the internal set of fields is
worthless because they don’t include the actual data, which is referenced by a pointer:

function TServerMethods1.GetNames: TStringList;
begin
 Result := TStringList.Create;
 Result.Add('one');
 Result.Add('two');
 Result.Add('three');
end;

This is the useless JSON data you’ll receive (useless because the actual content, the strings
in the string list, isn’t there):

Executed: TServerMethods1.GetNames
Result: {
 "result":{

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 31 -

 "type":"Classes.TStringList",
 "id":1,
 "fields":{
 "FCount":3,
 "FCapacity":4,
 "FSorted":false,
 "FDuplicates":"dupIgnore",
 "FCaseSensitive":false,
 "FOwnsObject":false,
 "FEncoding":null,
 "FDefaultEncoding":{omitted},
 "FDelimiter":"",
 "FLineBreak":"",
 "FQuoteChar":"",
 "FNameValueSeparator":"",
 "FStrictDelimiter":false,
 "FUpdateCount":0,
 "FWriteBOM":true
}}}

Suppose we have a TStringList field in a class, like the following extension of the TPerson
class used earlier:

type
 TPersonData = class (TPerson)
 private
 FDateOfBirth: TDate;
 FMoreData: TStringList;
 procedure SetMoreData(const Value: TStringList);
 procedure SetDateofBirth(const Value: TDate);
 public
 constructor Create;
 destructor Destroy; override;
 property MoreData: TStringList read FMoreData write SetMoreData;
 property DateofBirth: TDate
 read FDateofBirth write SetDateofBirth;
 end;

Here we have two problems. The data will be returned in its numeric representation and
the string list without its actual values, but only as shown above. The solution in this case it
to either enable (in case of the TStringList field) or write (in case of the TDate field)
conversion methods. This is done in Delphi XE by using the JSONReflect attribute that I
mentioned earlier. This attribute has a number of field and somewhat limited
documentation, so it is not really easy to use, but again I don’t want to delve too much
into this topic.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 32 -

Here is the class declaration with the two attributes. The first JSONReflect maps the date
to a string, using a TISODateTimeInterceptor support class that I found in the (very
interesting) ServerProjectWithUserTypes demo, part of the official set of Delphi XE
DataSnap demos. The JSONReflect maps the string list to an object, with custom data:

type
 TPersonData = class (TPerson)
 private
 [JSONReflect(ctString, rtString,
 TISODateTimeInterceptor, nil,true)]
 FDateOfBirth: TDate;

 [JSONReflect(ctTypeObject, rtTypeObject,
 TStringListInterceptor,nil,true)]
 FMoreData: TStringList;

 procedure SetMoreData(const Value: TStringList);
 procedure SetDateofBirth(const Value: TDate);
 public
 ... as above

Now if you write a method that returns an object on this class, with proper data filled in,
you’ll get JSON with proper values for the data and the actual strings of the string list:

Executed: TServerMethods1.GetPersonWithData
Result: {
 "result":{
 "type":"ServerMethodsUnit1.TPersonData",
 "id":1,
 "fields":{
 "FDateOfBirth":"1899-12-30 00:00:00",
 "FMoreData":{
 "type":"DBXJSONReflect.TSerStringList",
 "id":2,
 "fields":{
 "FSerStringItemList":[
 {"type":"DBXJSONReflect.TSerStringItem",
 "id":3,
 "fields":{"FString":"Hello", "FObject":null}},
 {"type":"DBXJSONReflect.TSerStringItem",
 "id":4,
 "fields": {"FString":"Joe","FObject":null}}
],
 "FSorted":false,
 "FDuplicates":"dupIgnore",

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 33 -

 "FCaseSensitive":false
 }},
 "FAge":44,
 "FLastName":"Smith",
 "FFirstName":"Joe"
}}}
The internal data structure is not simple, but we expose a lot of internal information about
the string list (and potentially also the objects hooked to it). Now, given this is quite
powerful, you might be wondering why I’m sort of downplaying this approach. As much as
I find this interesting, you should consider that objects to JSON marshaling makes sense
mostly in a Delphi-to-Delphi communication layer. Since my focus here, instead, is to use
the browser as a client, an object representation based on internal Delphi class names and
data structures is of limited use. JavaScript certainly won’t need them.

The alternative, as we’ll see later, is to return a TJSONObject directly, with better and
direct management from the JavaScript side. This is the approach I prefer and will cover
after we finish examining data types for which Delphi has specific native support.

DATASETS AND STREAMS
The first relevant complex data type that a DataSnap REST server can handle automatically
is a dataset. You can return as object of any class that descends from TDataSet, and get it
properly converted to JSON.

As an example, consider the following server side method, which returns a complete
ClientDataSet:

function TServerMethods1.GetCustomers: TDataSet;
begin
 ClientDataSet1.Open;
 ClientDataSet1.MergeChangeLog; // clean up, just in case
 Result := ClientDataSet1;
end;

The component has a trivial configuration, loading the data from a file in the same folder
of the program:

object ClientDataSet1: TClientDataSet
 FileName = 'customer.cds'
End

As you can see in the following excerpt of the resulting JSON, Delphi will return separate
data and metadata, and will arrange the data by column (something I find quite unusual):

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 34 -

Executed: TServerMethods1.GetCustomers
Result: {"result":
 {"table":[
 ["CustNo",7,0,0,0,8,0,0,false,false,0,false,false],
 ["Company",1,1,0,30,31,0,0,false,false,0,false,false],
 ["Addr1",1,2,0,30,31,0,0,false,false,0,false,false]...],
 "CustNo":[1221,1231,1351,1354,...],
 "Company":["Kauai Dive Shoppe","Unisco",
 "Sight Diver Webinarist","Cayman Divers World Unlimited",...],
 "Addr1":["4-976 Sugarloaf Hwy","PO Box Z-547","1 Neptune Lane",
 "PO Box 541",...],
 ...}}

The table array has the field definitions, with types and other settings not terribly readable,
while the following fields represent the columns, each with the complete set of values. As
we’ll see later it is possible to return only a range of values in the columns, starting with a
given record number and returning a limited set. I’ll focus on this extension in the section
on filtering.

A second custom Delphi class that is managed natively by a DataSnap REST server is the
TStream class (and its descendant classes). Consider the following server method:

function TServerMethods1.GetImage: TStream;
var
 fStream: TFileStream;
begin
 fStream := TFileStream.Create('images\expand.png', fmOpenRead);
 Result := fStream;
end;

If you use the Server Function Invoker client, you’ll get a result like the following (this is
only the initial portion):

Executed: TServerMethods1.GetImage
Result: "‰PNG\r\n\u001a\n\u0000\u0000\u0000\...

As you can see, this isn’t JSON. When you return a binary stream, in fact, you’d actually
want to get the actual data, not a textual representation. If you open the corresponding
URL (http://localhost:8080/datasnap/rest/TServerMethods1/getimage) in Internet Explorer,
you’ll indeed get the image, as displayed below. However other browsers (such as
Chrome) won’t render it because of the lack of a proper Content-Type header in the HTTP
response.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 35 -

For streams, however, you can also ask for a conversion to JSON, adding to the URL a
special token json=true. If you use the following URL, you’ll get the response below:

http://localhost:8080/datasnap/rest/TServerMethods1/getimage?json=true

{"result":[[137,80,78,71,13,10,26,10,0,0,0,...]]}

Notice that returning the result in binary format is supported only if there are no other var
parameters in the function call.

RETURNING JSON DIRECTLY
A further data type that is directly supported by the DataSnap REST is the TJSONValue
type, and its subclasses including TJSONObject and TJSONArray. As I already mentioned,
this is a very interesting option if your goal is to use JavaScript for the development of the
client application. For example, we can return the data for an object by creating a
corresponding JSON object:

function TServerMethods1.GetPersonJson: TJSONObject;
begin
 Result := TJSONObject.Create;
 Result.AddPair ('LastName', 'Smith');
 Result.AddPair ('FirstName', 'Joe');
 Result.AddPair ('Age', TJsonNumber.Create (44));
end;

The response to this request is plain JSON data structure, much simpler to handle in a
JavaScript client:

Executed: TServerMethods1.GetPersonJson
Result: {"result": {
 "LastName":"Smith",
 "FirstName":"Joe",
 "Age":44}}

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 36 -

Similarly to return a list of names (our original string list) it will be much simpler to use a
JSON array directly, specifically for client-side processing, like I’m doing in this server
function:

function TServerMethods1.GetNamesJson: TJSONArray;
begin
 Result := TJSONArray.Create;
 Result.Add('one');
 Result.Add('two');
 Result.Add('three');
end;

Again, the resulting JSON will be quite simple: Compare it with the structure of the
TStringList property and you’ll clearly see the difference:

Executed: TServerMethods1.GetNamesJson
Result: {"result":["one","two","three"]}

In this example, I’ve focused on the data structures the server can return. In a later demo
I’ll build a complete client using the same JSON results, to clarify the entire picture.

FILTERING AND CACHING
Before I get to the examples focused on the JavaScript client, there are two more relevant
new features of the REST support in DataSnap introduced in Delphi XE that are worth
mentioning, although I won’t delve into them in too much detail.

The first is the ability to filter a result (namely a string or a dataset) using a specific filtering
syntax that is available in a manual call (using the URL) or providing values for the
arguments array used during the JavaScript proxy calls.

The two filters are substring (ss) and table (t), both with three available operations (count
(c), offset (o), and range(r)). All of these elements are added as URL parameters, after the
pathname of the server function and the function parameters (which are passed on the
path).

In this example, we will get the first 20 characters out of a 100-character string (the server is
the same as the previous example) or skip the first 85 characters passing an offset. Here
are the two URLs and the corresponding JSON results:

/datasnap/rest/TServerMethods1/getlargestring/100?ss.c=20
{"result":["oooooooooxooooooooox"]}

/datasnap/rest/TServerMethods1/getlargestring/100?ss.o=85

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 37 -

{"result":["ooooxooooooooox"]}

The range filter takes two parameters, the offset and the count. For example, you can
retrieve only the third record of a table using “t.r=2,1”, since the first value of the range is
zero-based:

/datasnap/rest/TServerMethods1/GetCustomers?t.r=2,1
{"result":[{"table":[..],"CustNo":[1351],"Company":["Sight Diver
Webinarist"],"Addr1":["1 Neptune Lane"],"Addr2":[null],"City":["Kato
Paphos"],"State":[null],"Zip":[null],"Country":["Cyprus"],"Phone":["357-
6-876708"],"FAX":["357-6-870943"],"TaxRate":[0],"Contact":["Phyllis
Spooner"],"LastInvoiceDate":["1994-10-18 19:20:30.0"]}]}

Having a partial amount of data for every request would make it quite easy to paginate a
large result set from the HTML client, returning, say, 20 records every time and creating
multiple pages of data.

CACHING DATA
When you are returning a stream or some other complex structures, it is nice to be able to
return the full binary data rather than a JSON representation. But what if you need to
return also some other data structures, or returns two different streams in a single call?

This is where DataSnap REST caching support might come handy. Every time you have a
method returning multiple data types (using var or out parameters), you can ask for the
data in a specific format rather than the JSON result.

Suppose you have this server-side method (part of the same RestXEDataTypes demo
covered earlier):

function TServerMethods1.ImageAvailable(const strImageName: string;
 out aStream: TStream): Boolean;
begin
 Result := False;
 if strImageName = 'expand.png' then
 begin
 aStream := TFileStream.Create('images\expand.png', fmOpenRead);
 Result := True;
 end;
end;

If you make a standard call, you’ll receive the JSON representation of the function result
plus the stream. (Remember, by default when you access to a stream you get the binary
data, and you can generally opt to ask for the JSON format). In this case you can also opt

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 38 -

to ask for the application/rest format in the Accept header of the HTTP request. If you are
using JavaScript for the call, rather than using the proxy you’ll have to use a direct call to
the core ServerFunctionExecutor object.

Here is a JavaScript code snippet with the call:

function onReverseStringClick()
{
 var valueField = document.getElementById('valueField');
 var methExec = new ServerFunctionExecutor("TServerMethods1");

 var resultObj = methExec.executeMethod("ImageAvailable", "GET",
 [valueField.value], null, true, null, "application/rest");
 document.getElementById('image1').src =
 methExec.getCacheURL(resultObj.result[0],true);
}

The parameters you pass to the generic executeMethod function of the
ServerFunctionExecutor object are the method name, the request type, the parameters,
the callback, if it has a result, the request filters, and the accept format. This call results in
the following JSON:

{"result":["0\/0\/0",true],"cacheId":0,"cmdIndex":0}

As you can see in the last JavaScript line above, you can ask for a GET request using the
URL build from the cache, which is something like:

http://localhost:8080/datasnap/cache/0/0/0?sid=<...>

This will return the binary data of the stream, without processing the server method again,
but returning the object that was created earlier, not returned, but kept in the cache. So
again, in last JavaScript line above we can assign this URL of the cached stream to an
image element of the page, and get to see the image:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 39 -

USING JQUERY
Delphi’s DataSnap REST servers include a set of JavaScript support files, mostly devoted
to simplify calling the servers themselves. In terms of DOM manipulation (the dynamic
changes you can do to HTML pages in the browser), you are down to using plain old
JavaScript. There are several JavaScript libraries you can use to simplify the development
of browser applications based on this language. One of the best known and most actively
used today (and backed by companies like Google and Microsoft) is jQuery. This is an
incredibly powerful and open source JavaScript library available at:

http://jquery.com

I don’t have time to delve into jQuery or to explain why I prefer this library over the many
alternatives, but I want to provide a very short intro to jQuery showing how you can
improve the standard HTML page generated by the Delphi DataSnap REST Wizard by
using it… combining jQuery with the code Delphi provides. (If you look at the examples of
the white paper I wrote last year, based on my Delphi 2010 Handbook, you’ll see that I
used jQuery exclusively, only because there was no JavaScript client support in Delphi
back then.)

There are a few key concepts to get an idea of how jQuery works. First, jQuery is an object
and you can wrap it (and its methods) around any existing JavaScript object or DOM
element. To do this, you use the jQuery function (also references by the $ shorthand)
passing to it an object directly or a selector, a rule for selecting one of more objects based
on its ID, class, or tag.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 40 -

For example, given a web page, you can respectively hide all hyperlinks of a page, show all
elements with a given class, and toggle the visibility of the element with the given ID by
writing these three lines:

$("a").hide()
$(".myclass").show()
$("#theid").toggle()

Another key concept in jQuery is that you don’t attach behavior to HTML elements by
tying the JavaScript to them (which makes the code harder to read and much more
difficult to change by a web designer).

ADDING JQUERY TO THE WIZARD’S HTML TEMPLATE
I know this is a very minimal description, but I cannot spend the couple dozen pages that a
good introduction would require. For now, let us focus instead on how we can take the
code generated by the wizard and improve it by embedding jQuery in the project. (This is
demonstrated in the RestXeOneJQuery demo project.)

All of our changes, in this first example, will be in the ReverseString.html template. First we
need to add a line of code to include jQuery (after adding the jQuery.js file to the js folder
of the project):

<script type="text/javascript" src="js/jquery.js"></script>

As an alternative, you can refer to one of the public locations for jQuery, but this is slightly
dangerous because something could change in the library and cause your code to stop
working. Next, we can focus on the code of the onReverseStringClick function. The
original text was:

function onReverseStringClick()
{
 var valueField = document.getElementById('valueField');
 var s = serverMethods().ReverseString(valueField.value);
 valueField.value = s.result;
}

We can use jQuery to replace the getElementById calls and use the val() function to access
the elements’ value:

function onReverseStringClick()
{
 var valueField = $('#valueField');
 var s = serverMethods().ReverseString(valueField.val());

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 41 -

 valueField.val (s.result);
}

A second change is that the method was hooked to the HTML directly:

<table>
 <tr>
 <td><input id="valueField" type="text" value="A B C" /></td>
 <td><button onclick='javascript:onReverseStringClick();'>
 ReverseString</button></td>
 </tr>
</table>

By using jQuery we can remove the onclick attribute above, and add an identifier to it:

 <td><button id="reverseButton">ReverseString</button></td>

Now the HTML has no reference to the code. This is very important because it makes this
HTML much better suited for customization by a web designer, with limited knowledge of
the application code and requirements.

The approach used by jQuery is to associate the two event handlers with the DOM
element in code (which can be in a separate file from the HTML page) using the following
initialization function:

$(document).ready(function() {
 $('#reverseButton').click (function (){
 onReverseStringClick();
 });
});

This code is executed as the document (the HTML page) becomes ready and installs a
handler function for the click event of the given element, using an anonymous method
(which in turns calls onReverseStringClick).

JQUERY AND THE DATA TYPES DEMO
Now that we have seen how you can embed jQuery in the sample HTML template
generated by the Delphi DataSnap REST Wizard, we can try to leverage this library in a
more real world situation. I’ll create a client (an HTML page with JavaScript code) for the
various methods made available by the ServerProjectWithUserTypes demo project I
covered in the section “The Data Types of a DataSnap REST Server”.

To support this new user interface, I’ve added to the web module of the project a new
action (/jclient) and a corresponding Page Producer component connected with a new

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 42 -

HTML template, JClient.html. The initial part of the page is visible below (with the result of
some of the requests):

Since this HTML page has quite a few forms for the various methods, I’ve adopted a
specific structure. I’ve enclosed each form in an external div named after the function and
referring to the forms elements with the combined ids. As an example, this is the form for
the AddInt operation:

<h3>function AddInt (a, b: Integer): Integer</h3>
<div id="AddInt">
 <table>
 <tr>
 <td><label>a:</label>
 <input id="a" type="text" value="10" /></td>
 <td><label>b:</label>
 <input id="b" type="text" value="32" /></td>
 <td><label>result: </label>
 <input id="result" type="text" value="" /></td>
 <td><button id="button">AddInt</button></td>
 </tr>
 </table>
</div>

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 43 -

The page initialization code ($(document).ready) installs a handler for the button, referring
to the various input controls:

$('#AddInt #button').click (function (){
 res = serverMethods().AddInt(
 $('#AddInt #a').val(),
 $('#AddInt #b').val());
 $('#AddInt #result').val (res.result);
});

All of the forms and methods follow the same approach, and you can look some of them
up in the companion code, like the AddDouble or GetLargeString forms. The form for the
IsOK function is slightly different in that it has no parameters and uses the returned value
to change the color of the text:

$('#IsOK #button').click (function (){
 res = serverMethods().IsOK ();
 if (res.result)
 {
 $('#IsOK #result').val ('ok');
 $('#IsOK #result').attr('style', 'color: green;');
 };
});

For testing the GetLargeString function, I added several buttons as we might want to ask
the server to filter the resulting JSON, for example, returning only the first 20 characters.
Since we need to pass an extra HTTP field, we need to make a low-level call using the
ServerFunctionExecutor object directly, and pass as second last parameter the HTTP fields
in a JSON object:

$('#GetLargeString #button2').click (function (){
 var methExec = serverMethods().executor;
 res = methExec.executeMethod("GetLargeString", "GET", [100],
 null, true, {"ss.c": "20"}, null);
 $('#GetLargeString #result').val (res.result);
});

Accessing an object marshaled by the server is quite simple, as the only extra element is to
refer to the fields field:

res = serverMethods().GetPerson();
var obj = res.result.fields;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 44 -

Things get a little out of control if we want to access the strings passed in the string lists
parameter:

var stringlist =
 res.result.fields.FMoreData.fields.FSerStringItemList;
$('#GetPersonWithData #list').val (
 stringlist[0].fields.FString + ' ' +
 stringlist[1].fields.FString);

This code is really ugly, and a good reason to avoid using Delphi automatic marshaling in
complex situations.

A data structure that is a little more complex, but can certainly be managed from a client,
is the JSON format returned by Delphi for a TDataSet. As we saw, there is a first field
called “table” and containing metadata (an array for fields and their settings), which we
can parse to create a table header dynamically:

res = serverMethods().GetCustomers().result;
var strHtml = '<tr>';
for (var n=0; n < res.table.length; n++) {
 strHtml = strHtml + '<th>' + res.table[n][0] + '</th> ';
}
strHtml = strHtml + '</tr>'
$('#GetCustomers #result').html(strHtml);

In the JSON result, there is also a field for each column with the list of values. Although
the fields are “by column”, we can parse this array structure and extra the fields “by
record”. A way to accomplish this is to compute the number of records for one of the
fields (res.CustNo.length), loop on the record numbers (with the m variable), loop again
into the metadata (with the n variable), and find a matching field at the main object level:

 fieldname = res.table[n][0];
 fieldvalue = res[fieldname][m];

I know this sounds confusing, but I’m not sure that looking to the complete code will
makes things easier to understand:

for (var m=0; m < res.CustNo.length; m++) {
 var strHtml = '<tr>';
 for (var n=0; n < res.table.length; n++) {
 fieldname = res.table[n][0];
 strHtml = strHtml + '<td>' + res[fieldname][m] + '</td> ';
 }
 strHtml = strHtml + '</tr>'
};

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 45 -

Although the processing is far from simple, given we have to transform the column-based
structure into a record-based one, the nice thing about this code is that we can adapt it
slightly to enable paging, thanks to the built-in filters of the REST server. All you have to
do it to pass the “t.r” HTTP parameter, and use the server method executor to increment
the page number every time. In this example, you can progress from one page to the next,
while in general, you’d want to enable full navigation. Here are the key changes to the
previous example, not the complete code:

var page = 0;

$('#GetCustomers_paging #button').click (function (){
 var methExec = serverMethods().executor;
 res = methExec.executeMethod("GetCustomers", "GET", [],
 null, true, {"t.r": (page*3+1 + ",3")}, null);

 res = res.result[0];
 // processing as above

 page++;
 $('#GetCustomers_paging #button').html("page"+(page+1));
});

A situation we can handle quite easily in jQuery is the return of a binary stream for images.
All we have to do in this case is to let the server return the binary representation (and not
the JSON one) and assign the proper URL to the src attribute of an image tag:

$('#GetImage #result').attr ('src',
 '/datasnap/rest/TServerMethods1/GetImage');

The final function I want to cover is GetNamesJson, which returns a JSON array of strings,
built manually on the server (using a TJSONArray structure):

 res = serverMethods().GetNamesJson();
 var array = res.result;
 var strarray = '';
 for (var n=0; n<array.length; n++) {
 strarray = strarray + array[n] + ' ';
 };
 $('#GetNamesJson #result').val (strarray);

Now that we know how to use JQuery to process some of the complex data structures that
a Delphi REST server can return, we can choose from the many options available, one that
is well suited for generic data entry. In fact, while until now the demo projects have mostly

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 46 -

displayed server side information, I want to go one step further and create an example
that can let the client application edit the values of an object. Along with editing, you’ll
also learn how a Delphi DataSnap REST server can handle update, create, and delete
requests by supporting the four key HTTP methods.

MANAGING OBJECT AND THE HTTP METHODS
Now that we have examined the data types that a Delphi REST server can return and its
direct support for TJSONValue, and we have at least a basic understanding of jQuery, I
want to build an examples that showcases multiple features, including the built-in support
for managing of the various HTTP methods supported by a given URL. The idea is not only
to retrieve data from the server using the get method, but also to let users modify a server
side object from a simple Browser-based client written in JavaScript.

The data structure behind this application is a list of objects of a custom type (which could
have been written in a more object-oriented way, but I wanted to keep things simple for
the sake of the example):

type
 TMyData = class (TPersistent)
 public
 Name: String;
 Value: Integer;
 public
 constructor Create (const aName: string);
 end;

The objects are kept in a dictionary, implemented using the generic container class
TObjectDictionary<TKey,TValue>, defined in the Generics.Collections unit since Delphi
2009. This global object is initialized when the program starts with the addition of a couple
of predefined objects. Notice that I use a specific AddToDictionary procedure to add the
objects, to make sure the object name is in sync with the dictionary key, and it has a
random value if none is provided:

var
 DataDict: TObjectDictionary <string,TMyData>;

procedure AddToDictionary (const aName: string; nVal: Integer = -1);
var
 md: TMyData;
begin
 md := TMyData.Create (aName);
 if nVal <> -1 then
 md.Value := nVal;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 47 -

 DataDict.Add(aName, md);
end;

initialization
 DataDict := TObjectDictionary <string,TMyData>.Create;
 AddToDictionary('Sample');

Having this data structure in place, we can implement methods to access it and to change
it. Reading the data is what I’ve done in the MyData function:

function TObjectsRest.MyData(name: string): TJSONObject;
var
 md: TMyData;
begin
 md := DataDict[name];
 Result := TJSONObject.Create;
 Result.AddPair(
 TJSONPair.Create ('Name', md.Name));
 Result.AddPair(
 TJSONPair.Create ('Value',
 TJSONNumber.Create(md.Value)));
end;

As you can see, I’ve created a TJSONObject and added two pairs or properties for the
name and the value:

{"result":[{
 "Name":"Sample",
 "Value":"7016"
}]}
This is the result you get if you point your browser to the URL:

http://localhost:8080/datasnap/rest/TObjectsRest/MyData/Sample

The URL above makes it quite clear why Delphi’s REST implementation requires you to
pass parameters in the path. Since a REST URL refers to a resource, and you don’t want to
write a method for each resource, it makes sense to have the object ID (in this case
Sample) on the path, but also to pass it as a parameter!

LISTING OBJECTS WITH TJSONARRAY
Having a list of objects, you might well need to access its elements. For building the user
interface, all we need is the names of the objects in the list. For returning a list you can use
a TJSONArray, which in this case will be an array of strings, which I crate using an
enumerator on the Keys of the dictionary:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 48 -

function TObjectsRest.List: TJSONArray;
var
 str: string;
begin
 Result := TJSONArray.Create;
 for str in DataDict.Keys do
 begin
 Result.Add(str);
 end;
end;

The result of this call is an array in JSON format, which in turned is passed (as usual) in an
array called result (hence the double nested array notation):

{"result":[
 ["Test","Sample"]
]}

Now that we have a way to return a list of values and fetch the data of each individual
element, we can start building a user interface.

STARTING WITH THE CLIENT: LIST AND VALUES
Rather than having to build the initial HTML with the list of objects for the user to pick one,
we can fully exploit the AJAX model. The HTML page on start up will have no actual data
at all, only the HTML elements and the JavaScript code. This is the empty HTML:

 <div>List of objects:

 <div id="list" style="padding-left: 20px"></div>

 Refresh List
 </div>
 <hr>

As soon as the page is loaded, even without user intervention, the page will make an AJAX
call to the server asking for the actual data (in the refreshList() function) and populating the
user interface. The same function is also installed as an event handler for the click event on
the refresh anchor:

$(document).ready(function() {
 // populate the UI
 refreshList();

 // redo the operation when refresh is clicked

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 49 -

 $("#refresh").click(function(e) {
 refreshList();
});

The refreshList() function uses a for loop to scan the resulting array. I could have used the
$.each enumeration mechanism of jQuery, but this would have made the code more
complex to read. The for loop creates the HTML, which is later displayed in the span
placeholder with the given ID:

function refreshList()
{
 thearray = serverMethods().List().result;
 var theMarkup = ["
"];
 for (var i=0; i < thearray.length; i++) {
 theMarkup = theMarkup + "" +
 thearray[i] + "
";
 };
};

This is a sample output with the list of the values returned in the JSON array:

There is actually a little more to the code generation. As soon as we have the HTML for the
list (which includes many links) we need to connect code to those links so that the client
application will load the corresponding server side object in the bottom part of the page
for each entry selected. This is accomplished in standard jQuery style by connecting a
single event to all anchors (the <a> tags) under the div. This is the final version of the
refreshList function with the complete code:

function refreshList()

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 50 -

{
 thearray = serverMethods().List().result;
 var theMarkup = ["
"];
 for (var i=0; i < thearray.length; i++) {
 theMarkup = theMarkup + "" +
 thearray[i] + "
";
 }
 // add markup to container
 $("#list").html(theMarkup);
 $("#list").find("a").click(function(e) {
 theObj = serverMethods().MyData ($(this).html());
 TMyDataToForm (theObj.result);
 });
};

Notice in the code above the use of the $(this) expression, which is a reference to the
current object or the object that triggered the event (more or less behaving like the
Sender parameter for a VCL event handler, although in terms of language this is more like
self keyword).

As a user clicks on one the links in the object’s list, the JavaScript application will get the
object’s name from the HTML text and use it as parameter to the call to the MyData server
function. The user interface for the object data is made of two input boxes, which will later
use also for manipulating the object data. The data is moved to these two inputs using the
helper function TMyDataToForm:

function TMyDataToForm (anObj)
{
 $("#TMyData #Name").val(anObj.Name);
 $("#TMyData #Value").val(anObj.Value);
};

This code works with the assumption that the user interface has a div with the same name
of the class and two input elements called like the properties of the JSON object. This is
the corresponding snippet of the HTML while the following image shows the complete
page in the browser:

<div id="TMyData">
 <p>Current Element:

 <input type="text" id="Name" size="50" value="">

 <input type="text" id="Value" size="50" value="">
</div>

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 51 -

As you can see above, the program lets us retrieve a value, but has also three buttons to
perform the most common operations (the so called CRUD interface – Create, Read,
Update, and Delete). This is supported in HTML using the four core HTML methods,
respectively PUT, GET, POST, and DELETE. The next section will cover how a Delphi REST
server supports these methods.

GET, POST, PUT, AND DELETE
Up to now we have seen only how to get data from our REST server, but what about
updating it? The general consensus in REST is to avoid using specific URLs for identifying
the operations, but to use an URL only to identify server side objects (like MyData/Sample
in the URL I listed previously) and to use the HTTP methods to indicate what do to.

Now if Delphi’s REST support simply mapped URLs to server class methods, we would
have been out of luck (since the same method names would have been used for all four
operations). Delphi, instead, maps the URLs plus the HTTP method to a server method.
The scheme used is a rather simple: the name of the operation is added before the
method name, using this mapping:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 52 -

GET get (default, can be omitted)

POST update

PUT accept

DELETE cancel

You can customize these mappings by handling the four corresponding event handlers of
the DSHTTPWebDispatcher component. If you decide to go with the standard naming
rules to support the various operations, you’ll have to define your server class like the
following:

type
 TObjectsRest = class(TPersistent)
 public
 function List: TJSONArray;
 function MyData (name: string): TJSONObject;
 procedure updateMyData (const aName: string;
 jObject: TJSONObject);
 procedure cancelMyData (name: string);
 procedure acceptMyData (const aName: string;
 jObject: TJSONObject);
 end;

To get or delete an element, we only need the name or ID of the object. To create or
update it, we also need to pass the data. In this very simple case, there is only a second
value, but in general there could be many. An interesting option (fully supported by
DataSnap) is to pass as second parameter an object with all of the fields of the user
interface.

The implementation of the three new methods is rather simple and direct because they
don’t need to return a value (needless to say I should have checked that parameters are
not empty and that the server side object really exists):

procedure TObjectsRest.updateMyData (const aName: string;
 jObject: TJSONObject);
var
 md: TMyData;
begin
 md := DataDict[aName];
 md.Value := StrToIntDef (
 jObject.Get('Value').JsonValue.Value, 0);
end;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 53 -

procedure TObjectsRest.cancelMyData(const name: string);
begin
 DataDict.Remove(name);
end;

procedure TObjectsRest.acceptMyData(const aName: string;
 jObject: TJSONObject);
var
 md: TMyData;
begin
 md := TMyData.Create (aName);
 md.Value := StrToIntDef (
 jObject.Get('Value').JsonValue.Value, 0);
 DataDict.Add(aName, md);
end;

CLIENT SIDE EDITING
Now that we have the CRUD operations available on the REST server, we can complete
our JavaScript client application with the code of the three editing buttons (the image with
the browser-based the user interface was displayed earlier).

The JavaScript proxy generated by Delphi will have methods names like the server side
counterparts (regardless of the fact they use the same URL and a different HTTP method).
Another important piece of information is that to pass a JSON object to Delphi all you
need to do is to pass a JavaScript object. This is the code of the three buttons:

$("#buttonUpdate").click(function(e) {
 var mydata = new Object;
 FormToTMyData (mydata);
 serverMethods().updateMyData (mydata.Name, mydata);
});

$("#buttonDelete").click(function(e) {
 serverMethods().cancelMyData ($("#TMyData #Name").val());
 refreshList();
});

$("#buttonNew").click(function(e) {
 var mydata = new Object;
 FormToTMyData (mydata);
 serverMethods().acceptMyData (mydata.Name, mydata);
 refreshList();
});

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 54 -

Like for moving data to the user interface, the client program is using a support function to
get it back:

function FormToTMyData (anObj){ anObj.Name = $("#TMyData #Name").val();
anObj.Value = $("#TMyData #Value").val();};

With the three extra methods added to our class and the proper JavaScript calls, we now
have an example with a complete Browser-based user interface for creating and editing
objects in our REST server. In this project we are passing back and forth JSON objects, a
format easy to process both in Delphi and in JavaScript.

AUTOMATING THE PROCESS WITH RTTI
Now suppose you have a much more complex data structure with multiple fields. You’ll
have to create JSON from the Delphi classes and save it back in the server application,
and in the browser, map the fields of the JavaScript objects to the HTML user interface
elements and vice versa.

In many cases this kind of mapping can be simplified, if not totally automated. For
example, you can use Delphi’s RTTI (the new extended RTTI available since Delphi 2010)
to do this mapping. Given a Delphi object we can create a JSON representation of its
public properties with this code (which is part of a RestPlusUtils unit I’ve added to the
example):

function ObjectToJson (obj: TObject): TJSOnObject;
var
 context: TRttiContext;
 aProperty: TRttiProperty;
begin
 Result := TJSONObject.Create;
 for aProperty in context.GetType(obj.ClassInfo).GetProperties do
 Result.AddPair(TJSONPair.Create (
 aProperty.Name,
 aProperty.GetValue(obj).ToString));
end;

In the real world, you might have to handle special data types (for example dates and
Boolean values), but the core idea of the code is clear.

At the opposite, when the server receives a JSON object, it can save this JSON data into a
Delphi object (this time taking into account at least some of the data types). Notice that
for each property we look for the corresponding JSON value, but if this is missing, no big
deal:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 55 -

procedure JsonToObject (obj: TObject; jObject: TJSOnObject);
var
 context: TRttiContext;
 aProperty: TRttiProperty;
 jPair: TJsonPair;
begin
 for aProperty in context.GetType(obj.ClassInfo).GetProperties do
 begin
 jPair := jObject.Get (aProperty.Name);
 if Assigned (jPair) then
 begin
 if aProperty.PropertyType.IsOrdinal then
 aProperty.SetValue(obj, StrToIntDef (
 jPair.JsonValue.Value, 0)) // not always string
 else
 aProperty.SetValue(obj, jPair.JsonValue.Value); // string
 end;
 end;
end;

We can now return and receive Delphi objects mapped to JSON:

function TObjectsRest.MyData(const aName: string): TJSONObject;
var
 md: TMyData;
begin
 md := DataDict[aName];
 Result := ObjectToJson (md);
end;

procedure TObjectsRest.updateMyData (const aName: string;
 jObject: TJSONObject);
var
 md: TMyData;
begin
 md := DataDict[aName];
 JsonToObject (md, jObject);
end;

Written this way, the server can return a JSON version of any object and accept JSON
input to update any Delphi object. Furthermore, the program can help you map the
JavaScript object (obtained by JSON) to the HTML user interface. Provided you use a div
with the class name and individual inputs with the property names, you can generate the
JavaScript mapping code from within the Delphi application.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 56 -

The two JavaScript mapping functions shown earlier (TMyDataToForm and
FormToTMyData) are actually generated. The function on the server, called
GenerateMapper, is based on RTTI and is again part of the RestPlusUtils unit. Here is a
snippet of its code:

sList.Add ('function ' + aClass.classname + 'ToForm (anObj)');
sList.Add ('{');
for aProperty in context.GetType(aClass.ClassInfo).GetProperties do
begin
 // outputs JS like: $("#TMyData #Name").val(anObj.Name);
 sList.Add (' $("#' + aClass.classname + ' #' + aProperty.Name +
 '").val(anObj.' + aProperty.Name + ');');
end;
sList.Add ('};');

How is this JavaScript code made available to the server? I’ve edited the
WebFileDispatcher1BeforeDispatch event handler (which by default takes care of re-
generating the serverfunctions.js file) and added the following condition:

 if SameFileName(ExtractFileName(AFileName), 'uimapper.js') then
 begin
 Handled := True;
 Response.ContentType := 'text/javascript';
 Response.Content := GenerateMapper (TMyData);
 end;

Rather than updating the JavaScript file before returning it, as the code generated by the
wizard does for serverfunctions.js, here I’m returning as JavaScript content a dynamically
generated string. Now simply add a reference to the URL of this JavaScript resource in the
HTML and you’ll have the code working and automatically updating itself if you add new
properties to your server side object (provided you also update the HTML user interface
accordingly.

The previous class I used had only two fields, and manual mapping was quite simple
anyway. In the jObjects sample project, however, there is also a second class with several
properties:

type
 TCompanyData = class
 private
 ...
 public
 property CompanyName: string
 read FCompanyName write SetCompanyName;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 57 -

 property Address: string
 read FAddress write SetAddress;
 property City: string
 read FCity write SetCity;
 property ZipCode: string
 read FZipCode write SetZipCode;
 property State: string
 read FState write SetState;
 property Country: string
 read FCountry write SetCountry;
 property ContactFullName: string
 read FContactFullName write SetContactFullName;
 property ContactEmail: string
 read FContactEmail write SetContactEmail;
 property ContactPhone: string
 read FContactPhone write SetContactPhone;
 end;

Again, there is a server class exposing the four HTTP methods to manage such an object
(in this case, there is no list but a single in-memory object, refer to the actual source code
for the details of the implementation):

{$METHODINFO ON}
type
 TCompanyServer = class (TPersistent)
 public
 function Company: TJSONObject;
 procedure updateCompany (jObject: TJSONObject);
 procedure cancelCompany;
 procedure acceptCompany (jObject: TJSONObject);
 end;

I’ve added to the web module a new DataSnap server class connected with
TCompanyServer, a new action connected with a new page producer, and the class
support in the uimapper.js generated code.

Now all I have to do to create the user interface is to clone the previous HTML file and
replace the data entry form with one having the proper input fields. In the new HTML
template, company.html, I’ve created a bare-bone data entry form with buttons
performing the four operations above. In case you are really lazy (or as starting point of the
development), the server could also generate a bare-bone form, generating a custom user
interface. This is a technique used by other web development environments and generally
called scaffolding.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 58 -

As a very preliminary demo, I’ve added to the RestPlusUtils unit a HtmlFormForClass
function, which is activated using a special HTML tag:

<!-- automatic form -->
<#scaffolding class="CompanyData.TCompanyData">

This tag is processed on the server, extracting the attribute value which holds the qualified
name of the class (unit name and class name) as used by the new RTTI to find a class with
no registration requirements:

 // in TWebModule2.ServerFunctionInvokerHTMLTag
 else if SameText(TagString, 'scaffolding') then
 begin
 ReplaceText := HtmlFormForClass (TagParams.Values['class']);
 end;

While in the HTML file there is also a custom version with slightly better formatting, here is
a screenshot of the form generated using the scaffolding technique:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 59 -

(Before you ask, yes, I’m working on an extended version of this core architecture, which
will include specific support for more data types, extensive browser-based validation, and
other nice goodies: Feel free to get in touch for more information).

DATA-ORIENTED REST SERVERS
If the original idea behind DataSnap is focused on moving data tables from a middle-tier
server to a client application, it might be quite odd at first to realize that the REST support
in DataSnap is primarily focused on remote method calls. You can return a dataset from a
REST server, but the column-based format combined with the fact there is no specific
support for the user interface, makes the dataset management support somewhat limited.
I did show you how to create a simple HTML table on top of this format and also hook to
the paging support.

As we have seen, however, it is quite simple to return a custom JSON data structure from
Delphi’s REST architecture, so besides improving the user interface we might be able to
make things simpler by customizing the server side processing. Also, rather than building a
custom HTML user interface we might want to take advantage of existing data grid
components. That’s the focus of this last section and the related example.

The server program is quite bare-bone, as all it does is to return the data of a complete
Dataset, with or without metadata and in different JSON formats. For the creation of a
custom HTML table based on the dataset, I’ve created two separate functions returning
the list of fields and the entire dataset in a JSON array, with an object for each record:

function TServerData.Meta: TJSONArray;
var
 jRecord: TJSONObject;
 I: Integer;
begin
 ClientDataSet1.Open;
 Result := TJSonArray.Create;

 for I := 0 to ClientDataSet1.FieldDefs.Count - 1 do
 Result.Add(ClientDataSet1.FieldDefs[I].Name);
end;

function TServerData.Data: TJSONArray;
var
 jRecord: TJSONObject;
 I: Integer;
begin
 ClientDataSet1.Open;
 Result := TJSonArray.Create;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 60 -

 while not ClientDataSet1.EOF do
 begin
 jRecord := TJSONObject.Create;
 for I := 0 to ClientDataSet1.FieldCount - 1 do
 jRecord.AddPair(
 ClientDataSet1.Fields[I].FieldName,
 TJSONString.Create (ClientDataSet1.Fields[I].AsString));
 Result.AddElement(jRecord);
 ClientDataSet1.Next;
 end;
end;

To reduce the amount of data I could have avoided repeating the field name, returning an
array for each record, or skipped the null or empty fields. These two methods are invoked
by the client application after loading the jRestClient.html page, building an HTML table
dynamically. In the HTML file, in fact, there is only the table structure:

<table id="result" border="1" cellspacing="0">
 <thead id="head"></thead>
 <tbody id="body"></tbody>
</table>

The client application first loads the metadata and processes the array creating the table
header row:

var theMetaArray = serverMethods().Meta().result;
var headMarkup = "<tr>"; // table header
for (var j=0; j < theMetaArray.length; j++) {
 headMarkup = headMarkup + "<th>" + theMetaArray[j] + "</th>";
};
headMarkup = headMarkup + "</tr>";
$("#head").html(headMarkup);

The second step is to get the actual data and use the metadata array to navigate it. In this
case, the JavaScript code accesses the object properties dynamically, with the notation
object[“propertyname”]. This means that rather than using the property symbol (as in
thearray[i].Company) the code uses the property’s name read from the metadata array
(theMetaArray[j]), resulting in the expression:

thearray[i][theMetaArray[j]])

This is the complete JavaScript code used to create the table’s body markup:

thearray = serverMethods().Data().result;

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 61 -

var bodyMarkup = ''; // table content
for (var i=0; i < thearray.length; i++) {
 bodyMarkup = bodyMarkup + "<tr>";
 for (var j=0; j < theMetaArray.length; j++) {
 bodyMarkup = bodyMarkup + "<td>" +
 thearray[i][theMetaArray[j]] + "</td>";
 };
 bodyMarkup = bodyMarkup + "</tr>";
};
$("#body").html(bodyMarkup);

The output of this page will look like the following screen shot:

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 62 -

USING THE DATATABLES COMPONENT
Again, this serves only as a starting point, since rather than creating an HTML table
manually and adding some basic behavior to it, I can take advantage of one of the jQuery
plug-ins that would add significant capabilities to the HTML table, turning it into a
powerful grid, with sorting, filtering, and other capabilities.

One such component is DataTables, a jQuery plug-in available and documented at
www.datatables.net. (I picked this specific jQuery plug-in because I have some experience
with it, but there are other equally powerful grid components for jQuery, among the many
plug-in extensions for this library).

There are many ways to pass the data to the DataTables component, one of the simplest is
to initialize it with a JSON structure, including in a single object both data (aaData, an
array of arrays) and metadata (aoColumns, an array of objects describing the column titles
and formatting style). Therefore, I’ve added to the server side class a specific method
returning the specific JSON format:

function TServerData.DataTables: TJSONObject;
var
 dataArray, subArray: TJSONArray;
 metaArray: TJSONArray;
 I: Integer;
begin
 ClientDataSet1.Open;
 dataArray:= TJSONArray.Create;

 while not ClientDataSet1.EOF do
 begin
 subArray := TJSONArray.Create;
 for I := 0 to ClientDataSet1.FieldCount - 1 do
 subArray.Add(ClientDataSet1.Fields[I].AsString);
 dataArray.AddElement(subArray);
 ClientDataSet1.Next;
 end;

 metaArray := TJSonArray.Create;
 for I := 0 to ClientDataSet1.FieldDefs.Count - 1 do
 begin
 metaArray.Add (TJSONObject.Create(
 TJSONPair.Create('sTitle', ClientDataSet1.FieldDefs[I].Name)));
 end;

 Result := TJSONObject.Create;
 Result.AddPair(TJSONPair.Create('aaData', dataArray));

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 63 -

 Result.AddPair(TJSONPair.Create('aoColumns', metaArray));
end;

With the component (the inclusion of its JavaScript source file) and this JSON structure
available, the client side code becomes extremely simple. You need a form with a table
(for simplicity I’ve created one with a fixed set of headers) and these two lines of
initialization code to apply the dataTable method to the HTML table while passing to it the
JSON data:

var theDataTablesData = serverMethods().DataTables().result;
$('#example').dataTable(theDataTablesData);

The result will look like the following image. In this data grid, you can select the number of
visible rows (in this case the paging is done on the client, but you can configure the
component for server side paging), sort the content on any column by clicking on its title,
and filter the visible rows using a search box (the filter is applies to all columns by default):

The DataTables component has several other capabilities, including even editing support
through another jQuery plug-in,

CONCLUSION
In this white paper, I have just scratched the surface of the REST architecture and of the
development of REST client and server applications with Delphi XE. I’ve just provided a
very limited overview of related technologies (XML, JSON, XPath, JavaScript, jQuery)
which you might need to learn in some detail to become proficient on REST architectures.

With the growing number of public REST servers, with the emerging of cloud-computing,
with the growing interest for web hosted applications, Delphi can play a significant role
both in the development of rich user interface clients calling into remote servers and in the

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 64 -

development of actual servers for manipulating data structures in a client application
(written in any language) or directly in the browser.

As the final demo showed, combining JavaScript and a Delphi REST server you’ll be able
to use the Embarcadero IDE for the development of professional, high-quality, and
modern web based applications.

REST Servers in Delphi XE Using DataSnap

Copyright © 2010 Marco Cantu. All Rights Reserved.
Embarcadero Technologies - 65 -

ABOUT THE AUTHOR
Marco is the author of the best-selling Mastering Delphi series and in the recent years he has self-
published Handbooks on the latest versions of Delphi (Delphi 2007 Handbook, Delphi 2009
Handbook, and Delphi 2010 Handbook).

Marco is a frequent conference speaker and teaches advanced Delphi classes (including Web
development with Delphi) at companies worldwide. He also organizes public training classes in
Italy through his company (Wintech Italia Srl) and has partnered with Cary Jensen to organize the
Delphi Developer Days events in the US and Europe (www.delphideveloperdays.com). Marco
offers also consulting, mentoring, code review, and architectural review of Delphi applications.

You can read Marco's blog at http://blog.marcocantu.com, follow him on Twitter at
http://twitter.com/marcocantu, and contact him on marco.cantu@gmail.com.

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of
the Fortune 100 and an active community of more than three million users worldwide rely
on Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered
in San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

