(Gmbarcadero

White Paper

Delphi 2010 DataSnap: Your data -
where you want it, how you want It.

Bob Swart — Bob Swart Training & Consultancy (eBob42)

October 2009
Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor ~ York House L7. 313 La Trobe Street
San Francisco, California 94111 18 York Road Melbourne VIC 3000

Maidenhead, Berkshire Australia
SL6 1SF, United Kingdom

Copyright © 2009 Bob Swart (aka Dr.Bob - www.drbob42.com). All Rights Reserved.

http://www.drbob42.com/

In this white paper, | will cover the new features and capabilities of Delphi 2010's DataSnap
architecture.

Delphi 2010 DataSnap: Your data — where you want it, how you want it...................... 1
1. DAtaSnNap HiSTOYcciiuiiiiiic ittt e e e e srte e et e e sabe e e saree e 2
1.1 DataSnap Example Data — where you Want it...........cccoccveveniiniienecnieneee 3

2. DataSnap Windows Targets — hOw you Want itc.ccocoeeiiiee i 3
2.1. DataSnap Server EXamPIE........ccocvoieiiiieeiiie et 3
2.1.1. Multi-target Project Group — VCL FOIMScoovveeiiieecee e 5
2.1.1.1. ServerContainerUnNitDEMOcooiiiiiiee it 7
2.0 0. 0.0, TDSSEIVETeteee ettt ettt ettt e ettt e s s bt e e e e aabb e e e s anbaeeeeannes 7
2.1.1.0.2. TDSSEIVEICIASScvveeetieeiieee et e stieesieeeste e e stte e stee e st e sraeeeseeesnteeesneeeennnes 8
2.1.1.1.3. TDSTCPSEIVErTIanSPOITuvvveiiiiieeeiiiie e e ssiiee e s sire e e snree e e s e e e s snneee e e 9
2.1.1.1.4. TDSHTTPSEIVICEtviiiieitie ittt sttt e ettt st sbe e sbee e nneesnee s 9
2.1.1.1.5. TDSHTTPServiceAuthenticationManagerccccoeevvieeeiveesiieeesneene, 11
2.1.1.2. ServerMethodsUNItDEMOcccooiieiiiii e 11
2.1.2. Multi-target Project Group — CONSOIE.........ccccveiieiiiiiieiie e 12
2.1.3. Multi-target Project Group — WiNndOWS SEIVICEcccecverviriiieiienicnieene 14
2.1.4. Server MENOUS........c.ooiiiiiecieee e 14
A BT (v] g F= o J O 1= o | PSSR 16
2.2.1. DataSnap ClEnt CIASSESccoveiiiiiieiieiieiieesie et 18
2.2.1.1. HTTP Communication ProtoCOl...........ccccevcviiiiiiiiii e 19
2.2.1.2. HTTP AULNENTLICALIONcvveeiiie et 19
2.3. DataSnap Server DePIOYMENTc.ooiiiiiiiii e 20
2.3.1. DataSnap Client DeplOYMENt..........ccoviviiieiiei e 20

3. DataSnap and Databases — where youwant itcccccceeeveeviic e, 21
3.1. TSOISEIVEIMETNOM ...t 23
3.2. TDSProviderCONNECTION.........cciiiie ittt e eee e e e e e nnae e 24
3.2.1. TDSProviderConnection CHENL..........ccccocveeiiii i 25
3.2.2 Database UPAALtESc.cooiiiiiiii ettt 26
3.2.3. RECONCIIE EITOIS ...t 27
3.2.4. Demonstrating ReCONCIlE EITOrS........c.ccooviiiiii i 29
3.3. DataSnap "Database” Deployment ... 30
3.4. Reusing Existing Remote Data Modules...............ccooeiiiiiiinicniieiiccc e 31

4. DataSnap Filters — NOW YOU WaNT it........ccooiviiiiiiieiieiiicc e 31
4.1. ZIIbComMPression Filter ..o 32
N o Yo [1 (=Y SRR 33
4.3. ENCryPtion FilLer......co i 34

5. DataSnap Web Targets — how you want it (IMOre)ccccceevveiienie e 35
5.1. Web App Debugger Target.........ccoouiiiieiieiieiieeiie e 36
I YN o I =T o = P EERR 37
5.3. Server Methods, Deployment and Clients............cccoviveeiiii i 39

6. REST and JSON — how YOU WaNT it.........cccooiiiiieiiiie e 43
B.1. CAlIDACKS.cviieiiii ettt 43

7. DataSnap and .NET — where you want it (MOre).........ccocveriiiieiiienie e 44
A AT g o S 4 1T o SR 49
e TS] 10 0= V2SSOSR 52

1. DATASNAP HISTORY

Starting in Delphi 3 as MIDAS, with MIDAS Il in Delphi 4 and MIDAS Il in Delphi 5 when it
was a powerful way to build COM-based remote data modules with TCP/IP, HTTP and

-2-

(D)COM connection capabilities. Delphi 6 introduced the name DataSnap, and until Delphi
2007 this framework was largely left intact.

Delphi 2009 introduced a re-architecture of DataSnap - removing the dependencies on
COM, introducing a more light-weight way to produce remote server objects and client
connectivity Initially with only TCP/IP connectivity, but with the ability to build .NET clients
using Delphi Prism 2009.

Delphi 2010 is built on top of the DataSnap 2009 architecture and expands this framework
with new functionality, including support for new targets using two wizards (VCL Forms,
Windows Service, Console but also web targets as ISAPI, CGI or Web App Debugger),
HTTP(S) transport protocols, HTTP authentication, client callback functions, support for REST
and JSON, and filters to support compression (already built-in) and encryption.

1.1 DATASNAP EXAMPLE DATA — WHERE YOU WANT IT

In this white paper, | urge you to play along with the demos and examples. Although Delphi
supports many different database systems using DBX4, dbGo for ADO or other data access
technologies, in order to make it easy to play along with the examples, | will use DBX4 with
BlackfishSQL as DBMS with the employee.jds database which can be found in the directory
C:\Documents and Settings\All Users\Documents\RAD
Studio\7.0\Demos\database\databases\BlackfishSQL on Windows XP, or
C:\Users\Public\Documents\ RAD Studio\7.0\Demos\database\databases\BlackfishSQL on
Windows Vista or Windows 7. As you will see from the screenshots, I'm using Windows 7
Professional as operating system for the examples, plus Windows Server 2008 Web Edition
for the deployment of the DataSnap ISAPI servers.

2. DATASNAP WINDOWS TARGETS — HOW YOU
WANT IT

DataSnap 2010 supports three different Windows targets: VCL Forms, Windows Service and
Console applications. In this section, Il discuss the benefits, difference and best cases to use
each of these target types.

A sample DataSnap server and client will be built, and we'll cover the TDSServer,
TDSServerClass, TDSTCPServerTransport, TDSHTTPService, TDSHTTPWebDispatcher and
TDSHTTPServiceAuthenticationManager components as well as the custom server methods
and the TDSServerModule class.

Different transport protocols (TCP, HTTP) will be discusses along with their effect and
potential benefits. The different options for the lifetime of the DataSnap server object are
discussed (server, session and invocation), together with their effect and real-world
recommendations. And finally, some deployment issues are covered.

2.1. DATASNAP SERVER EXAMPLE

There are two different DataSnap Server Wizards in the Object Repository: one to produce
Windows based DataSnap Server projects, and one to produce WebBroker based DataSnap
Server projects that need to be hosted by a web server like 1IS (Internet Information Services).
Right now, we'll start with the former.

If you start Delphi 2010, you can find the DataSnap Server wizards in the Object Repository
after you do File | New — Other. The DataSnap Server category of the Object Repository
shows three icons: DataSnap Server, DataSnap WebBroker Server, and Server Module.

@' Mew Iterns @

4 -[77] Delphi Projects), Search
----- Ackives —
----- Business ﬁ | _]

----- DataSnap Server = & i

----- Delphi Files Drakasnap Datasnap Server Module
----- Inheritahle Ttems La.ggryer 3 webBro...

----- Mulkitier

----- WL Faor the Web
----- ‘ebBroker

----- WebServices

----- Websnap

..... XML

----- Design Projects

----- Other Files

----- Unik Tesk

----- Web Documents

o][conel][ek]

Double-click on the first one (we'll cover the other two later in this white paper), which will
produce the following dialog for you:

P -

Mewe Datasnap Server @

You may select From one of the following applications types

@) WL Forms Application
! Console Application

1 Service Application
You may seleck ane or more communication protocols

TCR{IP
[CIHTTR

Authenticakion

add Server Methods Class

Anceskor: lTDSServerMndule - I

Include sample methods

| ok || canel || e

The first section on this dialog is used to control the target of the project. By default, you will
produce a visual VCL Forms application, with a main form. The second choice is the Console
application, which gives a console window — probably ideal for tracing what's going on with
requests and responses (you can use simple writeln statements to show “what’s going on”
inside the server application). Both application types are ideal for demos and initial

-4 -

development, but may be less ideal when you want to deploy the DataSnap server
application in the end. Since the new DataSnap architecture is no longer based on COM, an
incoming client connection will not be able to “launch” a DataSnap server application. So in
order to be able to handle incoming client requests, the DataSnap server should be “up and
running” already. And if you want to be able to handle incoming requests on a 24x7 basis,
the DataSnap server application should be up and running during that time as well. For a
VCL Forms or Console application, this means that an account must be logged on to
Windows, running the DataSnap server application, which is far from ideal. The third choice is
actually better in that case: a Windows Service application, which can be installed and
configured to run automatically when the machine is started (without the requirement that
someone has to be logged into the machine). The downside of a service application is that
by default it doesn’t show itself on the desktop, and it’s also a bit harder to debug. However,
in order to be able to get the best out of all three worlds, | will show you in a minute how to
create a project group for a VCL Forms DataSnap server application, a Console DataSnap
server application as well as a Windows Service DataSnap server application, all sharing the
same custom server methods, thereby allowing you a single DataSnap server application that
can be compiled to (and deployed as) three different targets when needed.

The second section of the New DataSnap Server dialog shows the different communication
protocols that we can use. Compared to DataSnap 2009, we can now also have HTTP
communication, as well as HTTP Authentication. In order to be most flexible, | suggest we
check all options here, so we can use both TCP/IP and HTTP, and use HTTP Authentication in
combination with HTTP as well.

The final section of the New DataSnap Server dialog is already configured fine in my view. If
offers us the benefit of generating a server method class, and we can even pick the ancestor
type: TPersistent, TDataModule or TDSServerModule. The last choice is the best, enabling
RTTI for methods right from the start (although there may be circumstances where you feel a
regular TDataModule or perhaps - if you don't use any datasets or non-visual controls - even
a TPersistent is enough).

A little snippet from unit DSServer.pas shows the relation between TDSServerModule and
the TProviderDataModule, which in turn is derived from TDataModule.

TDSServerModuleBase = class (TProviderDataModule)
public
procedure BeforeDestruction; override;
destructor Destroy; override;
end;

{SMethodInfo ON}

TDSServerModule = class (TDSServerModuleBase)
end;

{SMethodInfo OFF}

When unsure what to do, select the TDSServerModule as ancestor class.

2.1.1. MULTI-TARGET PROJECT GROUP — VCL FORMS

As promised, let's create a multi-target DataSnap Server project group now. First, let’s start
with the VCL Forms Application as DataSnap Server, with all communication protocols
selected.

P "

Mew Datalhap Server @

You may select from one of the Following applications tvpes

@ WL Forms Application
Console Application

Service Application
You may select one or maore communication protocols

7| TCPjTP
o |HTTP
+ | Auathentication

| Add Server Methods Class

Ancestar: | TDSServerModuls - |

| Include sample methods

[ok H Cancel || Help |

The result is a new project — by default called Projectl.dproj - with three units, by default
called ServerContainerUnitl.pas, ServerMethodsUnitl.pas and Unitl.pas. We should first do
File | Save Project As, specifying a bit more detailed filenames in some cases. Save Unitl.pas
in file MainForm.pas, save ServerContainerUnitl.pas in ServerContainerUnitDemo.pas, save
ServerMethodsUnitl.pas in ServerMethodsUnitDemo.pas and save Projectl.dprojin
DataSnapServer.dproj.

We will add the Console Application and Service Application to the project group in a
minute. First, let's examine what we have at this point, and try to compile the project. If you
compile the DataSnapServer project, it should give you one error message (which is my fault,
since we renamed the generated unit ServerMethodsUnitl.pas): The error message is caused
by the ServerContainerUnitDemo.pas unit that contains the ServerMethodsUnitl unit in the
uses clause of its implementation section (line 30), while | saved ServerMethodsUnitl.pas as
ServerMethodsUnitDemo. In order to fix this issue, change the uses clause to reflect this unit
rename as well, and recompile again. This time, an error will occur on line 37 where the
ServerMethodsUnitl is used as qualifier for the TServerMethodsl1 class. Change
ServerMethodsUnitl to ServerMethodsUnitDemo here as well, so we can compile the
DataSnap Server project without any further issues now.

The implementation section of unit ServerContainerUnitDemo should now look as follows:

implementation
uses
Windows, ServerMethodsUnitDemo;

{SR *.dfm}

procedure TServerContainerl.DSServerClasslGetClass (

DSServerClass: TDSServerClass; var PersistentClass: TPersistentClass);
begin

PersistentClass := ServerMethodsUnitDemo.TServerMethodsl;
end;

end.

2.1.1.1. SERVERCONTAINERUNITDEMO

If you take a look at the Design tab of the ServerContainerUnitDemo unit, you'll see no less
than five components: a TDSServer, a TDSServerClass, a TDSTCPServerTransport (for the
TCP/IP communication), a TDSHTTPService (for the HTTP communication) and a
TDSHTTPServiceAuthenticationManager component (for the HTTP Authentication).

ﬂ Welcame Page @ MainFarm @ ServerMethodsUnitDema @ ServerContainerUnitDemo
O O |

O |

The first two are always included, the other three are included based on the selected
communication protocol options of course.

2.1.1.1.1. TDSSERVER

The TDSServer component has only four properties: AutoStart, HideDSAdmin, Name and
Tag. The AutoStart property is set to True by default, which means that the DataSnap Server
will start as soon as the form is created. If you don't set AutoStart to True, you can manually
call the Start method, and you can always call the Stop method. You can use the Started
function to find out if the DataSnap Server is already started.

The HideDSAdmin property is set to False by default. If you set it to True, then clients
connecting to this DataSnap Server cannot call the built-in server methods from the
TDSAdmin class. The TDSAdmin class is not actually a class, but the TDSAdmin methods that
we can call are documented in the DSNames unit:

TDSAdminMethods = class
public
const CreateServerClasses = 'DSAdmin.CreateServerClasses';
const CreateServerMethods = 'DSAdmin.CreateServerMethods';
const FindClasses = 'DSAdmin.FindClasses';
const FindMethods = 'DSAdmin.FindMethods';
const FindPackages = 'DSAdmin.FindPackages';
const GetPlatformName = 'DSAdmin.GetPlatformName';
const GetServerClasses = 'DSAdmin.GetServerClasses';
const GetServerMethods = 'DSAdmin.GetServerMethods';
const GetServerMethodParameters = 'DSAdmin.GetServerMethodParameters';
const DropServerClasses = 'DSAdmin.DropServerClasses';
const DropServerMethods = 'DSAdmin.DropServerMethods';
const GetDatabaseConnectionProperties = 'DSAdmin.GetDatabaseConnectionProperties’;

-7-

end;

The TDSServer component has five events: OnConnect, OnDisconnect, OnError, OnPrepare
and OnTrace. We can write event handlers for these five events to respond to the different
situations, for example by writing a line of text to a log file.

The OnConnect, OnDisconnect, OnError and OnPrepare events have an argument derived
from TDSEventObiject, which contains properties for the DxContext, the Transport, the
Server and the DbxConnection component. The TDSConnectEventObiject type, used for the
OnConnect and OnDisconnect also contains ConnectionProperties as well as Channelinfo.
The TDSErrorEventObject also includes the Exception that caused the error, and the
TDSPrepareEventObject includes properties for the MethodAlias and the ServerClass that
we want to use.

The OnTrace event handler has an argument of type TDBXTracelnfo. Note that this
generated OnTrace event handler will also generate some code insight errors, as the types
TDBXTracelnfo and CBRType are unknown to the compiler. In order to solve that, we need
to add the DBXCommon unit (for the TDBXTracelnfo type) and the DBCommonTypes unit
(for CBRType).

During the OnConnect event handler, we can examine the Channelinfo for the connection,
for example (using a custom function Loginfo to write this information to a lodfile):

procedure TServerContainerl.DSServerlConnect (
DSConnectEventObject: TDSConnectEventObject) ;
begin
LogInfo ('Connect ' + DSConnectEventObject.ChannelInfo.Info);
end;

And inside the OnTrace event handler we can log the contents of the Tracelnfo.Message to
get a good idea what the server is doing.

function TServerContainerl.DSServerlTrace (TraceInfo: TDBXTracelInfo): CBRType;
begin

LogInfo('Trace ' + TraceInfo.CustomCategory):;

LogInfo (' ' + TraceInfo.Message);

Result := cbrUSEDEF; // take default action
end;

Note that at the client side you can also trace the communication between the DataSnap
client and server by using a TSQLMonitor component connected to the TSQLConnection
component (something which I'll demonstrate when we're building the client for this
DataSnap server).

An example of the trace output can be as follows:

17:05:55.492 Trace

17:05:55.4906 read 136 bytes:{"method":"reader close","params":[1,0]}
{"method" :"prepare", "params":[-1, false, "DataSnap.ServerMethod",
"TServerMethodsl.AS GetRecords"]}

17:05:55.499 Prepare

As you can see, the Tracelnfo.Message contains information about the number of bytes as
well as the method that was called.

2.1.1.1.2. TDSSERVERCLASS

The TDSServerClass component is responsible for specifying the class at the server side
which is used to expose published methods to the remote clients (using dynamic method
invocation).

The TDSServerClass component has a Server property that points to the TDSServer
component. The other important property — apart from the Name and Tag properties - is the

-8-

LifeCycle property. By default it's set to Session, but it can also be set to Server or
Invocation. From long to short, the meaning of Server, Session and Invocation mean that one
instance of the class is used for the entire lifetime of the server, for the lifetime of the
DataSnap session, or for the single invocation of a method. Session means that each
incoming connection will get its own instance of the server class. If you change this to
Invocation, you will end up with a state-less server class — for example useful if you want to
deploy a CGI web server application (which is also stateless, and loaded/unloaded for every
request). When you change the LifeCycle to Server, it means that a single server class
instance is shared with all incoming connections and requests. This can be useful if you want
to “count” the number of requests for example, but you must ensure that no threading
issues can occur (when multiple requests come in and expect to be handled simultaneously).

The TDSServerClass component has four events: OnCreatelnstance, OnDestroylnstance
(these are fired when the instance is created or destroyed obviously), OnGetClass and
OnPrepare. The OnPrepare event handler can be used to prepare a server method.

When using Delphi 2009, or when using Delphi 2010 but manually placing the
TDSServerClass component on a container, the OnGetClass event needs to be implemented
by us, since we need to specify which class will be “remoted” from the server to the client.
The DataSnap wizards in Delphi 2010, however, will now automatically implement the
OnGetClass event handler for us, as follows:

procedure TServerContainerl.DSServerClasslGetClass (

DSServerClass: TDSServerClass; var PersistentClass: TPersistentClass);
begin

PersistentClass := ServerMethodsUnitDemo.TServerMethodsl;
end;

Note that this was the generated code we had to modify slightly when we renamed the
generated unit ServerMethodsUnitl and saved it in ServerMethodsUnitDemo.pas.

2.1.1.1.3. TDSTCPSERVERTRANSPORT

The TDSTCPServerTransport components is responsible for the communication between the
DataSnap server and the DataSnap clients, and is using TCP/IP as communication protocol.

The TDSTCPserverTransport component has five important properties: BufferKBSize, Filters
(new in Delphi 2010), MaxThreads, PoolSize, Port, and Server.

The BufferKBSize property specifies the size of the buffer for the communication, and is set
to 32 (KB) by default. The Filters property can contain a collection of transport filters, which
will be covered in detail in section 4. The MaxThreads property can be used to define a
maximum number of threads (by default set to 0 for no maximum or limit). The PoolSize can
be used to enable connection pooling, and the Port property can be used to control the
TCP/IP port that the server uses to connect to the client (if you change that here, you also
need change it at the DataSnap client later).

The Server property is pointing to the TDSServer component. The DSTCPServerTransport
component has no events.

2.1.1.1.4. TDSHTTPSERVICE

The TDSHTTPService component is responsible for the communication between the
DataSnap server and the DataSnap clients using the HTTP protocol.

The TDSHTTPService component has 10 properties (apart from the Name and Tag property):

Active, AuthenticationManager, DSHostname, DSPort, Filters, HttpPort, Name,
RESTContext, Server, and the read-only ServerSoftware property.

-9-

The Active property specifies if the DSHTTPService is listening to incoming requests. It can
be set to True at design-time, but this will prevent the DataSnap Server application from
starting at run-time (since there can only be one active DSHTTPService component listening
to the same port — and with one already active at design-time, you cannot start another one
at run-time). Your best way to start the TDSHTTPService is to set Active to True in the
OnCreate event handler of the TServerContainer:

procedure TServerContainerl.DataModuleCreate (Sender: TObject);
begin

DSHTTPServicel.Active := True;
end;

The AuthenticationManager property is used to define the manager component for handling
HTTP authentication, and in our example is already pointing to the
TDSHTTPServiceAuthenticationManager component. This component is covered in more
detail in section 2.1.1.1.5.

The DSHostname and DSPort properties are used to define the DataSnap server to connect
to, but are only used when the Server property is not set. In most cases, you just connect the
Server property to a TDSServer component instead.

The Filters property can contain a collection of transport filters, which will be covered in
detail in section 4.

The HttpPort property is used to define which port the DSHTTPService component will listen
to for incoming connections. Note that by default this port value is set to 80, which is
something you must change if you develop on a machine which has a web server (like
Internet Information Services IIS) installed, since the web server will already use port 80,
which means that the TDSHTTPService component cannot also start to listed to port 80.
You'll get an error when trying to run the application, with a message that may not be
immediately clear.

The RESTContext property defines the REST context URL that we can use to call the
DataSnap server as a REST service. By default, the RESTContext is set to “rest”,. which
means we can call the server as http://localhost/datasnap/rest/... as I'll demonstrate in
section 6 on REST, JSON and client callback methods.

Finally, the Server property should be pointed to a TDSServer component on the same
container. If you do not want to connect the Server property, you can use the DSHostname
and DSPort properties to connect to the DataSnap Server using TCP. When the Server
property is set, the DSHosthname and DSPort properties are ignored.

The TDSHTTPService component has five events: four REST related, and one Trace event.
The REST events will be covered in more detail in section 6.

The OnTrace event can be used to trace the calls to the DSHTTPService component, for
example as follows:

procedure TServerContainerl.DSHTTPServicelTrace (Sender: TObject;
AContext: TDSHTTPContext; ARequest: TDSHTTPRequest;
AResponse: TDSHTTPResponse) ;

begin
LogInfo ('HTTP Trace ' + AContext.ToString);
LogInfo (' ' + ARequest.Document) ;
LogInfo (' ' + AResponse.ResponseText) ;
end;

Note that the HTTP Trace information will only be shown when the client is actually using
HTTP to connect to the server (and not the default TCP/IP protocol instead).

An example of the trace output can be as follows:
17:05:55.398 HTTP Trace TDSHTTPContextIndy

17:05:55.400 /datasnap/tunnel
17:05:55.403 OK

-10 -

http://localhost/datasnap/rest/

Which means the AContext is set to TDSHTTPContextindy, the ARequest is set to
/datasnap/tunnel, and the AResponse is set to OK.

2.1.1.1.5. TDSHTTPSERVICEAUTHENTICATIONMANAGER

The TDSHTTPServiceAuthenticationManager component will be placed on the Server
Container when the Authentication checkbox for the HTTP communication protocol has
been checked. But you can also manually place it on the server container, of course.
The TDSHTTPServiceAuthenticationManager component must be connected to the
AuthenticationManager property of a TDSHTTPService component.

The TDSHTTPServiceAuthenticationManager component has one event: the
OnHTTPAuthenticate event, which can be used to check the HTTP Authentication
information which can be supplied from the DataSnap Client to the Server.

procedure TServerContainerl.DSHTTPServiceAuthenticationManagerlHTTPAuthenticate (
Sender: TObject; const Protocol, Context, User, Password: string;
var valid: Boolean);

begin
if (User = 'Bob') and (Password = 'Swart') then
valid := True
else
valid := False
end;

Obviously, you should extend this validation routine with a lookup in a database with a
hashed version of the password for example. HTTP Authentication where the User and
(hashed) Password information is sent from the client to the server is best done using HTTPS
by the way, so I'm hoping that Embarcadero will add a HTTPS protocol to the current list of
HTTP and TCP/IP protocols.

HTTPS will ensure that the connection is secure and the data packet is encrypted, so other
people with data sniffers will not be able to get their hands on your User and (hashed)
Password information. Consult with your ISP or web master to find out if there are HTTPS
possibilities for your domain - it's highly recommended (I'm using https://www.bobswart.nl
for example).

Another good technique used in some real-world DataSnap Server applications is to write
the HTTP Authentication (attempts) to a logfile, where you then also write out the Protocol
and Context information. This can give you an idea who is logging in, and who is trying to
login (for example fake login attempts by people trying to get access to your DataSnap
Server).

2.1.1.2. SERVERMETHODSUNITDEMO

Now that we've examined the ServerContainerUnitDemo.pas unit, it's time to switch to
another important unit of the new DataSnap server application: the
ServerMethodsUnitDemo.pas unit. In the New DataSnap Server dialog, we specified the
TDSServerModule class to use as ancestor, so the TServerMethods1 type is derived from
TDSServerModule (which is derived from TDSServerModuleBase, which in turn is derived
from TProviderDataModule, adding a Destroy destructor and a BeforeDestruction
procedure. A TProviderDataModule is derived from a normal TDataModule, adding the
capabilities to work with providers (more about this later).

Because one of the ancestor classes of TServerMethodsl is a TDataModule, the design tab
will show us the designer area for a data module: we can place any non-visual control such as
data-access controls here. We'll place data-access components in section3, but for now we

-11 -

https://www.bobswart.nl/

should leave the design area empty, and just stick with adding methods to the
TServerMethodsl class.

If you do not want add additional targets to the project group — for a DataSnap Console
application and/or a DataSnap Windows Service application, feel free to skip to section 2.1.4
when we start implementing the Server Methods.

2.1.2. MULTI-TARGET PROJECT GROUP — CONSOLE

Time to return to the project group, and add a second target: this time the Console
application. Right-click on the project group node, and select Add New Project. In the
Object Repository, again go to the DataSnap Server category and double-click on the
DataSnap Server icon. This time, select the Console Application target in the New DataSnap
Server dialog.

P -

Mewe Datasnap Server @

You may select From one of the following applications types

WL Forms Application
@ Console Application

Service Application
You may seleck ane or more communication protocals

7| 1CPiTP
HTTP

Authenticakion

| add server Methods Class

Ancestor: | TOEServerModule - |

| Include sample methods

[(0] 4 H Cancel || Help |

Note that it doesn’t matter what other options you'll select: we're going to reuse the
ServerContainerUnitDemo.pas and ServerMethodsUnitDemao.pas from the DataSnapServer
project anyway.

Click on OK to generate the new project. It will generate a Projectl.dproj again, plus a
ServerContainerUnit2.pas and a ServerMethodsUnit2.pas. Right-click on the
ServerMethodsUnit2.pas unit in the Project Manager, and remove it from the new project.
Keep the ServerContainerUnit2.pas for now, because we need to copy one method from it.
Save the project in DataSnapConsoleServer.dproj.

If you compare the contents of the ServerContainerUnitDemo.pas and the newly generated
unit ServerContainerUnit2.pas (for the console application), you'll note that the latter
includes a global procedure called RunDSServer. This global procedure is only useful for a
Console application, so we should copy it and paste it inside the
DataSnapConsoleServer.dproj project source code, just before the begin of the main block.

-12 -

Error insight will then flag a number of issues, which can be resolved by adding the Windows
unit to the uses clause of DataSnapConsoleServer.dpr. The DataSnapConsoleServer should
now look as follows:

program DataSnapConsoleServer;
{SAPPTYPE CONSOLE}

uses
SysUtils,
Windows,
ServerContainerUnit2 in 'ServerContainerUnit2.pas'
{ServerContainer2: TDataModule} ;

procedure RunDSServer;

var
LModule: TServerContainer?2;
LInputRecord: TInputRecord;
LEvent: DWord;
LHandle: THandle;

begin
Writeln (Format ('Starting %s', [TServerContainer2.ClassNamel])):;
LModule := TServerContainer2.Create (nil) ;
try
LModule.DSServerl.Start;
try
Writeln ('Press ESC to stop the server');
LHandle := GetStdHandle (STD INPUT HANDLE) ;
while True do B B
begin
Win32Check (ReadConsoleInput (LHandle, LInputRecord, 1, LEvent));
if (LInputRecord.EventType = KEY EVENT) and
LInputRecord.Event.KeyEvent.bKeyDown and
(LInputRecord.Event.KeyEvent.wVirtualKeyCode = VK ESCAPE) then
break;
end;
finally
LModule.DSServerl.Stop;
end;
finally
LModule.Free;
end;
end;
begin
try
RunDSServer;
except
on E: Exception do
Writeln(E.ClassName, ': ', E.Message);
end
end.

Unfortunately, we should now perform three more actions that will make Error Insight show
some problems again: the DataSnapConsoleServer project still uses the
ServerContainerUnit2.pas, and | want to remove that unit now (so right-click on it, and select
Remove From Project. Then, right-click on the DataSnapConsoleServer.exe node, select Add
and select the ServerContainerUnitDemo.pas as well as the ServerMethodsUnitDemo.pas
units and add them to the project.

As a result, all references to TServerContainer2 should now be flagged as a syntax error. The
ServerMethodsUnitDemo.pas should define the type TServerContainerl, so in order to fix
the last problems: rename TServerContainer2 in the source code from
DataSnapConsoleServer to TServerContainerl (in three places in total).

-13-

Then, we should be able to compile both the new DataSnapConsoleServer.dproj project as
well as the original DataSnapServer.dproj project. Sharing the ServerContainerUnitDemo.pas
as well as the ServerMethodsUnitDemo.pas units between the two project targets.

2.1.3. MULTI-TARGET PROJECT GROUP — WINDOWS SERVICE

With the DataSnap VCL Forms server and the DataSnap console server projects in the
project group, there's one target left to add: the DataSnap Windows Service application. In
order to add this target, right-click on the project group node, select Add New Project and
from the Object Repository double-click on the New DataSnap Server icon again. This time,
select the Service Application and also all communication protocol option (TCP/IP, HTTP as
well as HTTP Authentication). As we'll see in a moment, the Server Container for a Service
application is slightly different from a Server Container inside a VCL Forms or Console
application, so we should be sure to select all communication protocol options here as well.
Again the result of the New DataSnap Server dialog is a new project, plus a
ServerContainerUnit and a ServerMethodsUnit. The ServerMethodsUnit is the same as we've
seen before, so we can remove it from the new project, and replace it with the
ServerMethodsUnitDemo.pas we've been sharing with the VCL Forms and Console
DataSnap applications.

The new ServerCotainerUnitl.pas unit is different however: instead of using a TDataModule
to place the TDSServer, TDSServerClass and the transport components, we now get a class
derived from TService containing the DataSnap components. And apart from being derived
from TService, there are also four special methods added to it, to implement the Stop,
Pause, Continue and Interrogate events of the service:

type
TServerContainer3 = class (TService)
DSServerl: TDSServer;
DSTCPServerTransportl: TDSTCPServerTransport;
DSHTTPServicel: TDSHTTPService;
DSHTTPServiceAuthenticationManagerl: TDSHTTPServiceAuthenticationManager;
DSServerClassl: TDSServerClass;
procedure DSServerClasslGetClass (DSServerClass: TDSServerClass;
var PersistentClass: TPersistentClass);
procedure ServiceStart (Sender: TService; var Started: Boolean);
private
{ Private declarations }
protected
function DoStop: Boolean; override;
function DoPause: Boolean; override;
function DoContinue: Boolean; override;
procedure DolInterrogate; override;
public
function GetServiceController: TServiceController; override;
end;

In other words: we cannot share the original ServerContainerUnitDemo.pas unit with the
Windows Service project, and we should rename the ServerContainerUnitl.pas to
ServerContainerUnitServiceDemo.pas. And while we're at it, let’s save the project itself to
DataSnapServiceServer.dproj.

We need to fix the reference to the old ServerMethodsUnit2.pas unit in the
ServerContainerUnitServiceDemo, and change it to ServerMethodsUnitDemo.pas, so at least
we're sharing the same Server Methods unit between all three targets.

2.1.4. SERVER METHODS

When you have one or more DataSnap Server projects, all sharing the same
ServerMethodsUnitDemo unit, it's time to examine the server methods in some more detail.

-14 -

As | mentioned before, the TServerMethod1 class is the DataSnap server object that exposes
the methods (using RTTI) to be exposed to the DataSnap clients. If you checked the “Include
sample methods” option, there will be one sample method already present in the
TServerMethods1 class: function EchoString. Let's add another one, to return the current
time from the DataSnap server machine. To do that, modify the definition of
TServerMethodsl to include two public methods as follows:

type
TServerMethodsl = class (TDSServerModule)
private
{ Private declarations }
public
{ Public declarations }
function EchoString(Value: string): string;
function ServerTime: TDateTime;
end;

The implementation of the ServerTime method is really easy, almost as short as the example
method EchoString:

function TServerMethodsl.EchoString(Value: string): string;
begin

Result := Value;
end;

function TServerMethodsl.ServerTime: TDateTime;
begin

Result := Now
end;

We can now compile and Run server application. If you created multiple project targets, then
the easiest one to test right now is the DataSnapServer executable. Depending on your
version of Windows and level of security settings, you may see a Windows Security Alert to
tell you that Windows Firewall has blocked some features of the DataSnapServer application.

-

ﬁ'WindDws Security Alert @

@ Windows Firewall has blocked some features of this program

Windows Firewall has blocked some Features of DataSnapServer on all public and private

nebworks,
Marne: DatasnapServer
Publisher: Unknown
Path: Chusersibobtdocumentsirad studiolprojects

\datasnapserver, exe
Allow DakasnapServer to communicate on these networks:
Private networks, such as my home or work network

[] Public netwarks, such as those in airports and coffes shops (not recommendead
because these networks often have little or no security)

‘What are the risks of allowing a progranm through a Firewall?

[H allow access | l Cancel l

This is due to the fact that the DataSnapServer application is actively listening to incoming
requests over TCP/IP and HTTP at this time. Like a Trojan Horse, only one that we want to be
able to listen to incoming requests, so click on the button to Allow Access and continue to
start the DataSnap Server.

-15 -

2.2. DATASNAP CLIENT

When the first DataSnap Server demo is up-and-running and listening to incoming requests,
it's time to build a client. In this section, I'll explain how we can connect from the client to the
server, how to import the methods by generating server classes.

Make sure the DataSnap server is up an running, so we can create the DataSnap client
application project. In order to easily switch between the DataSnap Server projects and the
DataSnap Client project at design-time, we can add the DataSnap client project to the same
project group. Any project can be a DataSnap client, but for this demo I'm using a VCL
Forms application and save it in DataSnapClient.dpr with the form in ClientForm.pas. Where
the DataSnap Server category of the Tool Palette contains the six DataSnap (server)
components, the DataSnap Client category does not contain the components we need to
use right now:

HWE Tool Palette
T v| L\\:. |), Search
[= DataSnap Client

tF TDCOMConnection
Eg TSocketConnection
éﬁ TaimpleObjectBroker
@E TWebConnection

A2 TConnectionBroker
B9 TsharedConnection
Ea TlLocalConnection

i@ TDSProviderConnection

The components in the DataSnap Client category are the “old” DataSnap components,
which can still be used, but are no longer the recommended way of using DataSnap.

There is one exception: the new TDSProviderConnection component, which can be used to
connect an “old” DataSnap server to a new DataSnap client (something I'll show in section
3.2).

Instead of the DataSnap Client category, we must look at the dbExpress category, where a
new component called TSQLServerMethod can be found (note from the next screenshot that
this new component can be identified easily, since it's the one with TSqgl in its prefix instead
of TSQL that the existing dbExpress components still have).

HWE Tool Palette

T, v| k3 |), Search
[= dbExpress

?g TaOLConneckion
8= TSQLDakaset

24 TS0LOuery

¥ TsoLStoredProc
E3 TSOLTable
) TsqlserverMethod

B, TSQLMonitor

i3 TSimpleDataget

-16 -

The TSqlServerMethod component can be used to call remote methods from a DataSnap
server, but it needs to connect to the DataSnap server first.

The connecting can be done using a TSQLConnection component — and not using one of
the older TxxxConnection components. In order to facilitate this, the TSQLConnection
component has a new driver name in the Driver drop-down list, called DataSnap.

So, place a TSQLConnection component on the ClientForm, and set its Driver property to
DataSnap. As a result, the Driver property will show a plus sign (on the left of the property
name), and we can expand the property to show all subproperties.

;‘5; Object Inspector oz
SQLConneckionl TSOLConneckion |E|

Properties | Events

Connected False
ZanneckionMarne
=l|Driver Datasnap
BufferkESize 3z
CommunicationProtocol
Conneck Timeout
DsAuthPassword
DsauthlUser
* |HostMame |
PasswWord
Part 211
ServerConneckion
LRLPath
UserMarne

Deleqatebams

4| DeleqateCannection

GetDriverFunc

KeepConnection | True
LibraryManme

LoadParamsonConnect False
LoginPrompk | True

Mame SOLConnectionl
Params (TSkrings)
+|TableScope [t=Table, tsiiew]
Tag]

WendorLib

Note that by default, if the CommunicationProtocol property is left empty, the
TSQLConnection will use TCP/IP as protocol (over the specified port 211).

The BufferKBSize is set to 32 (KB), and the Port is set to 211 by default — just as on the Server
side. For real-world situations, | always change the Port number from 211 to something else
(at both the server side and the client side), since Port 211 is a bit too well-known as the port
to connect to DataSnap servers.

The HostName, UserName and Password are used to connect to the DataSnap server. For a
local test, we can set the HostName set to localhost, but in general you can enter any host
name, DNS name or direct IP number as value for this property.

Do not forget to set the LoginName property of the TSQLConnection component to False to
avoid the login dialog.

Once the TSQLConnection Driver properties have been specified, we can set the Connected
property to True in order to (try to) make a connection to the DataSnap server. Note that the
DataSnap Server must be running at the server side in order to make the connection!

-17 -

2.2.1. DATASNAP CLIENT CLASSES

Once you've verified that the connection can be made, we can right-click on the
TSQLConnection component and select the Generate DataSnap client classes option, This
will produce a new unit, by default called Unitl, with a class called TServerMethods1Client
(the actual name of the DataSnap Server methods class at the server side with the “Client”
part added to it). Save this unit in ServerMethodsClient.pas.

The definition of the generated TServerMethods1Client class should be as follows:

type

TServerMethodslClient = class

private
FDBXConnection: TDBXConnection;
FInstanceOwner: Boolean;
FEchoStringCommand: TDBXCommand;
FServerTimeCommand: TDBXCommand;

public
constructor Create (ADBXConnection: TDBXConnection); overload;
constructor Create (ADBXConnection: TDBXConnection;

AInstanceOwner: Boolean); overload;

destructor Destroy; override;

function EchoString(Value: string): string;
function ServerTime: TDateTime;
end;

As you can see, there are two constructors for the TServerMethods1Client class, one
destructor and there should be the two server methods we defined at the DataSnap server
side.

In order to use these methods, add the ServerMethodsClient unit to the uses clause of the
ClientForm, place a TButton component on the client form, and write the following code in
the OnClick event handler:

procedure TForm2.ButtonlClick(Sender: TObject);

var
Server: TServerMethodslClient;
begin
Server := TServerMethodslClient.Create (SQLConnectionl.DBXConnection) ;
try
ShowMessage (DateTimeToStr (Server.ServerTime))
finally
Server.Free
end;
end;

This code will create the instance of the TServerMethods1Client, then call the ServerTime
server method, and finally destroy the proxy to the DataSnap server again.

Clicking on this button will produce the messagebox with the value of the current server
time, as expected.

P -

Datasnapclient @

10,/14,/2009 7:42:04 PM

| leave it as exercise for the reader to test the EchoString method as well in a similar way.

-18 -

2.2.1.1. HTTP COMMUNICATION PROTOCOL

Note that | mentioned the default CommunicationProtocol TCP/IP of the TSQLConnection
component. This also means, we do not see any HTTP Trace messages (that we defined in
section 2.1.1.1.4). However, it's not hard to change the communication protocol: just enter
HTTP as value for the CommunicationProtocol sub-property of the TSQLConnection’s Driver
property. Note that this also means that you need to modify the Port property, since 211 was
used for TCP/IP. Make sure to specify the same value for Port that was specified for the
TDSHTTPService component in the ServerContainer.

After you've made these changes and run the DataSnap Client again, there’s a good chance
you will see the following application error:

Spplication Errar @

3 Exception TOBEXError in rmodule DataSnapClient.exe at 00173069,
' Pratocol HTTP can be used after an adequate instance of
TDOEXCommunicationLayer is registered with
TDEXCommunicationLayerFactone,

The solution for this error is to add the DSHTTPLayer unit to the uses clause (of the
ClientForm for example) of the DataSnap Client.

2.2.1.2. HTTP AUTHENTICATION

One of the benefits of using the HTTP communication protocol is the ability to include HTTP
Authentication. This is supported at the DataSnap Server side by the
TDSHTTPServiceAuthenticationManager component, as covered in section 2.1.1.1.5.

As soon as the OnHTTPAuthenticate event handler is implemented, and a check for HTTP
Authentication is made there, we need to ensure we're passing the right information in order
to have the TDSHTTPServiceAuthenticationManager allow us access. Otherwise, you will get
an HTTP/1.1 401 Unauthorized error:

Datasnapclient @

-

'8' HTTR/L1 401 Unauthorized.

To pass the HTTP Authentication username and password information from the DataSnap
Client to the DataSnap Server, and more specifically the TDSHTTPServiceAuthentication
component, we need to fill the DSAuthUser and DSAuthPassword properties of the
TSQLConnection component (on the client form).

-19 -

;'5; Object Inspector &3
SOLConnectionl TSGLConneckion |Z|

Properties | Events

Connecked False

ConnectionMarne
=I|Drivver Datasnap
BufferkBSize 3z
CammunicationPreHTTP
CanneckTimeouk
DaauthPassword |Swark
DsauthUser Bob
|HostMame |
Passiord
Port 8080
ServerConnection
IRLPath
serMarne
DelegateManms
H| DelegateConneck
GetlriverFunc
keepConnection | True
LibraryMame
LoadParamsOnConr || False

LoginPrompt False

Marme SQLConnectionl

Params (Takrings)
+|TableScope [tsTable, ksview]

Tag]

YendorLib

Note that we should also specify a value for the HostName here, unless we're testing with a
DataSnap Server on the same local machine.

2.3. DATASNAP SERVER DEPLOYMENT

The example works fine when both the server and client are running on the same local
machine, but in real-world situations, the DataSnap Server should be running on a server
machine, with one or more clients connected to this server machine over the net. The
machine where the DataSnap Server application is deployed to is most often a machine
without Delphi installed. This means that it may be a consideration to compile the DataSnap
Server without run-time packages enabled, so you get one big executable.

Since we haven't used any data-access components right now, there is no need for any
additional database drivers or external DLLs at this time.

2.3.1. DATASNAP CLIENT DEPLOYMENT

Assuming the DataSnap Client application is running on a different machine than the
DataSnap Server application, we should make sure the client can connect to the server. In
order to realize this, the TSQLConnection component on the client form should not only
specify the values for the CommunicationProtocol and Port sub-properties of the Driver
property, but also a value for the HostName. Try to avoid assigning an IP-address here, but
use logical DNS name wherever possible. For my DataSnap servers, for example, | can use
the www.bobswart.nl HostName value (note that you do not have to specify the http:// prefix,
since the actual protocol used should be specified in the CommunicationProtocol).

-20 -

http://www.bobswart.nl/

3. DATASNAP AND DATABASES — WHERE YOU
WANT IT

Apart from using the Delphi 2010 DataSnap framework to build simple server methods, we
can also add database access to the server, turning the architecture in a multi-tier database
application — where the DataSnap Server connects to the database, but the DataSnap Clients
are thin or smart clients, without the need for a database driver (at the client side).

For the DataSnap example we've built so far, we've used only the SQLConnection
component and the generated client classes directly, but we can also use the two new
DataSnap components TsqlServerMethod and TDSProviderConnection.

First, we need to ensure that the server actually exposes a TDataSet, so return to the
ServerMethodsUnitDemo and place a TSQLConnection component on the data module.
Connect the TSQLConnection component to your favorite DBMS and table (in my example, |
will connect to the Employees table from the BlackfishSQL Employees example database).

In order to do that, place a TSQLConnection component on the ServerMethodsl designer
area (in the ServerMethodsUnitDemo.pas unit). Set the Driver property of the
TSQLConnection component to BlackfishSQL. Then, open up the Driver property and set the
Database property to the path to the employee.jds in either C:\Documents and Settings\All
Users\Documents\RAD Studio\7.0\Demos\database\databases\BlackfishSQL on Windows
XP, or C:\Users\Public\Documents\ RAD
Studio\7.0\Demos\database\databases\BlackfishSQL on Windows Vista or Windows 7.

Make sure the LoginPrompt property of the TSQLConnection component is set to False, and
then try to set the Connected property to True to see if you can open up the connection to
the Employee.jds database.

Next, place a TSQLDataSet component next to the TSQLConnection component, and
connect its SQLConnection property to the TSQLConnection component.

ﬁ Welcomne Page @ ServerMethodsUnitCemo

...... E}[q_ﬂq.
R ﬂ::::::::%%&:::::::::
L Loa0LC (o {n) A
Lo SuLconnectionl o et

Leave the CommandType set to ctQuery, and double click on the ellipsis property for the
CommandText property to enter an SQL query.

-21 -

P "

@' CormmandText Editor '?'@

Connection: Table Scope:

ServerMethods1, QL onneckh kS Sy nonym
ksSwsTable

| ksTahle

* |] Eshigw ’ Get Database Objects]

Schema Mame:

Tables: S0

ADDRESSES & | select EMP_MO, FIRST_MAME, LAST_MAME, -

COUNTRY N HIRE_DATE, J08_COUNTRY from EMPLOYEE]
CLUSTOMER i

DEFARTMEMNT
EMPLOYEE

| Add Table to SGL |

Fields:

DEPT MO
EMP_MO
FIRST_MAME
FULL_MAME
HIRE_DATE
JoE_CODE
JOB_COUNTRY
JoB_GRADE
LAST _MAME
PHOME_EXT
SALARY

Add Field to SQL | m b

ok || cancel || e

SELECT EMP NO, FIRST NAME, LAST NAME, HIRE DATE, JOB COUNTRY FROM EMPLOYEE

Make sure the TSQLConnection component has its LoginPrompt and Connected property
set to False at design-time, and ensure that the Active property of the TSQLDataSet is also
set to False.

We should now add a public function to the TServerMethodsl1 class in the
ServerMethodsUnitDemo unit to return the contents of the TSQLDataSet component.

type

TServerMethodsl = class (TDSServerModule)
SQLConnectionl: TSQLConnection;
SQLDataSetl: TSQLDataSet;

private
{ Private declarations }

public
{ Public declarations }
function EchoString(Value: string): string;
function ServerTime: TDateTime;
function GetEmployees: TDataSet;

end;

As you can see from the TServerMethodl define, the new function is called GetEmployees
and the implementation can be as follows:

function TServerMethodsl.GetEmployees: TDataSet;

begin
SQLDataSetl.Open; // make sure data can be retrieved
Result := SQLDataSetl

end;

-22 -

Recompile the server and make sure it's running again. Note that if you've closed down the
DataSnap server, but are unable to recompile it, then it's most likely that the DataSnap server
project is still running.

3.1. TSQLSERVERMETHOD

Return to the DataSnap client application. The TSQLConnection component should no
longer be connected to the DataSnap Server (if it's still connected, then this may have been
a reason why you couldn’t recompile the DataSnap Server, since the process was still in use).
We can set Connected to True again, to refresh the information from the server, and can
then regenerate the client classes (using the right-mouse button again).

In order to overwrite the previous ServerMethodsClient unit, it's recommended to remove
the previous version of ServerMethodsClient from the project and then select the “Generate
DataSnap client classes” again. If we save the new generated unit in file
ServerMethodsClient.pas again, then we don't have to change the previous client code.
After the "Generate DataSnap client classes” task has run again, the generated
TServerMethods1Client class has been extended with the GetEmployees method (also
listing the ServerTime and EchoString functions which are still available):

type

TServerMethodslClient = class

private
FDBXConnection: TDBXConnection;
FInstanceOwner: Boolean;
FEchoStringCommand: TDBXCommand;
FServerTimeCommand: TDBXCommand;
FGetEmployeesCommand: TDBXCommand;

public
constructor Create (ADBXConnection: TDBXConnection); overload;
constructor Create (ADBXConnection: TDBXConnection;

AInstanceOwner: Boolean); overload;

destructor Destroy; override;
function EchoString(Value: string): string;
function ServerTime: TDateTime;
function GetEmployees: TDataSet;

end;

In order to use the GetEmployees method to retrieve the TDataSet, we can use a
TsqlServerMethod component from the dbExpress category of the Tool Palette. Place the
TsqlServerMethod on the client form, connect its SQLConnection property to
SQLConnectionl, and then open up the ServerMethodName drop-down list to show all
available methods we can call: a number of DSAdmin methods (which can be disabled by
setting the HideDSAdmin property of the TDSServer component to True), followed by 3
DSMetadata methods, 7 TServerMethods.AS_xxx methods (offering the original IAppServer
interface) and finally our TServerMethodsl1 EchoString, ServerTime and GetEmployees
methods.

For the current example, we need to select the TServerMethodsl.GetEmployees as value for
the ServerMethodName property. With this value for the ServerMethodName, the result of
the SqlServerMethod is a dataset with the employees records inside (or at least with the
result from our SQL statement).

We can use the usual TDataSetProvider, TClientDataSet and TDataSource chain now to
enable the data to be shown in a TDBGrid for example.

Place a TDataSetProvider on the client form and connect its DataSet property to the
SqlServerMethod component. Next, place a TClientDataSet component on the client form
and connect its ProviderName property to the DataSetProvider component. Leave the
RemoteServer property blank — this was only used in the “old” DataSnap approach, but no
longer in the new DataSnap architecture.

-23 -

Finally, place a TDataSource on the client form and connect its DataSet property to the
TClientDataSet component, and after that we can use a TDBGrid and TDBNavigator
component, connect their DataSource property to the TDataSource component and be able
to view the data in the client form.

In order to verify the connection at design-time, we can set the ClientDataSet’s Active
property to True. This will toggle the Active property of the SqlServerMethod (only for a
short while to retrieve the data, after which the Active property it set to False again), which
will set the Connected property of the TSQLConnection component to True to enable the
connection between the DataSnap client and the server.

The connection remains active, by the way, and the result is both the TClientDataSet and the
TSQLConnection being active, showing the data inside the TDBGrid:

& welcome Page @ ClientFarm :{a ServerMethodsClient

€3 Farm? o[B8]
?Bx:::::""”””::::::'”""'””""'””""'””:::::::::::
L.ZZZZZ| Buktonl R EEE’EE’ @ZZZIZZZZZZZ

CaOLConnechion | L L Ll

;;;;;;;;;;ZIZZZZZZZZIZZZZZZZZIZIZZZZZZIZIZZZZZZIZIZZZZZZZZIZZZZZZZ

..... D100 EMP_MG FIRST_MNAME LAST _MAME -

. SglserverMethodl D p 2 Robert Melson E

g@ 4 Bruce faung

i jl:; .t.S :‘Psil jd' '13 : S Kim Lamberk

[_"'_a_f r':T =T g Leslie Johnson

[0 ii%ﬂi Sl 9 phil Farest

..... ey

o ClientDataSet] | 11 k.1 Weston

[12 Tetri Les .

ZZZZIE;’ZZZZZ 14 Stewart Hall |l

..... Tl :

" DataSourcel | 0| f G

This provides an easy way to view the data and look at it in a read-only way. Note that |
specifically say “read-only”, since the TSQLServerMethod does not allow the
TDataSetProvider-TClientDataSet combination to send any updates from the DataSnap
client to the DataSnap server this way.

The TSQLServerMethod is a light-weight an convenient way to connect to read-only data.
This means that if you want to expose data from a DataSnap Server that people should never
be able to modify, then the current architecture, exposing TSQLDataSet results from the
TServerMethodsl class is a good idea.

However, sometimes we need to allow updates, in which case we must use a different
approach to expose the data.

3.2. TDSPROVIDERCONNECTION

If we want to apply updates, then we need for example a TDSProviderConnection
component which gives us a reference to a DataSetProvider at the server side, so we can not
only read the data, but also send the updates.

First, we need to make a change to the server data module at the server side, however, since
right now we only added a function to return the TDataSet, but now we must add an actual
TDataSetProvider and make sure that's exported from the DataSnap server to the DataSnap
clients. So, return to the ServerMethodsUnitDemo unit and place a TDataSetProvider
component next to the TSQLDataSet, pointing the DataSet property of the

=24 -

TDataSetProvider to the TSQLDataSet. We should also rename the TDataSetProvider
component, making sure that it has a meaningful like dspEmployees.

i3 welcome Page @ ClientForm | [ServerMethodsUnitDema @ ServerMethodsClient

...... L T S
o ﬂ.::::::::%ﬂ%:::::::::::::::::::::::::::::::
L a0l Kionl . .. i aE @
R L L R
............................] SRR
............................ P
T denFmployess ool

Now, recompile the DataSnap server and run it again, so we can modify the client in order to
make changes to the exposed data.

3.2.1. TDSPROVIDERCONNECTION CLIENT

To change the DataSnap Client in order to make use of the exposed TDataSetProvider
component, we have to remove the TSQLServerMethod and TDataSetProvider components
from the client form, but we need to add a TDSProviderConnection component instead.
Point the SQLConnection property of the TDSProviderConnection to the TSQLConnection
component, connecting to the DataSnap Server. We also need to enter a value for the
ServerClassName property of the TDSProviderConnection. It's a bit unfortunate that we (still)
do not get a drop-down list here. Right now, we must manually enter the name of the
TDSServerModule, which was TServerMethodsl in our case.

In the previous example, the TClientDataSet only connected its ProviderName to the
DataSetProviderl. However, using the TDSProviderConnection component, we must first
assign the RemoteServer property of the TClientDataSet to the TDSProviderConnection
component, and then select a new value for the ProviderName property (which was still
assigned to the DataSetProviderl value by the way, but should now point to dsEmployees —
the more descriptive name of the TDataSetProvider component which was exposed from the
DataSnap Server).

The drop-down combobox for the ProviderName property should now show the
dspEmployees option (the name of the TDataSetProvider component which is exported from
the ServerDataMod unit).

Now, we can set the Active property of the TClientDataSet component to True again in order
to view live data at design-time:

-25-

&3 welcome Page @ ClientFarm | B ServerMethodsUnitDema @ ServerMethodsClient

3 Farm? =5 EoE =
PB}‘:::::..........::::::..............................:::::::::::
7;.:::::| Butkonl L E”E”EEE @Z:::::::Z::
SQLConnechion © o . L
[l lae e) EMPNO FIRST_NAME LAST_MNAME HIRE_DATE -
foonos b oo dU Z Robert Melson 1212511958 9:00:00 &M =]
T it S 4 Bruce Young 12251988 :00:00 AM -
[5 Kim Lambert 2/6(1959 9:00:00 AM
[g Leslie Jahnsan 41571939 2:00:00 &AM
Eﬂ 9 Phil Forest 4/17/1959 9:00:00 &M
- ClientDataset] 11 K. 1. Weston 1/17/1990 9:00:00 AM
[12 Terti Lee 5/1{1990 9:00:00 AM :
ol 14 Stewart Hall /41990 :00:00 &AM - |
| DataSourcel | | | * E

Setting the Active property of the TClientDataSet component will also set the Connected
property of the TSQLConnection component to True. Note that it's not a good idea to leave
these two properties set to True in the client form at design-time. First of all, if you open the
DataSnap Client project in the Delphi IDE, it will attempt to make a connection to the
DataSnap Server, which may fail if the server is not up-and-running. Second, if you start the
application at run-time, and no connection is available, then the application will also fail with
an exception. This prevents you from using the application on local data, rendering it useless
if no connection is present.

A better way is to include some menu option or button to explicitly connect the
TSQLConnection component and/or activate the TClientDataSet. This is also a great
moment to include username/password information, which we'll cover later. For now, make
sure the Active property of the TClientDataSet is set to False, as well as the Connected
property of the TSQLConnection component. Then, place a button on the client form, and in
the OnClick event handler open the TClientDataSet explicitly.

procedure TForm2.Button2Click (Sender: TObject);
begin

ClientDataSetl.Open;
end;

Time to add some code to actually change the data (at the client side), and send the
changes back to the server.

3.2.2 DATABASE UPDATES

There are actually two ways to send the changes we've made at the client back to the server:
automatic or manual. Both call the same method in the end, but the invocation is either
automatic or user-driven, both with advantages and disadvantages.

For the automatic approach, we can use the OnAfterinsert, OnAfterPost and OnAfterDelete
events of the TClientDataSet, since these are the methods that have made changes to the
data. In the event handlers — which can be shared in a single implementation — we can call
the ApplyUpdates method of the TClientDataSet, sending the changes, also called “"Delta”
back to the server to be resolved back in the database.

procedure TForm2.ClientDataSetlAfterPost (DataSet: TDataSet);

-26 -

begin
ClientDataSetl.ApplyUpdates (0) ;
end;

If something bad has happened (like a record no longer found) during the update, we can
get feedback in the OnReconcileError event of the TClientDataSet, which is covered in more
detail in section 3.2.3.

The manual way of sending the updates back to the DataSnap Server also makes use of the
TClientDataSet's ApplyUpdates method, but this time the method should not be called in
the OnAfterinsert, OnAfterPost and OnAfterDelete event handlers. Instead, we should add a
button on the client form to allow the user to explicitly post the updates back to the server.

procedure TForm2.btnUpdateClick (Sender: TObject);
ClientDataSetl.ApplyUpdates (0) ;
end;

The advantage of doing the automatic call to ApplyUpdates is of course that the user will
never “forget” to apply any changes back to the server. However, the disadvantage is that
there is no undo possibility: once posted, the data is applied to the server. On the other
hand, if the manual approach is used, then all changes are kept at the client side - inside the
memory of the TClientDataSet component. This allows the user to undo certain parts of the
changes: either the last change, a specific record or the entire pending updates. Clicking on
the "update” button to explicitly call the ApplyUpdates methods when the user is ready. The
possible danger is that the user could “forget” to click on the update button, so we should
add a check to the form or application to prevent it from closing when there are still changes
left in the TClientDataSet. The latter can be checked by looking at the ChangeCount
property of the TClientDataSet.

3.2.3. RECONCILE ERRORS

The ApplyUpdates method of the TClientDataSet component has one argument: the
maximum number of errors that it will "allow" before stopping with applying (more) updates.
So what if two clients connect to the DataSnap Server, obtain the Employees data and both
make some changes to the first record. According to what you've build so far, both clients
could then send the updated record back to the DataSnap Server using the ApplyUpdates
method of their TClientDataSet component. If both pass zero as value for the ""MaxErrors"
argument of ApplyUpdates, then the second one to attempt the update will be stopped. The
second client could pass a numerical value bigger than zero to indicate a fixed number of
errors/conflicts that are allowed to occur before the update is stopped. However, even if the
second client passed -1 as argument (to indicate that it should continue updating no matter
how many errors occur), it will never update the records that have been changed by the
previous client. In other words: you need to perform some reconcile actions to handle
updates on already-updated records and fields.

Fortunately, Delphi contains a very useful dialog especially written for this purpose. And
whenever you need to do some error reconciliation, you should consider adding this dialog
to your DataSnap Client application (or write one yourself, but at least do something about
it).

To use the one available in Delphi, just do File | New - Other, go to the Delphi Files
subcategory of the Delphi Projects in the Object Repository and select the Reconcile Error
Dialog icon.

-27 -

I

@ Mews Therns @
4 7] C++Builder Projects O, Search
P C++Builder Files
Delphi Projects TE % E
Delphi Files = el ===
Inheritable Ikems Abauk b Component Daka Module Dialag with
Web Documents Help (Ho...
0 @ O R
Diglog with Dwal lisk box Form Frame
Help (Mertical)
BHHL = o =
. = 89 -
rSBuild Password Reconcile Standard
Targets File Dialog Error Dialog Dialog ...
=
Tabbed pages Thread Object IInik
@ Copy) Inherit i Use
I] I Cancel ‘ I Help
Once you select this icon and click on OK, a new unit RecError.pas is added to your

DataSnapClient project. This unit contains the definition and implementation of the Update

Error dialog that can be used to resolve database update errors.

i} welcome Page @ ServerMethodslnitDerno @ RecErrar
O

O

Update Error
. Update Tvpe: . Modified

-

- Error Message:!

-28 -

An instance of the ReconcileErrorForm will be created dynamically, on-the-fly, when it is
needed. So when or how do you use this special ReconcileErrorForm? Well, it's actually very
simple. For every record for which the update did not succeed (for whatever reason), the
OnReconcileError event handler of the TClientDataSet component is called. This event
handler of TClientDataSet is defined as follows:

procedure TForm2.ClientDataSetlReconcileError (DataSet: TClientDataSet;
E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

This is an event handler with four arguments: first of all the TClientDataSet component that
raised the error, second a specific ReconcileError that contains a message about the cause of
the error condition, third the UpdateKind (insert, delete or modify) that generated the error
and finally as fourth argument the Action that you feel should be taken.

As Action, you can return the following possible enum values (the order is based upon their

actual enum values):

- raSkip - do not update this record, but leave the unapplied changes in the change log.
Ready to try again next time.

- raAbort - abort the entire reconcile handling; no more records will be passed to the
OnReconcileError event handler.

- raMerge - merge the updated record with the current record in the (remote) database,
only changing (remote) field values if they changed on your side.

- raCorrect - replace the updated record with a corrected value of the record that you
made in the event handler (or inside the ReconcileErrorDialog. This is the option in which
user intervention (i.e. typing) is required.

- raCancel - undo all changes inside this record, turning it back into the original (local)
record you had.

- raRefresh - undo all changes inside this record, but reloading the record values from the
current (remote) database (and not from the original local record you had).

The good thing about the ReconcileErrorForm is that you don't really need to concern
yourself with all this. You only need to do two things. First, you need to include the
ErrorDialog unit inside the DataSnap Client main form definition. Click on the DataSnap
Client Form and do File | Use Unit to get the Use Unit dialog. With the Client Form as your
current unit, the Use Unit dialog will list the only other available unit, which is the ErrorDialog.
Just select it and click on OK.

The second thing you need to do is to write one line of code in the OnReconcileError event
handler in order to call the HandleReconcileError function from the ErrorDialog unit (that you
just added to your ClientMainForm import list). The HandleReconcileError function has the
same four arguments as the OnReconcileError event handler (not a real coincidence, of
course), so it's a matter of passing arguments from one to another, nothing more and
nothing less. So, the OnReconcileError event handler of the TClientDataSet component can
be coded as follows:

procedure TEFrmClient.ClientDataSetlReconcileError (DataSet: TClientDataSet;
E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

begin
Action := HandleReconcileError (DataSet, UpdateKind, E)

end;

3.2.4. DEMONSTRATING RECONCILE ERRORS

The big question now is: how does it all work in practice? In order to test it, you obviously
need two (or more) DataSnap Client applications running simultaneously. For a complete
test using the current DataSnap Client and DataSnap Server applications, you need to
perform the following steps:

-29-

- Start the DataSnap Server application.

- Start the first DataSnap Client, and click on the Connect button.

- Start the second DataSnap Client and click on the Connect button. Data will be obtained
from the same DataSnap Server that's already running.

- Using the first DataSnapClient, change the field "FirstName" for the first record.

- Using the second DataSnap Client, also change the field "FirstName" for the first record.

- Click on the "Apply Updates' button of the first DataSnap Client. All updates will be
applied without any problems.

- Click on the "Apply Updates' button of the second DataSnap Client. This time, one or
more errors will occur, because the first record has its ""FirstName" field value changed
(by the first DataSnap Client), and for this and possibly more conflicting records, the
OnReconcileError event handler is called.

- Inside the Update Error dialog, you can now experiment with the reconcile Actions (skip,
abort, merge, correct, cancel and refresh) to get a good feeling of what they do. Pay
special attention to the differences between Skip and Cancel, and the differences
between Correct, Refresh and Merge.

Skip moves on to the next record, skipping the requested update (for the time being). The
unapplied change will remain in the change log. Cancel also skips the requested update, but
it cancels all further updates (in the same update packet). The current update request is
skipped in both cases, but Skip continues with other update requests, and Cancel cancels
the entire ApplyUpdates request.

Refresh just forgets all updates you made to the record and refreshes the record with the
current value from the server database. Merge tries to merge the update record with the
record on the server, placing your changes inside the server record. Refresh and Merge will
not process the change request any further, so the records are synchronized after Refresh
and Merge (while the change request can still be redone after a Skip or Cancel).

Correct, the most powerful option, actually gives you the option of customizing the update
record inside the event handler. For this you need to write some code or enter the values in
the dialog yourself.

3.3. DATASNAP “DATABASE"” DEPLOYMENT

Deployment of a DataSnap Server that uses databases can be a bit more involved than the
deployment of the simple DataSnap Server we started with. For the client application,
nothing changes - it’s still a thin / smart client application, and can be deployed as stand-
alone executable if you add the MidasLib unit to the uses clause.

For the DataSnap Server, we must now also deploy the database drivers. Which drivers and
files depends on the database you selected. When using DBX4, make sure to check the
TSQLConnection component as well as the dbxconnections.ini and dbxdrivers.ini files which
can be found in the C:\Documents and Settings\All Users\ Documents\RAD
Studio\dbExpress\7.0 directory on Windows XP or in the C:\Users\Public\Documents\RAD
Studio\dbExpress\7.0 directory on Windows Vista and Windows 7.

The dbxdrivers.ini file will specify — for the given Driver — the DriverPackageLoader and
MetaDataPackagelLoader (usually pointing to the same package). For BlackfishSQL, this
means DBXClientDriver140.bpl, which should be deployed as well as Blackfish itself. For
more information on BlackfishSQL deployment, see the file deploy_en.htm in the RAD
Studio\7.0 directory.

-30 -

3.4. REUSING EXISTING REMOTE DATA MODULES

If you have existing TRemoteDataModule classes, then you can still use these in combination
with the new DataSnap. But you have to cut some functionality from the server, especially the
COM-stuff.

First of all, if it's an existing DataSnap Server application that you want to migrate, and not
just the remote data module, you need to unregister the DataSnap server by running the
executable from the command-line with the /unregister command-line option. If you don't
do that right from the start, you will not be able to unregister the remote data module from
the registry (unless you can restore a backup of the project later).

In the unit for the remote data module, we must remove the code from the initialization
section. If you want to keep your unit compatible between Delphi 2007-or-below, and 2009-
or-later, you can place this code inside {$IFDEF}s as follows:

{SIF CompilerVersion >= 20}
initialization
TComponentFactory.Create (ComServer, TRemoteDataModule2010,
Class_RemoteDataModule2010, ciMultiInstance, tmApartment);
{SIFEND}
end.

We should also remove the UpdateRegistry routine from the project, or place it in {$IFDEF}s
as well.

{SIF CompilerVersion >= 20}
class procedure UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string); override;
{SIFEND}

The most important change — to turn the project into a COM-less DataSnap server — involves
the removal of the type library (or .ridl files) and the type library import unit. These cannot be
left in {IFDEF}s, so if you need to keep a Delphi 2007 or below (COM-enabled) and Delphi
2009 or later (COM-less) version of the DataSnap server you need to make a copy of the
project now. We should use a TDSServerClass component in the DataSnap server application
and return the TRemoteDataModule class, just as we've done before.

Finally, we should make sure that all custom methods that were added to the
TRemoteDataModule are moved from the protected section (the default in COM-enabled
DataSnap) to the public section (so method info is generated in the COM-less DataSnap
architecture).

4. DATASNAP FILTERS — HOW YOU WANT IT

In this section | will explain how filters work, and how we can use existing filters (such as
compression) or build new DataSnap filters ourselves. DataSnap Filters are special DLLs that
intercept the communication byte stream, and can actually operate in a whole chain of filters.
So we can combined compression and encryption for example, or logging with compression,
etc.

There are two places where we must specify which filter(s) the DataSnap Server and Client
should use. For the Server, we must specify a list in the Filters property of the
TDSTCPServerTransport component. And for the Clients, we must specify a similar list of
filters in the uses clause of the DataSnap Client project. This is enough for the client, since
each DataSnap filter should automatically register itself for use.

During the OnConnect event handler, we can examine the registered filters that are used for
the connection, for example (using a custom function LoglInfo to write this information to a
logfile):

-31-

procedure TServerContainerl.DSServerlConnect (
DSConnectEventObject: TDSConnectEventObject);
var
i: Integer;
begin
LogInfo ('Connect ' + DSConnectEventObject.ChannelInfo.Info);
for i:=0 to DSConnectEventObject.Transport.Filters.Count-1 do
LogInfo (' Filter: ' +
DSConnectEventObject.Transport.Filters.GetFilter (i) .Id);
end;

4.1. ZLIBCOMPRESSION FILTER

As an example, let’s examine an existing DataSnap Filter, which ships with Delphi 2010
already, and can be used to compress the data stream between the DataSnap Server and
Client (and vice versa). I'm talking about the ZlibCompression filter, which can be found in
the DbxCompressionFilter unit.

Both the TDSTCPServerTransport component (for TCP/IP) and the DSHTTPService
component (for HTTP) have a Filters property that holds a TTransportFiltersCollection. We
can click on the ellipsis for the Filters property to edit the collection of filters. In this dialog,
we can add a new TTransportFilterltem, and then use the Obiject Inspector to set the Filterld
and some optional properties. Out-of-the-box, Delphi 2010 comes with the
ZLibCompression filter, which can be specified as Filterld here.

;‘5; Object Inspector o3

TTransportFilterCollection[0] TTransportFilterIbem E
Properties | Events

|FilkerId ZLibCompression F]
Properties FLibCompression

- y

@ Editing DSTCPServerTransportLFilters | £3 |
B8 4

0 - TTransportFilkerIkem

Note that apart from the Filters property at the TDSTCPServerTransport component at the
server side, we should also specify that we want to use this filter at the client side (to
compress the outgoing requests and decompress the incoming responses). For this, we only
need to add the DbxCompressionFilter unit to the uses clause of the ClientForm. That will
automatically register the TTransportCompressionFilter and make sure it's used to
communicate with the server.

If you do not add the DbxCompressionFilter unit to the uses clause, then running the client
will raise an exception with the message “Communication filter ZLibCompression is not
registered. Filter class needs to be registered in order to communicate with the server.”.

-32 -

P "

Dataznapclient @

- '. Cormrmunication filter ZLibCormpression is not registered. Filter class
" needs to be registered in order to cormmunicate with the server,

Ok

4.2. LOG FILTER

Delphi 2010 DataSnap is open to allow us to define our own transport filters. We can do this
by deriving a new class from the TTransportFilter type. In this new class, we can override the
base methods, and implement them. As an example, we can create a TLogFilter class as
follows:

unit LogFilter;
interface
uses
SysUtils, DBXPlatform, DBXTransport;

type

TLogFilter = class (TTransportFilter)

private

protected
function GetParameters: TDBXStringArray; override;
function GetUserParameters: TDBXStringArray; override;

public
function GetParameterValue (const ParamName: UnicodeString): UnicodeString; override;
function SetParameterValue (const ParamName: UnicodeString;

const ParamValue: UnicodeString): Boolean; override;

constructor Create; override;
destructor Destroy; override;
function ProcessInput (const Data: TBytes): TBytes; override;
function ProcessOutput (const Data: TBytes): TBytes; override;
function Id: UnicodeString; override;

end;

const
LogFilterName = 'Log';

The implementation of this class can be left empty on most places: since the only purpose of
the log filter is to log the data which is sent during the Processinput and ProcessOutput
methods, we can leave most of the other methods empty. The implementation of the non-
empty methods is as follows:

function TLogFilter.SetParameterValue (const ParamName, ParamValue: UnicodeString): Boolean;
begin

Result := True;
end;

constructor TLogFilter.Create;
begin

inherited Create;
end;

destructor TLogFilter.Destroy;
begin

inherited Destroy;
end;

function TLogFilter.ProcessInput (const Data: TBytes): TBytes;

begin
Result := Data; // log incoming data

-33-

end;

function TLogFilter.ProcessOutput (const Data: TBytes): TBytes;
begin

Result := Data; // log outgoing data
end;

function TLogFilter.Id: UnicodeString;
begin

Result := LogFilterName;
end;

Finally, an important part of the implementation of a DataSnap transport filter is the
registration part in the initialization and finalization section. This makes sure that the
DataSnap client can “find” the transport filter and use it when required.
initialization
TTransportFilterFactory.RegisterFilter (LogFilterName, TLogFilter);
finalization

TTransportFilterFactory.UnregisterFilter (LogFilterName) ;
end.

In order to use the transport filter in the DataSnap Server, we have to add it to the list of
Filter of the TDSTCPServerTransport or the TDSHTTPService component, as discussed
earlier. At design-time, the ZLibCompression filter is already known, but not any new filter
(unless we add them in a design-time package and install them). Fortunately, we can also
add the transport filters at run-time, by adding the filter unit to the uses clause of the
ServerContainerUnitDemo, and then manually adding the filter (by name) to the list of filters,
for example in the

procedure TServerContainerl.DataModuleCreate (Sender: TObject);

begin
DSTCPServerTransportl.Filters.AddFilter (LogFilterName) ;
DSHTTPServicel.Filters.AddFilter (LogFilterName) ;
DSHTTPServicel.Active := True;

end;

This will ensure that the server is using the LogFilter, and the client will be using it
automatically after the LogFilter unit is added to the uses clause of the client. Otherwise, the
following error message will be shown:

P "

Datasnapclient @

> . Communication filter Log is not registered. Filter class needs to he
' reqgistered in order to communicate with the sercer,

Note that each application — DataSnap Server and Clients — will get its own lodfile, so
although the same logging filter is used, we do not have to add information like ParamsStr(0)
about which target is actually producing the log message.

4.3. ENCRYPTION FILTER

Given the simple filter example from section 4.2, it should be clear that expanding on this
example and building your own, more complex, DataSnap Filters is not really that
complicated. In fact, a number of third-party filters are already available, and a DataSnap

-34-

Filters Compendium by Daniele Teti can be found at http://www.danieleteti.it/?p=168
containing no less than 9 additional filters for DataSnap 2010, divided into three groups. The
Hash group supports MD5, MD4, SHA1 and SHA512, the Cipher group supports Blowfish,
Rijndael, 3TDES and 3DES, and the Compress group supports LZO. Full source code is
available.

5. DATASNAP WEB TARGETS — HOW YOU WANT
IT (MORE)

Apart from Windows targets, there is also a wizard to produce ISAPI, CGl or Web App
Debugger targets. I'll first discuss the benefits of each of these targets, and also show how
we can produce a single project group with three different targets that sill share the
DataSnap custom units between them, so the result is a single project group with three
projects that just produce a different target for the same DataSnap server object.

Although the DataSnap server applications that we've built so far work fine, there are
moments where you are not able to deploy these server applications. For example because
you are unable or not allowed to open up the required ports on the firewall to allow clients
to connect to the server. Fortunately, in most situations where this is the case, there will be a
web site hosted on a web server, so port 80 is generally open (for the web server, that is).
And if we assume for a moment that Microsoft Internet Information Services (lIS) is used as
web server, then we can use the new DataSnap WebBroker Application wizard to produce a
project that can be deployed on IIS.

P

@ Mew Tterns @

4 7] Delphi Projects &, Search
----- Ackiver

----- Business

----- Datasnap Server
----- Delphi Files DatasSnap Datasnap | Server Module
..... Mulkitier Server ‘'ebBraker

----- VCL For the Web e lEElden

----- WebBroker
----- WebServices
----- WiehSnap

..... xML

----- Design Projects
----- Other Files

----- nit: Tesk

----- Web Documents

ok || cancel || hei

The DataSnap WebBroker Application wizard will offer three choices, one of which is actually
not a real WebBroker application, but merely a web app debugger client that should only be
used for debugging purposes. The Web App Debugger client is very powerful, since it allows

-35-

http://www.danieleteti.it/?p=168

us to use the Web App Debugger (available from the Tools menu of the Delphi IDE) as host
application while debugging the Web App Debugger Client DataSnap application.
Debugging a CGI or ISAPI/NSAPI web application is far less easy. So Web App Debugger is
a powerful choice while the application is still in development.

The remaining ISAPI/NSAPI Dynamic Link Library and CGI Stand-alone executable targets
can be selected for real DataSnap server projects.

Mewe DatasSnap WebBroker Application @

You may select from one of the fallowing bypes of YWworld
Wide Web server applications.

@) ISAPT/MSAPT Dynamic Link Library
2GI Skand-alone executable
Web App Debugger executable

¥ou may chaose from the Fallawing Datasnap options

| Support HTTP Authentication
| Add Server Methods Class

Anceskor: | TOeServerModule - |

| Include sample methods

[K, l | Zancel | | Help |

Note, however, that selecting a CGI Stand-alone executable is not a very good idea because
this executable will be loaded and unloaded for each incoming requests. Add the time to
connect to a database to perform some work, and you may get an idea about the
performance hit this application type will suffer. Using an ISAPI target will result in a DLL
which is loaded only once, and remains loaded in memory so subsequent requests (also from
other users) do not suffer from an additional performance penalty. The major downside of an
ISAPI DLL is that it's not easy to replace one (if you only have FTP access to the web server),
but there are enough ISAPI Managers out there to solve this task for you (contact your web
host provider for details).

Another downside of the ISAPI DLL target is that it's not easy to debug - you have to load 1IS
as host application, which doesn’t always work as planned. But that particular issue is solved
by the presence of the Web App Debugger executable — you only have to make sure to use
two projects, both using the same actual DataSnap custom methods and code. Which is a
good start for a first demo, adding some actual real-world techniques to ensure a working
skeleton.

5.1. WEB APP DEBUGGER TARGET

First, use the New DataSnap WebBroker Application wizard to create a new Web App
Debugger application. Specify something for the Class Name, such as DS-WAD and check
the “Support HTTP Authentication” option.

-36 -

Mew DataZnap WebBroker Application @

You may select from one of the following tvpes of World
Wide Web server applications.

ISAPTINSAPT Dynamic Link Library
i3l Stand-alone executable

@ Web App Debugger executable

Class Mame: DSWAD

You may choose from the Following Datasnap options

| Suppart HTTP Authenticatiaon
| fdd Server Methods Class

Anceskor: | TOaServerModule - |

| Include sample methods

[(04] | Cancel | | Help |

Once you click on OK, a new project will be created, with three units. If you don't have any
Projectl and Unitl files in your default projects directory, the project will be named Projectl,
and the units will be called Unitl, ServerMethodsUnitl and Unit2 respectively. The first unit
should be an empty form — this one is unique for the Web App Debugger executable, and
not needed for the other web targets of course. Save this unit in WADForm.pas. The second
unit is called ServerMethodsUnitl.pas and contains our server module, derived from
TDSServerModule as specified in the dialog. We'll get back to this unit in a moment, but we
can save it using the given name ServerMethodsUnitl.pas for now. The third unit is named
Unit2, and should be a web module with four components already present on it (three if you
didn’t check the “Support HTTP Authentication” option). This is the unit to receive the
incoming requests and distribute them over the DataSnap server modules in the project.
Save this unit in DSWebMod.pas.

Finally, save the project as DSWADServer.dproj to indicate that this project is the DataSnap
Web App Debugger Server.

5.2. ISAP| TARGET

Before we continue and modify and customize the ServerMethodsUnitl.pas and
DSWebMod.pas units, we should first add a new project to the project group, this time an
ISAPI/NSAPI Dynamic Link application. So, right-click on the ProjectGroup and select Add
New Project to get the Object Repository in order to start a new project. From the DataSnap
Server category, use the New DataSnap WebBroker Application wizard again to create a new
ISAPI/NSAPI Dynamic Link application. This time, you do not have to modify any option from
the bottom part of the dialog, since we're going to re-use the existing units from the
DSWADServer project.

-37 -

Mew DataZnap WebBroker Application @

You may select from one of the following tvpes of World
Wide Web server applications.

@ [SAPIMSAPT Dyvnamic Link Library
i3l Stand-alone executable

Wb App Debugger executable

You may choose from the Following Datasnap options

Suppart HTTP Authentication
| fdd Server Methods Class

fncestor: | TDEServerModule - |

| Include sample methods

[(04] | Cancel | | Help |

Click on OK to generate a new project (which will be added to the project group), again
called Projectl, with units ServerMethodUnit2.pas and Unitl.pas added to the new project.

Now, instead of using the new units ServerMethodUnit2.pas and Unitl.pas, we should use
the units ServerMethodUnitl.pas and DSWebMod.pas that are already part of the
DSWADServer project. So, right-click on the ServerMethodUnit2.pas node under the
Projectl.dll node and select Remove from Project. Click OK in the confirmation dialog (note
that if you didn't save them yet, you do not have to delete the ServerMethodUnit2.pas and
.dfm files from disk). Do the same with Unitl.pas, so the Projectl.dll contains no more units
now. Then, right-click on Projectl.dll and add both units DSWebMod.pas and
ServerMethodUnit2.pas to this project. Finally, rename Projectl to DSISAPIServer.dproj to
complete the project group.

You should now have one project group with two projects, sharing the DSWebMod and
DSSererMethodUnitl.pas units, as can be seen in the following screenshot:

-38 -

QE DSISAPIServer.dproj - Project Manager L

8 -2 @ -Selgl &~

File:
g_'ﬂ ProjectiGroupl
= @ DatwiaDServer . exe
i Build Configurations
) DawebMod, pas

EE DSwebMod.dfm
] serverMethodsUnitl pas

EE serverMethodsUnit1,dfm
@ WADForm.pas

EE WaDForm.dfm
= DSISAPIServer.dll

+- 4 Build Configurations

- [H p5webMod. pas

EE DswebMod.dfm
@ ServerMethodsUnitl, pas

EE serverMethodsUnitl, dfm

F

—|E}EDSISAPISEwer.dp... | '?EEMDEIEI Wigi a:%Data Explorer

This setting will allow you to build two projects, using DSWADServer as target for your
testing and debugging, and DSISAPIServer for the actual deployment of the DataSnap server
on lIS.

Before we continue by adding web methods to the ServerMethodsUnit1, we should first “fix”
the ISAPI/NSAPI project by removing from project file the code that creates an automatic
instance of the TDSServerModule. Since a TDSServerModule is ultimately also a data
module, just like the web module, we'll get an error message when trying to run the ISAPI
DLL, since there can be only one web module in the web broker application.

Open the DSISAPIServer.dpr project source code, and change the main begin-end block as
follows:

begin
CoInitFlags := COINIT MULTITHREADED;
Application.Initialize;
Application.CreateForm (TWebModule2, WebModule2);

// Application.CreateForm(TServerMethodsl, ServerMethodsl) ;
Application.Run;

end.

This will avoid the error message that only one data module is allowed. Note that you may
not see this error message when you actually call the (deployed) ISAPI DLL, but merely a
server error or time-out, so it's important to remember this issue.

5.3. SERVER METHODS, DEPLOYMENT AND CLIENTS

When adding functionality, we only have to work on the ServerMethodUnit1.pas unit, which
is shared by both targets. By default, one sample method is included already, but like the
Windows versions of the DataSnap Server, we can add two more methods (refer to section
2.1.4 for the components and source code needed on the Server Methods unit.

Once the server methods are implemented, we can deploy the ISAPI DLL on a web server
like Microsoft’s Internet Information Services. This is explained in detail in an article by Jim
Tierney at http://blogs.embarcadero.com/jimtierney/2009/08/20/31502 so | won't repeat it
again.

-39 -

http://blogs.embarcadero.com/jimtierney/2009/08/20/31502

In case you do not have a web server available for deployment, you can play along with the
DataSnap ISAPI Server as deployed on my server. Note that | have not exposed a
TDataSetProvider, nor am | returning any data in the GetEmployees method, but the
ServerTime and EchoString methods are working fine and should be enough to allow you to
write a test DataSnap client against this server.

Before you want to connect to the ISAPI DataSnap Server inside a client application, it may
be a good idea to use the Data Explorer to see if you can make a connection to the ISAPI
DataSnap Server. The Data Explorer has a new Category called DATASNAP now, and if you
open it up, there's a first connection available called DATASNAPCONNECTION that you can
modify (just right-click on it and select Modify Connection).

In this dialog, we can specify the Protocol, Host (you can use www.bobswart.nl if you do not
have your own web server available), Port, as well as the URL Path to the ISAPI DataSnap
Server application on the server, which is cgi-bin/DSISAPIServer.dll. Click on Test Connection
to make sure everything works.

-

Modify Connection £X

Data source:

"dbE xprezs [dbExpress Provider]"

D ataSnap Server address

Pratocal; hitp -

Host: vy, bobzwart nl

Fort: a0

Path: cgi-bin/DS1SAP S erver.dll

Authentication

Uzer name:
Password: Database Explarer @

S erver connection Test connection succeeded,

M ame:
I zer name
Pazzward:

| Advanced... |

ok (e]

Now, click on OK to close the dialog, and in the Data Explorer, you can now expand the
DATASNAPCONNECTION node to see the Tables, Views, Procedures, Functions and
Synonyms. As you can see, the Procedures include all DSAdmin, DSMetaData,
TServerMethods1.AS_xxx as well as our three custom server methods EchoString,
ServerTime and GetEmployees.

-40 -

http://www.bobswart.nl/

9% Data Explorer

3 dbEwpress

-7 BLACKFISHSOL

- DATASMAP
-3t DATASMAPCOMMECTION
----- Tables
APy Wiews
—-iF Procedures
I DSAdrmin G etPlatiomN ame
f @) D S&dmin FindPack ages
; DSAdmin FindClazzes
DSAdmin. Findk ethods
DSAdmin. CreateServerClaszes
DSAdrin. DropSererClazzes
DSAdmin. CreateServertethods
DSAdrin. DropServertd ethods
DSAdmin. GetServerClaszes
DSAdmin ListClazzes
DSAdmin. D ezcribeClass
DSAdrmin. Ligth ethodz
DSAdmin. D ezcrbetethod
DSAdmin. Getservertethods
DSAdrmin. Gets ervert ethodParameters
DSAdmin. G etConnection
DSAdrin. GetD atabazeConnectionProperties
DSMetadata GetProcedures
DSMetadata GetProcedureParameters
DShetadata GetD atabaze
TServertethods1.EchaSting
TServerMethodsz1. ServerTime
TServert ethods 1. G etE mplaye
TServertethods1.A5_Applull pdates
TServerMethod:1.A5_GetRecord:
TServertethods1 AS_DataRequest
TServerMethods1.AS_GetProvidert ames
TServerMethods1.AS_GetParams
: TServerethod:1.A5_RowRequest

; @; TServerMethods1.45_Execute

----- @ Functions
----- =0 Synaryrmz

[+

@3@3@3@@@@@@@@@@@@@@@@@@@@@@@@

Without the need to write a DataSnap client application, we can now test some of these
methods. For example the EchoString (to ensure that what we send is also coming back).

If we right-click on the TServerMethodsl1.GetEmployees procedure, we can select “View
Parameters”. This displays a new window in the IDE, where we can enter the value for the
Value parameter (for example “42"). Then, we can right-click on this new window and select
Execute to execute the remote server method. The result is shown as ReturnValue below:

-41 -

dbExpress:DATASHMAPCOMNECTICON: T3erverMethods] Echostring b

W

Stored procedure parameters:
O Data &
Returny'alue DbType String
Diirection Input
Parametert ame WYalue
Size 1}
Walug 42 c
= Misc 1
DhxD ataT ype 26
DbxSubT ype 1]
|sMullable False
Precizion 1]
Scale 1}
E Update
SourceCaolumn o
|
Returi/alue
» 42

This should prove that we can call the custom server methods from the DataSnap Server. In
order to connect the DataSnap Client application to the server, we only have to modify the
TSQLConnection properties. Previously, we connected to the Windows version of the
DataSnap Server, but now we have to modify these settings to connect to the Web version
instead.

,(5; Object Inspectar g2
SQLConnectionl TSl onnection E
Properties | Events
Connected [T False
Connectionbarmne
=l|Drriver Datasnap
BufferkBSize 32
CommunicationProtocol |HTTP
ConneckTimeaut
DSAauthPassword Swart
DSAuthser Bob
HostMarne www.bobswart.nl
Passiord
Port 80
ServerConneckion
URLPath cgi-bin/DsISAPIServer.dil
UserMame
Delegatehlame
:DelegateConnection
GetDriverFunc
KeepConneckion True
LibraryMame
LoadParamsOniConnect [T]False
LoginPrompt [False
* |Mame SOLConnectionl
Params (T5trings)
+| TableScope [ksTable, tsiiew]
Tag u]
YendorLib

Remember if you really want to use the DSISAPIServer.dll from my web server that I've
disabled the TDataSetProvider and am not returning any data in the GetEmployees
methods, but you can call the ServerTime and EchoString methods.

=42 -

6. REST AND JSON — HOW YOU WANT IT

DataSnap 2010 supports both REST and JSON. DataSnap 2010 features REST support for
DataSnap HTTP requests. For example, if the URL to the DataSnap Server is
http://www.bobswart.nl/cgi-bin/DSISAPIServer.dll, then we can add /datasnap/rest to this
URL, followed by the name of the Server Method class, the method, and the arguments.
The generic syntax is as follows:

http://server/datasnap/rest/<class>/<method>/<parameters>

For the ServerTime method in the TServerMethod1 module of the DSISAPIServer.dll on my
server, the URL is as follows:

http://www.bobswart.nl/cgi-bin/DSISAPIServer.dll/datasnap/rest/TServerMethodsl/ServerTime

Calling this REST-enabled URL results in a JSON result, for example in the browser:

& hittpef v bio bswwart. nlfogi-bin/DSISAPISepee . dllfdatasnaprest/ T Serverblethods 1 Server Time - .. E\@
@ l\r/,' L |g_ e bobswart.nlfcgi- R ‘ @ ‘ +y | A | |b Bing P "
£7 Windows Live Bing B - What's Mewe Profile - Y] Zignin
5.5 Favorites j.;.; & Suggested Sites £ | Get More Add-ons ~
3
D hittpeffusanibobswart.nlfcgi-bin/D3L. S v B v [@ v Page v Safety v Tools v @@v
-
{"result":["200%-10-16 16:01:33.145"]}
Done & Internet | Pratected Made: On fg v MUk -

The result visible in the browser is a JSON construct:

{"result":["2009-10-16 16:01:33.145"]}

Marco Cantu will cover more REST details in his white paper on Delphi 2010 and REST
clients.

6.1. CALLBACKS

Apart from being the result of REST-enabled calls to the DataSnap Servers, JSON is also
used when implementing callback methods. DataSnap 2010 supports client-side callback
functions, executed in the context of a server method. This means that during the execution
of a server method (which is called by the DataSnap client), the server can call a callback
function which was passed as argument to the server method by the client.

As an example, let's modify the EchoString method in order to add a callback function to it.
The definition of the method EchoString should be modified as follows:

function EchoString(Value: string; callback: TDBXcallback): string;

The TDBXcallback type is defined in the DBXJSON unit. Before we can implement the new
EchoString method, we should first see how the callback method can be defined at the client
side (after all, it is a client method which can be called by the server).

At the client side, we must declare a new class, derived from TDBXCallback, and override the
Execute method.

type
TCallbackClient = class (TDBXCallback)

-43-

http://www.bobswart.nl/cgi-bin/DSISAPIServer.dll
http://server/datasnap/rest/%3cclass%3e/%3cmethod%3e/%3cparameters
http://www.bobswart.nl/cgi-bin/DSISAPIServer.dll/datasnap/rest/TServerMethods1/ServerTime

public
function Execute (const Arg: TJSONValue): TJSONValue; override;
end;

Inside the Execute method, we get the Arg argument of type TISONValue, which we can
clone and then get our hands on the actual contents. The Execute method could also return
a TJSONValue itself, so I'm just return the same value again

function TCallbackClient.Execute (const Arg: TJSONValue): TJSONValue;
var
Data: TJSONValue;

begin
Data := TJSONValue (Arg.Clone);
ShowMessage ('Callback: ' + TJSONObject (Data) .Get (0) .JSonValue.value);
Result := Data

end;

For this example, the callback method will show the value that was passed to the EchoString
method, before the method actually returns (i.e. while the method is still being executed).
The implementation of the new EchoString method at the server side should now put the
string value inside a TISONODbiject and pass it to the callback.Execute method, as follows:

function TServerMethods2.EchoString(Value: string; callback: TDBXcallback): string;
var
msg: TJSONObject;
pair: TJSONPair;
begin
Result := Value;
msg := TJSONObject.Create;
pair := TJSONPair.Create ('ECHO', Value);
pair.Owned := True;
msg.AddPair (pair);
callback.Execute (msqg) ;
end;

Note that the callback function is executed (at the client side) — and will return — before the
actual EchoString method finished at the server side.

Finally, the call to the EchoString method at the client side also needs to change, since we
now need to pass a callback class — an instance of our new TCallbackClient - as second
argument.

var
MyCallback: TCallbackClient;
begin
MyCallback := TCallbackClient.Create;
try
Server.EchoString (Editl.text, MyCallback);
finally
MyCallback.Free;
end;
end;

This simple example demonstrates how to use client-side callback methods in DataSnap
2010.

7. DATASNAP AND .NET — WHERE YOU WANT
IT (MORE)

Delphi Prism 2010 is used to build a DataSnap .NET client for the Win32 servers we've made
so far. In order to build the Delphi Prism 2010 DataSnap Client, make sure a DataSnap Server
is running so we can connect to it during design-time already.

-44 -

Start Delphi Prism 2010, and do View | Server Explorer to view the Delphi Prism Server
Explorer. We should first make a connection here, to verify that we can actually work with the
DataSnap Server.

The Server Explorer is a treeview with a root node called Data Connections. Right-click on
Data Connections and select Add Connection. In the dialog that follows, select DataSnap
from the list of data sources (note: you need to click on Change if a datasource is already
preselected).

* o

Choose Data Source @

Data zource:

Blackfish S0L R [eszEe
DataSnap Idse this selection to connect to data
InterBase through the MET Frarnewark Data

Microsoft Access Database File
kicrosoft QDBC Data Source
Microsoft 0L Server

Microsoft 0L Server Database File
Cracle Databasze S

Prowvider for Datasnap.

m

Data provider
IDataSnap Data Prowvider for JMET v‘

[T] Alwvays use this selection [Continue l l Cancel

You may want to uncheck the “Always use this selection” checkbox, unless you always want
to build only DataSnap data connections, of course.

Click on Continue to get to the next page of the dialog. Here, we can specify the details to
connect to the DataSnap Server. In the Protocol drop-down combobox, we can select tcp/ip
or http. Next, we should specify the Host (i.e. the machine name where the DataSnap Server
is running - this can be localhost if you are testing on the same local machine). Then you
need to specify the Port number. By default this will be Port 80 for HTTP and Post 211 for
TCP/IP, but if you've read this white paper you will know that both values could (or should)
be different — at least make sure to specify the same value here that you specified in the
transport component(s) on the ServerContainerUnitDemo unit.

The next property contains the Path. This is only important if you want to connect to a Web
Broker based DataSnap Server (where you need to specify the URLPath to get to the
DataSnap Web Server — the part after the http://..../ domain part, that is).

Finally, don’t forget to specify the Authentication User name and Password, in case the
DataSnap Server is using HTTPAuthentication.

- 45 -

Add Connection @

Enter information to connect to the selected data source or click "Change"
to choose a different data source andfor provider,

Data source:

Datasnap (DataSnap Provider) Change...

Datasnap Server address

Protocol: hittp -
Host: localhost
Port: a0an
Path:
Authentication

dser narme: Bab

Password: TIIL)

Zerder connection

Mame: -
dser name:
Passuord:

| Advanced... |
Test Cannectian | 0] | | Cancel |

Click on the Test Connection button to verify that a connection can be made to the specified
DataSnap Server. This will give you a “Test connection succeeded” dialog if everything was
specified correctly.

When you click on OK, a new entry for the DataSnap connection will be added to the Data
Connections tree. In this case, it's for a localhost node. If you expand the new node, you'll
find subnodes for Tables, Views and Stored Procedures. The Tables and Views are empty,
but the Stored Procedures will contain all exposed Server Methods from the DataSnap
Server. Including our custom server methods EchoString, GetEmployees and ServerTime.

- 46 -

5 [Stored Procedures
+ =] DsAdrmin. CreateServerClasses
+ =] DSAdrnin, CreateServerbethods
+ j DEtdminDescribeClass
4 [£] DSAdmin.DescribeMethod
+ =] DSAdmin.DropServerClasses
+ = | D3Admin.DropServerbdethods
- [=] D5Admin.FindClasses
i (=] DSAdmin.FindMethods
+ =] Dsadrmin FindPackages
+ =] DSAdrnin.GetCaonnection
+ =] DSAdrmin.GetDatabaseConnectionProperties
+ =] DsAdrmin.GetPlatfarrmMarme
+ =] DsAdrmin.GetServerClasses
+ =] DSAdrnin. GetServehethodPararmeters
+ j DEAdmin, Getserverbdethods
+ j DEadmin.ListClasses
-] D3tdmin Listhethods
+] DSMetadata GetDatahase
+ =] DSMetadata. GetProcedurePararneters
+ j DEMetadata, GetProcedures
i (] TServerMethodsLAS ApplyUpdates
+ =] TServertethodsLAS_DataRequest
+ =] TServerbethods1.AS_Execute
+ QTSENerMethDdsl..ﬂxS_GetF'arams
+ ;TSErverMethDdsl..ﬂ.S_GetPrwiderNames
+ QTSEwerMethndsl..&S_GetRecDrds
+ j TEercerbdethodsLAS_RowRequest
+ =] TServerbethodsl.EchoString
+ ;TSENErMethndsl.GetEmplnyees
i] TServertethodsL ServerTime

o Server Explorer - 2 X
2| E T,

= .

|| = [Data Connections
%‘ = 9 [ocalhost.(roat)
=} ----- 4 Tables

Z ----- [Wiews

%

_|

(]

(]

o

(]

==

We can now test some of the server methods from the Server Explorer. For example, right-
click on the EchoString method and select View Parameters. This will give you a new window
where you can enter a value for the Value parameter. Let's enter 42 as value for the Value
parameter. Now, right-click in the window and select “Execute”. This will execute the
EchoString method from the DataSnap Server, showing the result just below the stored
procedure parameters window:

- 47 -

-¥X TServerMethods Ll cedurellocalhost] | Soas Pyge v %
7] A ™

Sted Secoadue Py aiedens

AT £ Data

J ew RAetuer ohim bl see Stng
2 Stored Procesres Diectin [
7] D5Admin Crewta SarverClasse Paarelutiorm Valun
] DEAdmin Coeats ServesMuthod 5t B

7] D3Admin DescribeClass P <2
] DSAdminDescribeMethod .
= salype %

o] DEadmin Do DbeSubTypm o

ServerClhysie

1 DSAdmir Metho
] DSAdming verMethod I thulladde Falin
] OS8dmin Fe 1] Precuon 0
7 DsAdmin FndMetres Scske o
] bSAdmin FndPackages B Update

o DSAdmin GetConnection Soacelckarn

=] OSAdmin GetDatabaseConnectionProperties SoacalchamtlulMacgng Fass

SosceVarn Drigingd

Admin GetPlatformdame

| DSAdmin GetSarperClaases

o] DEAdmin GetServerMethadP arameter
] DSadminGetSenerMethads =
] DEAdminLdtChasies Aebuar/nham
o DEAdrmun Luthierhod » o

] DSMetadata GetDatabase

While this is nice, it's probably a bit more instructive to see how we can retrieve and use the
data from the Employees table, by using the GetEmployees method. This Stored Procedure
has no parameters, but we can still select the "View Parameters” command, which just gives
an empty list of stored procedure parameters. Again, right-click on this window and select
“Execute”. This time, the result is the complete set of records from the Employees table, as
returned by the GetEmployees method:

Server Explorer - X TServerMethodsl....edureflocalhost] | Start Page > X
EIRERR w
=1 [Data Connections

= [y localhost.{root) Stored procedure parameters:

[Stored Procedures
- (=] DS&dmin.CreateServerClasses
=] DSAdrin CreateServerMethods

=] DSAdrnin.DescribeClass
=] DSAdrin Describebethod EMP_NO FIRST_Mak | LAST_MWAME | HIRE_DATE | JOB_COUNT | =
=] DSAdrin,DropServerClasses » 2 Robert Melsan 12/28/18988 USA
j DSAdrmin.DropServeridethods 4 Bruce *f'oung 12/28M1988 USA
=] DSAdrmin.FindClasses 5 K.im Lambert 2/6/1989 LSa
=] D3Admin FindMethads 8 Le.slie Johnson 4/5/1989 LSa
] DSAdrmin FindPackages 3 il Forest 441741989 USA
=] DSAdmin.GetCannection I K.J.. “wWeston 141741930 LS4
=] DSAdmin.GetDatabaseConnectionProperties 12 Ter Les 5411330 L5
] DSAdmin. GetPlatformblame 14 Stewar.t Hall 6/4/1990 Usa
— . 15 K.atherine “f'oung 6141990 LUSA
(] DSAdmin, GetServerClasses 20 Chis Papadopouln 17171930 USA
=] DSAdrnin. GetServertethodParameters 24 Peta Fisher 3412/1990 Ush,
] DSAdmin.GetServerMethods 28 Ann Bernet 2141991 England
(] DS&dmin ListClasses 2 Floger DeSouza 2184391 USA
=] D3&drin Listhethods 4 Jaret Baldwir 3211931 USA
=] DSMetadata.GetDatabase kLS Fioger Fieeves 4/25/1991 England
=] DiMetadata. GetProcedureParameters a7 willie Stansbury 442571991 England
] DSMetadata. GetPracedures 44 Leslie Phong 6/3/1991 L5a
] TServerMethodsLAS ApphylUpdates 45 Ashak Famanathan 84141391 LS =
] TServerbdethods1.AS DataRequest 46 ‘walter Steadman 8341331 LISA
] TServertethods1.AS Execute 52 Carol Mordstrom 10421991 LISA,
=] TServerMethodsLAS GetPararns 61 Luke Leung 2181332 Usa
=] TServerMethodsLAS_GetProviderMNarmes B5 Sue .t_ﬁnn O'Brien 3/231332 UsA
] TServerbethods1AS GetRecards 71 Jennlf.er . Burbarik 4/15/1932 USA
] TServerMethodsLAS RowRequest ;g Elaudla :_ut:erland gj??:;:gz E:r:da
) ana ishop

% I::::m :::Ejifs:;it;;;iees 85 Mary 5. MacDonald 64171332 USA
—) 34 R atdy “williams 8/8/1392 L5a

- [TServerMethodsL ServerTime 105 Oliver H. Bender 10/601932 US4

-48 -

7.1. WINFORMS CLIENT

Although working with DataSnap Server methods in the Server Explorer can be fun, it's more
useful to call them from a .NET application. For the last example, do File | New Project to
start the New Project wizard in Delphi Prism. This will give you an overview of the available
targets.

From the Windows Project Type, select the Windows Application and change the Name from
WindowsApplicationl to DataSnapClient.

Mews Project
Project types: Templates: MET Framewaork 3.5
Delphi Prism Visual Studic installed templates
Mono E¥indows Application @ Class Library
HCF E,'ﬂWindows Control Library _jConsoIe Application
W?b EﬂWindows Service |-_5|Empt}f Project
Wind s
sindows (VP My Templates

Other Project Types il Search Online Ternplates..,

Create a new Delphi Prism Windows Forms application (MET Frarmework 3.5)

Marne: DataSnapClient]
Location: CxllsersiBob\Docurnents\ifisual Studio 20084Projects - Browyse...
Solution Mame: DataSnapClient J| Create directory for solution

If you click on OK, a new project DataSnapClient will be created in the Delphi Prism IDE, with
a Main.pas unit for the Main Form.

From Server Explorer, select the new connection to the DataSnap Server we created in the
previous section. The Properties Explorer will display the properties, including the
ConnectionString, which should be something like the following:

communicationprotocol=http;hostname=localhost;port=8080;dsauthenticationuser=Bob;ds
authenticationpassword=Swart

Right-click on the data connection node, and select “Generate Client Proxy” option. This will
generate a file ClientProxyl.pas, with the definition of a class called TServerMethods1Client
with a number of method, including EchoString, ServerTime, and GetEmployees. A snippet
from the class definition is as follows:

TServerMethodslClient = class
public
constructor (ADBXConnection: TAdoDbxConnection);
constructor (ADBXConnection: TAdoDbxConnection; AInstanceOwner: Boolean);
function EchoString(Value: string): string;
function ServerTime: DateTime;
function GetEmployees: System.Data.IDataReader;

- 49 -

Apart from the proxy class, there are also a number of references added to the References
node of the project: Borland.Data.AdoDbxClient and Borland.Data.DbxClientDriver to be
precise.

As you can see from the code snippet of the TServerMethods1Client, this class has two
constructors: both with a ADBXConnection parameter, and the second one also with an
AlnstanceOwner Boolean parameter. This means we need to call the constructor with an
argument. And in order to support that, we have to make a modification to the project
settings. Right-click on the DataSnapClient node in the Solution Explorer, and select
Properties. In the window that is now shown, click on the Compatibility tab and then check
the option "Allow Create constructor calls”, which will allow us to call the .Create
constructor, passing arguments, instead of using the new operator.

DataSnapClient* | Start Page

Spplication
M8,

Cormpatibility®
Build Allows globals

Allow legacy with'
Build Events

| Allows 'Create’ constructor callz

Debug Al implicit varfout in method calls
Signing Allows unzafe code

Allovs Delphi compatibility zpntas
Fesources

Ilze Delphi compatible divizion operators
Settings

Now, we can return to the Main Form, and place a Button on it. In the Click event of the
button, we can create a connection to the DataSnap Server and call one of its methods.

method MainForm.buttonl Click(sender: System.Object; e: System.EventArgs);
var
Client: ClientProxyl.TServerMethodslClient;
Connection: Borland.Data.TAdoDbxDatasnapConnection;
begin
Connection := new Borland.Data.TAdoDbxDatasnapConnection();
Connection.ConnectionString :=

'communicationprotocol=http;hostname=localhost;port=8080;dsauthenticationuser=Bob;dsau
enticationpassword=Swart';
Connection.Open;
try
Client := ClientProxyl.TServerMethodslClient.Create (Connection);
MessageBox.Show (
Client.EchoString('Delphi Prism 2010'"));
finally
Connection.Close;
end;
end;

-850 -

The result is the echo of Delphi Prism 2010, as can be seen below.

L !

&4 MainForm o || = | &

P 1

(3]

Delphi Prisrm 2010

Ok

In a similar way, we can call the GetEmployees method and assign the result to a
DataGridView. This poses us with a little problem, since the GetEmployees will return an
IDataReader (the equivalent of a TSQLDataSet's result), and not a DataSet or a DataTable.
We have to write a few lines of code to load the result of GetEmployees into a new
DataTable inside a DataSet (the equivalent of the TClientDataSet at the Win32 side).

method MainForm.buttonl Click(sender: System.Object; e: System.EventArgs);
var
Client: ClientProxyl.TServerMethodslClient;
Connection: Borland.Data.TAdoDbxDatasnapConnection;
Employees: System.Data.IDataReader;
ds: System.Data.DataSet;
dt: System.Data.DataTable;
begin
Connection := new Borland.Data.TAdoDbxDatasnapConnection () ;
Connection.ConnectionString :=

'communicationprotocol=http;hostname=localhost;port=8080;dsauthenticationuser=Bob;dsau
enticationpassword=Swart';
Connection.Open;
try
Client := ClientProxyl.TServerMethodslClient.Create (Connection);
Employees := Client.GetEmployees;
ds := new DataSet ()
dt := new DataTable ("DataSnap");
ds.Tables.Add (dt) ;
ds.Load (Employees, LoadOPtion.PreserveChanges, ds.Tables[0]);
dataGridViewl.DataSource := ds.Tables[0];

MessageBox.Show (
Client.EchoString('Delphi Prism 2010"));
finally
Connection.Close;
end;
end;

-51 -

The result is the following data shown in the DataGridView of a Delphi Prism WinForms
application, which demonstrates that we can write thin .NET clients to connect to DataSnap
Servers.

r "

@ﬂ FainFarmm o || B ER

EMP_NO FIRST_MAME LAST_MAME HIRE_D&ATE JOB_CO #
» B FRobet Nelsan 12/28/1988 3.00... | USA

4 Bruce 'aung 1242841988 2:00... |USA

5 Kim Lambert 2GMNSBITONAM |USA |

a Leslie Johnaon 4/5M1983 300 Ak | LISA

g Phil Farest 41711989 9:00 .. | UJSA

11 K. J. 7 171990 3:00 ... | 1JSA

12 Teni =3 1/1990 300 40 | USA

14 Shewart o 41990 SO0 &M | US4

15 K atherine Delphi Prism 2010 14/1990 3:00 .. |USA

20 Chiris 1/1990 SO0 4M | USA

24 Pete 12/1990 3:00 .. |USA

28 Anin /1331 3:00 406 | England

29 Foger De Souza 2184991 9:.00 ... [USA

34 Janet B aldwin 321991 900 . |USA
P 11 I

8. SUMMARY

In this white paper, I've explained that you can use DataSnap where you want (on Windows:
with a GUI, service or console application, or on the web with a CGl, ISAPI or Web App
Debugger application), as well as Win32 or .NET clients, and how you want — using TCP/IP,
HTTP, with HTTP Authentication and optionally some filters for compression, encryption, etc.
DataSnap 2010 is substantially expanded and enhanced compared to DataSnap 2009, and a
lot improved since the COM-based original versions of DataSnap and MIDAS.

Bob Swart — Bob Swart Training & Consultancy (eBob4)™

-52-

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster
and run them better, regardless of their platform or programming language. Ninety of the
Fortune 100 and an active community of more than three million users worldwide rely on
Embarcadero products to increase productivity, reduce costs, simplify change management
and compliance and accelerate innovation. The company’s flagship tools include:
Embarcadero® Change Manager™, Embarcadero™ RAD Studio, DBArtisan®, Delphi®,
ER/Studio®, JBuilder® and Rapid SQL®. Founded in 1993, Embarcadero is headquartered in
San Francisco, with offices located around the world. Embarcadero is online at
www.embarcadero.com..

Copyright © 2009 Bob Swart (aka Dr.Bob - www.drbob42.com). All Rights Reserved.

-53-

http://www.embarcadero.com/
http://www.drbob42.com/

