Development and Deployment of Delphi
Multi-tier Applications

Marco Cantu, Delphi Product Manager

December 2012
Americas Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor York House L7.313 La Trobe Street
San Francisco, California 94111 18 York Road Melbourne VIC 3000
Maidenhead, Berkshire Australia

SL6 1SF, United Kingdom

Development and Deployment of Delphi Multi-tier Applications

INTRODUCTION

This paper guides a Delphi developer through the DataSnap technology in Delphi XE3. The
focus of this document is to offer an overview of the technology and its usage and deployment
scenarios, more than a detailed technical analysis of the available features of this multi-tier
library. I'll cover the options you have in terms of integration with web servers and hosting in
the cloud. I'll discuss how to make these services more scalable and robust, and offer a very
simple overview of the different types of clients you can build with Delphi and other tools.

More specifically, the paper is divided into 4 sections:

* Building application services with DataSnap

* Deploying services, integrating with web services, and hosting them in the cloud
* Making services scalable and robust

* Accessing application services from different types of clients

At the end I'll be able to provide some assessment of DataSnap usage scenarios, providing
practical tips and suggestions.

Notice that if you are interested in a step by step introduction of the DataSnap technology you
can refer, among other sources, to Bob Swart's material listed on
http://www.embarcadero.com/rad-in-action/datasnap, while for an introduction of REST in
Delphi you can refer to my presentation and paper at http://www.embarcadero.com/rad-in-
action/datasnap-rest (but I'll repeat some relevant material of that older paper in this
document).

PART I;
BUILDING APPLICATION
SERVICES WITH DATASNAP

In the first part of this paper, I'll introduce the development of DataSnap servers, trying to
guide you through the different types of servers available and their respective features and

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 2

Development and Deployment of Delphi Multi-tier Applications

goals. As you'll soon find out, in fact, DataSnap is more a collection of technologies than a
single one, and this causes some confusion to newcomers.

For a long time Delphi has included a technology for building multi-tier database applications.
Formerly known as MIDAS, the framework was later renamed DataSnap. Delphi's multi-tier
technology was originally based on COM, with the remoting capability offered by DCOM, but
with the ability of bridging the COM servers and expose them through other connectivity
layers like CORBA, TCP/IP, and later also SOAP.

The DataSnap framework was completely rewritten in Delphi 2009. This newer architecture is
still in use today, is more flexible, and has the ability to plug in connectivity layers. All of the
original dependencies on COM have been removed.

A DataSnap server is built around different components, DSServer, DSServerClass, and one of
the available connection components. Let me start with the connection alternatives, as this
offers a broad scenario of the capabilities of DataSnap.

THE CONNECTIVITY OPTIONS

A DataSnap service can be based on a large number of server applications. Here for the
moment [want only to focus on the options you have in terms of connectivity, delaying to a
later section of the paper the deployment alternatives. In terms of connectivity, a DataSnap
application can use:

* A TCP/IP connection component (DSTCPServerTransport), offering a state-full and
stable connection to the clients. This is generally suited for an internal network, but
given the recent addition of connection monitoring capabilities could also be deployed
to the Internet as a whole. The socket-based connections offer custom data
compression and data encryption, through filters that must be deploying on both the
server and the client. This model makes sense only if the client application is also
written in Delphi or C++Builder.

* An HTTP connection component (DSHTTPService), offering a state-full connection on
top of a stateless protocol, though custom session management and the ability of keep
server side object active in the session (as described later). Again, this is mostly meant
to be used when the client is also a Delphi or C++Builder application, and can use the
HTTPS protocol for extra security.

* A REST connection, based either on the same HTTP connection component described
above or on the integration of the DataSnap server with the WebBroker architecture
(which offers deployment as an IIS module or stand-alone web servers). In both cases
the DataSnap server behaves as a stateless server, and there is much more flexibility in
terms of the development tools you can use to build the client applications. This is

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 3

Development and Deployment of Delphi Multi-tier Applications

likely the most open, flexible, and scalable option and the one I'll keep my focus for
most of the paper.

Before we look at the details of how to build these applications and which features they
provide, [have to cover the various DataSnap server side components and introduce sessions.
In any case, keep in mind that the three models above could all be surfaced by a single server
application, given that a single DataSnap server can offer multiple connection types (sockets
and HTTP) and a single HTTP connection has dual interfaces (HTTP and REST)

THE DSSERVER COMPONENT

DSServer is the main server configuration component, which is needed to wire all the other
DataSnap components together. This component handles connections and manages callbacks,
which is why you have to make sure there is only one server component if you need a unified
callback mechanism.

Notice, however, that in case of web applications you need to create a specific data module
hosting a DSServer component (something you can achieve by picking one of the wizard'’s
options) or else you have one server for each web module, which in turn is created when
there is a new HTTP request.

THE DSSERVERCLASS COMPONENT AND
THE LIFETIME OF SERVER OBJECTS

DSServerClass is a component needed for each class you want to expose to client applications.
Each services exposes methods and data using one or more server classes. The DSServerClass
component is not the class you make available, but acts as a class factory to create objects of
the class you want to call from a remote client. In other words, the DSServerClass component
will refer to the class that has the public interface.

This component has a second key feature, the indication of the lifetime of the objects of the
target class. There are three alternatives for the lifetime:

* Invocation lifetime indicates that for each invocation the service will create a target
object, call the specific method, and than immediately free the object. In other words,
the server will create an object for each request (regardless of the user and the
session), and avoid caching them, in a model best suited in case of a stateless
architecture based on the HTTP and REST protocols.

* Session lifetime indicates that the object is creates at the first invocation and kept in
memory while the client has an active session. A following request from the same client
and the same session will use the same server side object. I'll describe in the following
paragraph how DataSnap manages sessions, clarifying this model.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 4

Development and Deployment of Delphi Multi-tier Applications

* Server lifetime indicates that the object is a global object created by the server the first
time there is a request for it, used for any request to that object by any other client,
independently from the session. This object is kept in memory indefinitely.

The lifetime model has a direct effect on the concurrency model. For an object with server
lifetime, multiple threads activated by different connections at the same time might use the
same server object, and you are responsible to provide safe multi-threaded access to the
server object. In general, you should stay away from server lifetime, particularly if your goal is
scalability.

For invocation lifetime, this issue does not exist, given each thread will have its own server
object. For session-based objects, the problem arises only if the client can make multiple
requests using multiple threads at the same time (which is not a common practice, but might
happen).

Now, what is relevant to consider is that not all lifetime models are available for each type of
connection. In particular, the session lifetime for server side objects is not available for REST
servers. The reason is that server side objects could have a large memory footprint and should
not be kept in memory for a long session that you have to keep around long after the client has
done the last request.

SESSION AND OBIJECT LIFETIME

The invocation model is strictly tied to session management. By default DataSnap creates in-
memory session objects for each user initiating a connection to the server:

e In case of a socket-based connection, the session is tied to the connection itself. The
user connects, invokes methods causing the creation of server side objects, further
method calls will hit the same objects, and as the user disconnects his server objects
are deleted.

e In case of stateless HTTP-based connections, the session is based on an ID returned
and passed back again as an extra HTTP header. In this case, the session remains active
for a given amount of time (20 minutes by default) after the last request from the given
client. This can cause some memory overhead, given objects remain in memory long
after the user has stopped invoking server methods. As an alternative to keep track of
the user and application status in server side objects, you can use the session object
itself.

* In case of a pure REST model, the mechanism is similar to the HTTP scenario but the
client is responsible for handling the connection (using this extra header, a cookie, or a
query parameter) or else the system will create a new session for each incoming

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 5

Development and Deployment of Delphi Multi-tier Applications

request, wasting memory and resources. In this scenario, the session object is the only
storage tied to the user session, given that server side session lifetime is not available.

These session objects (based on different server classes depending on the connection model),
store key information like the login status, the username used for login, the roles used for
methods authentication, and so on. As a developer, you can add more information to the
current session object, which can be accessed directly in any server method. Again, this is the
standard way to keep track of user and application information in case of REST connections,
but it is also the suggested way for HTTP-based applications that you might want to scale.

DATASNAP DUAL INTERFACE MODEL

Before we (finally) start looking at demonstrations, there is one more key factor to consider.
Historically MIDAS and DataSnap were focused on exposing database tables to client
applications. This is done using a specific interface, called IAppServer, which is exposed by
“remote” data modules. You do not implement these methods directly, but expose one or more
DataSetProvider components, which are used by the remote data module to respond to the
methods of this [AppServer interface. On the client side, you can use specific connection
components (DSProviderConnection) and the ClientDataSet component to connect to the
[AppServer interface and the tables exposed by the providers.

On top of this, DataSnap offers the ability to expose custom methods. Originally done via COM,
the remote method invocation now uses a custom layer, based on server classes, RTTI, and
some specific custom rules for parameter passing. The server methods can use core data types
(integers, strings, characters, floating point numbers, and so on) but also complex ones like
datasets, streams (sequences of binary data), JSON data structures, and even entire Delphi
objects through some marshaling classes.

Now, what is important to realize is that not all DataSnap servers support this dual model. The
[AppServer interface, in fact, is strictly tied to a state-full model, as it has concepts like “next
data packet”. This is why the IAppServer interface and the DataSetProvider models are not
available for stateless REST applications build with DataSnap.

Given that a REST service can expose tables, though, you can still move database data easily
from a server to a client, but if you have experience with the ClientDataSet - DatasetProvider
combination you probably know how fast and easy they can make the development of multi-
tier applications with master-detail and other complex structures. Implementing the same
approach in a DataSnap server currently requires more effort, which is a good reason to keep
the older model around and support it.

So, on one side we have a traditional, more RAD, simpler, Delphi development model, on the

other side we have the more open, flexible, and scalable REST approach. That is why, before

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 6

Development and Deployment of Delphi Multi-tier Applications

we finally proceed with the actual development, there is one more element to cover in this
long introduction, the REST development model.

THE CONCEPTS BEHIND REPRESENTATIONAL STATE TRANSFER

Over the last ten years we have witnessed the explosion of the Web, and now of so-called Web
2.0. What we are only starting to see is the automatic interaction between different web sites,
between web sites and client applications, and between web sites and business databases - a

global interconnection that is often hard to fully understand.

On the Web, data is moving faster than we can browse it, so there is a strong demand for
programs that can find, track and monitor information coming from diverse sources such as
sales data, financial information, online communities, marketing campaigns, and many others.
At the same time, this server-side processing can be leveraged by custom client applications
and also by applications running natively in Web browsers.

The idea of a web service is rather abstract. When it comes to technologies, there are
currently two main solutions that are attracting developers. One is the use of the Simple
Object Access Protocol (SOAP) referenced at the site at http://www.w3.org/TR/soap/.
Incidentally, Delphi has had support for SOAP for several years now. Another web service
solution is the use of a REST (Representational State Transfer) approach. The introduction of
this formal name and the theory behind it are fairly recent. What is relevant to mention up
front is that there is not a formal REST standard.

The term REST, an acronym for Representational State Transfer, was originally coined by Roy
Fielding in his Ph.D. dissertation in year 2000, and spread very rapidly as synonymous with
accessing data over the web using HTTP and URLs, rather than relying on the SOAP standard.

The idea is that when you access a web resource (either using a browser or a specific client
application) the server will send you a representation of the resource (an HTML page, an
image, some raw data...). The client receiving the representation is set in a given state. As the
client accesses further information or pages (maybe using a link) its state will change,
transferring from the previous one. In Roy Fielding's words:

"Representational State Transfer is intended to evoke an image of how a well-designed
Web application behaves: a network of web pages (a virtual state-machine), where the
user progresses through an application by selecting links (state transitions), resulting in
the next page (representing the next state of the application) being transferred to the
user and rendered for their use.”

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 7

Development and Deployment of Delphi Multi-tier Applications

REST ARCHITECTURE KEY POINTS

So, if REST is an architecture (or even better, an architectural style) it is clearly not a standard,
although it uses several existing standards like HTTP, URL, plus many format types for the
actual data.

In contrast to SOAP, REST architectures use HTTP and its data format (generally XML or JSON)
exactly as they are:

REST uses URLs to identify a resource on a server (while SOAP uses a single URL for
many requests, detailed in the SOAP envelope). Notice the idea is to use the URL to
identify a resource not an operation on the resource.

REST uses HTTP methods to indicate which operation to perform (retrieve or HTTP
GET, create or HTTP PUT, update or HTTP POST, and delete or HTTP DELETE)

REST uses HTTP parameters (both as query parameters and POST parameters) to
provide further information to the server

REST relies on HTTP for authentication, encryption, security (using HTTPS)

REST returns data as plain documents, using multiple mime formats (XML, JSON,
images, and many others)

There are quite a few architectural elements that are worth considering in this kind of
scenario. REST demands for system to be:

Client/server in nature (nothing directly to do with database RDBMS here)
Inherently stateless

Cache-friendly (the same URL should return the same data if called twice in sequence,
unless the server side data changed), permitting proxy and cache servers to be inserted
between the client and the server. A corollary is that all GET operations should have no
side effect

There is certainly much more to the theory of REST than this short section covered, but I hope
this got you started with the theory. The practical examples coming next along with Delphi
code should clarify the main concepts.

Having said that there is not a REST standard and that you need no specific tools for REST
development, there are standards that REST replies upon and those are worth introducing
shortly (an in-depth description of each could take an entire book). The specific focus here is
Delphi support for these technologies.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 8

Development and Deployment of Delphi Multi-tier Applications

The HyperText Transfer Protocol is the standard at the heart of the World Wide Web, and
needs no introduction. Granted, HTTP can be used not only by Web Browsers, but also by any
other application. In Delphi applications the simplest way to write a client application that
uses HTTP is to rely on the Indy HTTP client component, or IJHTTP. If you call the Get method
of this component, providing a URL as parameter, you can retrieve the content of any Web
page and many REST servers. At times, you might need to set other properties, providing
authentication information or attach a second component for SSL support. The component
supports the various HTTP methods, beside Get.

On the server side, you can use multiple architectures for creating a web server or web server
extension in Delphi. You can create a standalone web server using the IdHTTPServer
component or you can create web server extensions (CGI applications, ISAPI, or even Apache
modules). The WebBroker architecture supports both models (as we’ll see in more detail).

Moving to DataSnap, as I already introduced, you can create DataSnap REST servers using the
internal HTTP connection component (based on the Indy HTTP server) or using WebBroker
(which supports ISAPI DLLs or stand-alone servers still based on the Indy HTTP server). You
cannot use CGI as this will not provide sessions management, and you can manually wire the
available units to support Apache modules. Notice, though, that I tend to deploy my servers on
Apache using a different model I will cover in the section on deployment.

BUILDING A DATASNAP SERVER

After this long and detailed introduction providing the key scenario, we can start building
some DataSnap services. If you select the File | New | Other menu item in the Delphi IDE, and
select the DataSnap server node, you’ll see three different options:

(i) New Items

4.7 C++Builder Projects Q Search
] ActiveX
----- C++Builder Files g HE £|
1 DataSnap Server 3 |
71 WebBroker DataSnap DataSnap DataSnap
WebServices REST Ap... Server WebBrok...
-{T] WebSnap
4 .["7] Delphi Projects
] ActiveX
DataSnap Server
Delphi Files
IntraWeb
WebBroker
WebServices
WebSnap

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 9

Development and Deployment of Delphi Multi-tier Applications

Going from the most traditional DataSnap model to the more open one, they are:

* DataSnap Server, which supports both TCP/IP and HTTP based connections to a more
traditional DataSnap server

* DataSnap WebBroker Application, which has an architecture tied to the WebBroker
model allowing integration with IIS via ISAPI, with Apache, or also the deployment of a
stand-alone web server.

* DataSnap REST Application, which is also tied to WebBroker and adds support for
the basic structure of a Web application (including basic HTML and JavaScript files).

As you can see from the long introduction above, different types of DataSnap servers have
different features, but the three wizards also allow for multiple options, so they do not have a
direct one-to-one match with the available architectures.

In parallel, a single model can be hosted by different type of applications (console
applications, standard Windows applications, or service). Let’s start from the “classic”
DataSnap server. Here the first page lets you pick the Windows applications structure:

() New DataSnap Server =

Project type
Specify the type of this application

A VCL application displays a VCL form

(®) VCL Forms Application
(") Console Application

- (") service Application

1of 4

=
m
x
-
A
v
T

Cancel Help

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 10

Development and Deployment of Delphi Multi-tier Applications

While this has an impact on the deployment scenario, it has little effect on the internal
structure and capabilities of the DataSnap server. In general, I tend to use a VCL application
for testing and debugging, and might later move it to a Service application for more stable
deployment. Given you can change the structure by picking a different project file, you can
change the project structure from one to the other of these three models later on.

The second page is where the DataSnap options start to surface, with the ability to pick the
server connectivity (TCP/IP, HTTP, and/or HTTPS) and several other features of the DataSnap
server application. Most of these features (like compression or authentication) you can easily
add later using specific components, while others (like support files) are added by the Wizard
to the projects and requires a little more manual work to configure later. Here I have picked
all options, but in my actual demo I have omitted HTTPS.

() New DataSnap Server B

Server Features
Check the features to add to the DataSnap server

Select a feature for more information

Title
= Protocols

TCP/IP
- HTTP

- 7 s

= Authentication

=) Server Methods Class
Sample Methods
E Filters
Encryption
Compression
JavaScript Files
| Mobile Connectors

Select / deselect all

20f6 << Back Next >> Finish Cancel Help

The following page lets you customize the port of each of the selected connections, while the
following (optional) page is for HTTPS certificates. The second last page is for picking the
target class is the first ServerClass component (you can freely add others later in the code):

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 11

Development and Deployment of Delphi Multi-tier Applications

() New DataSnap Server El

Server methods ancestor class
Select an ancestor type for the server methods dass.

The TComponent ancestor type provides a simple code-only implementation.

(0) TComponent
(:) TDataModule

—
—

m () TDSServerModule

Here are the options are a plain TComponent base class, a TDataModule (a container of non-
visual components like database tables and database connections), and a TDSServerModule
base class, the special class implementing the IAppServer interface and exposing directly any
DataSetProvider component added to itself.

The last option is the only one you can use for connecting a ClientDataSet directly to your
server, the first one is where you write all of the code, while the data module option is an in-
between, offering visual components hosting but no hardwired connection or ready-to-use
method. As mentioned earlier and covered again later on, for a stateless REST application you
cannot use the DSServerModule.

Finally, the last page of the wizard lets you select an existing or new folder where the wizard
will place all the source code files and support files of the generated application. Notice only
that the folder name will also be used as project name, so it must be a valid Pascal language
identifier (i.e. it cannot start with a number or have spaces).

After generating the application (again, with all feature active but HTTPS), you will get a
project with a totally useless main form, a global data module with the DataSnap application
structure, and a second data module (as a plain unit) used as target server class. The global
data module with the configuration components will look like this:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 12

Development and Deployment of Delphi Multi-tier Applications

R R R R R R R RS
©oi:- - DSServerl::: DSServerClassl: < EEE] i
.......................................
:::::::::::'u::::::::::::::::::DSServerMetaDatalP‘rp\{iqgr']_zEEEEEEEEEE
1 DSTCPServerTransporty © @ 1 liililiiil[Egyl i
R X xxxxnn ke kxR ke x xxx e« = x DSPIRRYCORORIN x < <k x
:::::::::::ﬂ:::::::::::::::::::::::‘H'::::::::::::::::::::
DSHTTPServiced! tDiiiiiiiiiiiiiii BRI
SRS :::::::::::::DsHTTPSQNiceproxyDispatcherl::::::::::
i @R
- DSAuthenticationManagerl - 1 1o B[
il DouTTPServiceFileDispatcherl: 1 lll

Many of the settings of these components store the application configuration. For example, the
default ports you select for connecting to the server via TCP/IP and HTTP become properties
of the respective components. [will get back to some of these components and their settings
later on and again there are already some existing DataSnap tutorials that cover these.
Moreover this application exposes mobile connectors using the Proxy generator and
dispatcher and supports client JavaScript invocation using the Proxy generator and the HTTP
service file dispatcher.

This might be a bit confusing. If we have built a “classic” server using this wizard, home comes
we have support for features of a DataSnap REST application? It turns out the “classic”
wizards lets you build all types of DataSnap server, with the exclusion of the WebBroker
integration model. By unselecting (or later removing) TCP/IP support we would have a
perfect HTTP REST server. In other words, when you want to build any type of DataSnap
server not tied to WebBroker but based on the internal connection components, this is the
model you should follow.

SHORT OVERVIEW OF THE WEBBROKER ARCHITECTURE

Before we look into the development of a WebBroker DataSnap server, it is important you
have an idea of what I'm talking about. This section offers a short introduction of a technology
that has existed since Delphi 3, for those who never used it or used it only occasionally. If you
already used WebBroker you can certainly skip this section.

The WebBroker technology, available in Delphi since the early days of the product, is a
framework to let you create Web server extensions that can be deployed as applications,
libraries, and (even if unofficially) modules. There is a fourth option, which is the use of a
debug tool, called Web App Debugger as a replacement for a web server while developing and
debugging the application.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 13

Development and Deployment of Delphi Multi-tier Applications

A WebBroker application is built around a designer, which has an object holding the web
request received from the client and the web response, plus a collection of actions tied to the
incoming URLs. This derives from TCustomwebDispatcher, which provides support for all the
input and output of your programs and defines the events and properties.

These properties are defined using a base abstract class, but an application initializes them
using a specific object (such as the TISAPIRequest and TISAPIResponse subclasses for an
ISAPI library). These classes make available all the information passed to the server, so you
have a single approach to accessing all the information. The key advantage of this approach is
that the code written with WebBroker is independent of the type of application (CGI, ISAP],
Apache module); you will be able to move from one to the other, modifying the project file or
switching to another one, but you will not need to modify the code written in a WebModule.

To write the application code, you can use the Actions editor in the WebModule to define a
series of actions (stored in the array property) depending on the path name of the request.
This path name is the portion of request URL that comes after the program name and before
the parameters.

By providing different actions, your application can easily respond to requests with different
path names, and you can assign a different producer component or call a different event
handler for each and every possible path name. In the event handler, you write the code to
specify the response to a given request, in the simplest case returning some HTML in a string:

procedure TwebModulel.webModulelwebActionItemlAction (
Sender: TObject; Request: TwebRequest;
Response: TWebResponse; var Handled: Boolean);
begin
Response.Content :=
'<html><head><title>Hello Page</title></head><body>" +
'<hi>Hello</hl1>" +
'<hr><p><i>Page generated by Marco</i></p>' +
'</body></html>";
end;

Needless to say there is much more in the WebBroker architecture, but that would go beyond
the scope of this paper, focused on using WebBroker as a foundation of the DataSnap
framework.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 14

Development and Deployment of Delphi Multi-tier Applications

BUILDING A WEB BROKER SERVER

In fact, if we use the second wizard the DataSnap REST Application, or the third one, the
DataSnap REST Application, we obtain in both cases a WebBroker-based DataSnap server. The
second wizard has the following initial options, different from the first page described earlier:

() New DataSnap WebBroker Application ﬂ

WebBroker Project Type
Select the type of WebBroker project

A stand-alone WebBroker VCL application is a web server that displays a VCL form. It
Supports HTTP using an Indy HTTP server component. o

(®) Stand-alone VCL application
i:} Stand-alone console application
(") ISAPI dynamic link library

T

Cancel Help

Here the options include two different types of stand-alone applications based on the
IdHTTPServer component (with a main form or a console structure) or the ability of creating
an ISAPI DLL for integration with Microsoft’s IIS server. Although not officially supported, you
can adapt this DLL (including different source code units) and build an Apache module. Again,
switching between these three options can be done later by generating a different project file
and copying one or two units to your existing project and then merging them.

If you pick one of the two stand-alone options, the following information will let you configure
the port, as usual, while the third page has the actual DataSnap features selection:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 15

Development and Deployment of Delphi Multi-tier Applications

() New DataSnap WebBroker Application n

Server Features
Check the features to add to the DataSnap server

Select a feature for more information

[Title
& [] Authentication
|:| Authorization
& Server Methods Class
Sample Methods
=[] Fiters
D Encryption
|:| Compression
[] Mobile Connectors
[] server Module

[m]select / deselect all

3of4 << Back Finish Cancel Help

As you can see, this is a subset of the features available in the classic DataSnap server
application: The only missing elements are the protocols, as in this case we are integrating
with an HTTP server and that is the only option. For HTTPS support, you would enable that
feature at the Web server configuration level, if available. Another missing feature is the
deployment of JavaScript files, since this is what the third wizard, DataSnap REST Server, is
meant for.

There is also an addition to the previous set of options, and that is the ability to generate a
separate server module hosting the DSServer component and the DSServerClass: As I already
mentioned, this option lets you have a global module with these components rather than
creating a new copy for each Web module generated by the web server to respond to any web
request. If you don’t select this option, you and up with a web module similar to the global
data module of the previous application:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 16

Development and Deployment of Delphi Multi-tier Applications

o
i R Ry g
©:iiio::DSServerl: :: DSServerClassl : : poproxyGeneratorl: || il iliiiliiill
©: . DSHTTPWebDispatcherl: = pgproxyDispatcherl | & & @& il

Here the HTTP connection component (DSHTTPService) is replaced by a Web Dispatcher
component, which filters some of the incoming requests by URL (basically anything starting
with “/datasnap”), and passes them to the DataSnap framework for processing. Given that this
is a WebBroker application, the web module has also a list of actions tied to other web
document paths.

If we choose the third wizard, the DataSnap REST Server, the first page is identical to previous
one (with the stand-alone servers and the ISAPI DLL), while the DataSnap features selection
changes:

(] New DataSnap REST Application ﬂ

Server Features
Check the features to add to the DataSnap server

Select a feature for more information

[Title

=] |:, Authentication
RESf’ [] Authorization

& Server Methods Class
= Sample Methods

Sample Web Files

[] Mobile Connectors
D Server Module

[m]select / deselect all

3of5 << Back Finish Cancel Help

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 17

Development and Deployment of Delphi Multi-tier Applications

In this case the filters are not available (as the require a custom Delphi or C++Builder client
application), while there is a new specific option related with the sample web files to be added
to the project, basically providing a small web browser application (based on HTML and
JavaScript) along with the REST server. Again, we have the option to generate a server
module, which [recommend using.

As with the server module, the wizard generates two modules, this data module and a
separate web module which hosts some of the components each:

o

The web module has a few extra components used for the Web application, like the two page
producer components (connected with HTML files) and the WebFileDispatcher.

By now you may be a bit confused with all of the options and the different ways to build
DataSnap server applications. Again, there are two overall models, stand-alone or WebBroker
integrated. Stand-along can use sockets or HTTP. WebBroker integrated can be a server
extension DLL or a stand-alone web server. And the various DataSnap features can or cannot
be used depending on the architecture you have picked. While this is certainly a bit confusing,

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 18

Development and Deployment of Delphi Multi-tier Applications

the three wizards make quite a good job in helping you generate the proper structure for the
different types of projects.

You might ask yourself which model you should use. This depends on many factors, like the
type of client applications (Delphi or not only), the scalability (sockets vs. HTTP), the overall
traffic, the stability of the connections and of the client applications... and much more. As we
start focusing on deployment options and client applications development, things should
become a little clearer.

PART II:
DEPLOYING SERVICES

So we have now built a few different DataSnap server applications, using the wizards. What is
next? We should now compile and test them, see if they work, and examine the various
deployment options that we have available. In this second and shorter part of the paper I will
focus on deploying these DataSnap servers, on integrating them with Web Services, and on
hosting them in the cloud (a topic with very limited technical differences, but a significant
role).

Before we delve into deployment, let me start me with a basic step: compiling the service
applications in Delphi and making sure they work.

COMPILING AND TESTING DATASNAP SERVERS

We can now compile each of the three servers and check that they work. Given they have
different interfaces, these operation will also be different. The classic DataSnap server (the
project generated by the first wizard) has three different interfaces, sockets, HTTP, and REST.

Once we compile it, we can test the sockets and HTTP interfaces from the IDE, using the Data
Explorer or using one of the DataSnap client wizards to generate a client application. For now,
[will stick to basic testing in the Data Explorer. First, you have to compile and run the server
(possibly without debugging so you can keep using the Delphi IDE more freely). Notice,
though, that for testing within the IDE, you need to disable the transport filters from the
TCP/IP and HTTP connections, or you’ll see internal errors.

Next, open the Data Explorer pane (on the far right in the image below), pick the only pre-
configured DataSnap connection, use the Modify local menu command, and open the
configuration dialog below:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 19

Development and Deployment of Delphi Multi-tier Applications

& Modify Connection: DataSnapCONNECTION (DataSnap) n < || &4 Data Explorer Y
slelelDls
=} @0 dbExpress
o @ asa
Protoool: http v Port: 8080 5 @ AsE
= @ Datasnap
L HEsiEE =} 39 DataSnapCONNECTION
localhost +- g ServerMethods
@ ps2
@ Firebird
@ 1BToGo
@ Informix
@ InterBase
@ mssqL
@ mysqQL
@ odbe
@ orade
@ sqlite

Server Address

URLPath:

SQL Accelerator

Connedtion: v

(O O O O O

Authentication

Filter...
User Name:

. aDatasn... | % Model ... |FData ...
#H)[Tool Palette &
& v ||R]|Q search

-l Standard ’
& TMainMenu
d; TPopupMenu

Advanced &1 TActionList
: + Additional
Test Connection OK Cancel + Win32

| + System

-

Password: Hide Password

With the test connection button, you can actually try to connect to the running server, and it
should succeed. You can replace the http protocol with tcp/ip and switch to port 211 (if you
have not changed the defaults) to test a socket connection instead.

If you now double-click on the node below the connection, ServerMethods, you should see a
rather long list of administrative and metadata methods exposed by default by the DataSnap
server, this is followed by the two test methods generated by the wizard, EchoString and
ReverseString:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 20

Development and Deployment of Delphi Multi-tier Applications

7+ Data Explorer [(&
¢le) D]
#- g DSAdmin.UnregisterClientCallback A
7] DSAdmin.BroadcastToChannel

7] DSAdmin.BroadcastObjectToChannel

U DSAdmin.NotifyCallback

g DSAdmin.NotifyObject

il DSMetadata.GetProcedures

—_]] DSMetadata.GetProcedureParameters

Ul DsMetadata.GetDatabase

—_]] DSMetadata.GetDSServerName

—_]] DSMetadata. ConsumeClientChannel

—_]] DSMetadata. ConsumeClientChannelTimeout

—_]] DSMetadata. ConnectClientChannel

7] DSMetadata. ConnectClientChannelTimeout

7] DSMetadata. CloseClientChannel

7] DSMetadata.RegisterClientCallback

7] DSMetadata.RegisterClientCallbackServer

7] DSMetadata.UnregisterClientCallback

7] DSMetadata.BroadcastToChannel

7] DSMetadata.BroadcastObjectToChannel

il DsMetadata.NotifyCallback

il DsMetadata.NotifyObject

7] TServerMethods 1.EchoString

7] TServerMethods 1.ReverseString

=--5--5----8----E--E--E--E--E - E)]

& @ DB2
& @ Firebird
& @ 1BToGo

S

Testing the REST interface is much easier, as we can use a standard client capable of making
HTTP request... your web browser! Just open any browser and type it a URL like:

Tocalhost:8080/datasnap/rest/TServerMethodsl/EchoString/hel10%20worl1d
This URL is made of the application address and port (localhost:8080), the REST path
(/datasnap/rest) the name of the class (TServerMethods1), the name of the method you want
to execute (for example, EchoString), and the (optional) parameters of the method. In the URL
the %20 is just a replacement for a space, but you can actually type a space in your browser.
The result is a JSON response like I've captured here in Chrome:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 21

Development and Deployment of Delphi Multi-tier Applications

) localhost:8080/data: x

€« C' [} localhost:8080/datasnap/rest/TSe
' (J Config [Jxe2 (JWebDev [Jblog (CJ Delphi
| {"result":["hello world"]}

The JSON data returned by the server is an object with a “result” field containing an array of
values, including the function result and any parameter passed by reference (it is an array
because you can return multiple values). In the specific case, there is only one result, the same
string passed as parameter.

As you can imagine, when you compile and build the projects generated by the second wizard
you can use a DataSnap HTTP custom Delphi connection or a browser. The WebBroker server
also has a standard HTTP response in case you use a URL not starting with /datasnap, but this
is a rather dull fixed string I will not even bother showing here.

The situation with the DataSnap REST server is very different, though. Using an URL like the
one above you still receive a plain JSON response, but if you ask for the root document you
will see a full blown (even if extremely simple) HTML web application:

) localhost:8080/data: x / |_ DataSnap REST Proje x
C' [9 localhost:8080
(J Config (O xe2 (J WebDev (1 blog (3 Delphi (J

Server Functions

DataSnap REST Project

Page loaded at 16:25:38
CBA ReverseString

Given the structure of this application has already been the subject of many sessions and
white papers (including those I wrote in the past) [am not going to focus on the various

extensions and configuration option, or on how to turn this bare-bone application into a

complete and useful project. Rather, [want to focus on deployment.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 22

Development and Deployment of Delphi Multi-tier Applications

DEPLOYING STAND ALONE SERVICES

Stand-alone services are clearly the simplest to deploy. All you need is the Delphi compiled
executable file, and optionally some of the extra JavaScript, HTML, or Zip files (for the mobile
connectors). You can deploy on an internal company web service for internal consumption, a
model particularly suited for socket based connections. You can deploy on internal or hosted
servers for public consumption, particularly if you are using HTTP or REST.

To avoid the need of a restart of the DataSnap server application in case you need to reboot
the physical server, you might prefer using a service rather than a console or Windows/VCL
application.

A side issue to determine the best deployment scenario is to consider where the database
server is located, in case you need one (that is going to be true in most case I'd guess). If the
database server is internal, an internal hosting might be preferred, given you will not have to
worry about security on the connection between the DataSnap server and the database
server. You will have to worry about connections between the DataSnap server and the client,
but this is an issue you have anyway and you can tackle with either HTTPS or a DataSnap
connection encryption filter.

On the other hand, if you prefer hosting the database center in a web farm, using the same
physical location for the DataSnap service will generally be a good idea. DataSnap can
optimize the network traffic over a direct client/server connection to a remote database
server, and also improve the security compared to a database directly exposed to the outside
world.

INTEGRATING WITH WEB SERVERS: LIBRARIES

If you pick the WebBroker model and a HTTP or REST server (not for a socket based one), you
can integrate your Delphi application in a web server like Microsoft’s IIS. In such a case the
DataSnap server is compiled into an ISAPI library, installed and loaded in IIS.

Certainly integrating an application with a web server poses some extra challenges. You often

have to learn how to configure the web server, integrate the two, determine which files should
better be served statically by the web server and which ones should be returned by the Delphi
compiled module.

This model has certainly a few advantages in terms of robustness and security, makes your
application rely on the threading model of the web server (often quite optimized) rather than
using the threading of the IdHTTPServer or of a similar component. Also, using a web server
you can demand of it features like encryption (HTTPS), compression, errors management, and
many others.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 23

Development and Deployment of Delphi Multi-tier Applications

One of the issues in this model, however, is that given Delphi libraries are compiled, to replace
them you might have to end up stopping the web server itself, replace the library, start it up
again. In case the physical server hosts many services, this might be really less optimal
(although it is now possible in some circumstances to replace a library without stopping the
entire service). In the past it was also the case that an error in the library would block the web
server, but this does not happen any more due to some constraints in the execution
environment for the libraries.

[keep using the plural (web services) for two reasons. First, there are other ISAPI compatible
web servers. Second, Delphi has for long time had official support for building Apache
modules, the kind of DLLs you load into the Apache web server. This feature was supported
for some time by the WebBroker framework, but has now been dropped from Delphi.

USING A PROXY CONFIGURATION

It is slightly less known that there is another way to let a web server forward a request to a
custom application. You build the custom application as a stand-alone secondary web server
listening one some odd port, and configure the primary web server (like IIS or Apache) to
forward it any request for a given virtual domain, or a given path (or set of paths) of a given
virtual hosts, or even use some complex regular expressions to determine which URLs should
be mapped to real files and which should be forwarded to a secondary web server or HTTP
server applications.

As an example, one of my primary web applications build with the DataSnap REST
architecture is running in a web farm on a secondary port and has a corresponding virtual
hosts configured in Apache as a proxy:

<VirtualHost *:80>
ServerName mysite.mydomain.it

ProxyRequests Off
<Proxy *>
order deny,allow
Allow from all
</Proxy>

ProxyPass / http://localhost:8888/
ProxyPassReverse / http://localhost:8888/

ProxyPreserveHost On
</VirtualHost>

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 24

Development and Deployment of Delphi Multi-tier Applications

This is clearly a minimal configuration, applied to an entire virtual host. Incoming requests on
port 80 (the standard HTTP protocol port) are redirected to port 8888 of the same computer,
hiding this fact to the outside.

You can learn more about Apache proxy configuration (a very complex topic indeed and an
extremely long documentation page) at:

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

As you can see there, Apache not only offers basic configuration but also failover and load
balancing, a topic I'll get back to later on. I only have experience with Apache proxy
configuration, but I have been told that proxy support can also be added to IIS.

Why would you want to use a proxy rather than direct web server integration or a stand-alone
scenario? Having a web server facing the customers provides advantages in terms of security,
activity logging, speed in returning cached files, support for encryption and compression,
errors management, and more. They are basically the same reasons for integrating with a web
server.

In this scenario, however, you also gain more flexibility. For example, the web server and the
DataSnap service can be stopped and restarted independently. The web server will keep
responding to request on all other virtual hosts or virtual folders, in case you restart or
replace the DataSnap server. And the DataSnap server can stay in memory (with active user
session) in case you need to restart the web server.

Also, the web server and the DataSnap server don’t need to be installed on the same physical
server: Given the two connect over HTTP, they could be on different machines (even with
different operating systems) or different virtual machines. For some time I had a Linux host,
with Apache installed in it, acting also as a VMware server and hosting a Windows virtual
machine, on which I was running a DataSnap server compiled with Delphi. In different
scenarios, having two different physical servers can help scale your applications. You can also
have a secondary “failover” machine (the third of the pool) waiting idle and acting as a backup
in case the first proxy target doesn’t respond.

As you might have understood from my words, I like deploying real world servers using the
proxy configuration provided by Apache. To me, this offers a great deal of flexibility, power,
and control with a minimal configuration.

MOVING THE DATASNAP SERVER TO THE CLOUD

Rather than hosting the DataSnap server applications or services on a custom physical server
in a web farm, you can also host them in a virtual machines living on a cloud. From a technical

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 25

Development and Deployment of Delphi Multi-tier Applications

point of view, using a hosted solution or one in the cloud makes little practical difference. You
still need a Windows machine, need to move an executable there, run it, and configure it.

There is a very important difference though, besides costs structures, speed, availability and
all the related considerations shared by other cloud computing scenarios, and this different is
the location of your data. Using a virtual machine in the cloud, in fact, you could host the
database and file servers on the same machine, but also have dedicated database instance and
use a file storage service. This is where a cloud solution becomes unique. In the coming
sections, I will introduce some of the cloud-based storage options you have in a Delphi
application in general, including a DataSnap server. Later on, [will try putting it all together.

DATABASES IN THE CLOUD

The term “Cloud Computing” in general implies using some computing services (storage, CPU
time, or even complete virtual machines) offered by a web farm along with Internet
connectivity. In the early days, having set up a large Web farm, Amazon started selling some
extra storage and bandwidth as a side activity, but this is now turning into a big business for
Amazon, Microsoft, Google, and most other major Internet players.

As an example, rather than saving a file on your own web server machine, you can host it on a
cloud server, which can make the file available to thousands of concurrent users thanks to
higher bandwidth and more balanced servers than you can possibly achieve with a single
machine or small web farm. Notice that even if the budget is very limited, having your own
servers will generally be cheaper... unless you have a usage peak, in which case you would
have to invest a lot of money in infrastructure up front. The nice element of cloud computing
is you can use it on-demand and it easily scales.

For the sake of our discussion, it is enough to point out to some strengths and weaknesses of
the model. Strengths of cloud-based databases include:
« Very easy and fast to set up, including license management if required

« Very scalable, given the “infinite” space and bandwidth offered, easy and very fast to
adapt to changing needs

+ Fixed and relatively simple cost structure

This is a very good approach (and in most cases the only one) when you want to deploy
middle-tier servers (like DataSnap servers) on cloud computers, like Amazon's EC2. If the
same web farm hosts both your database and your server application instances, the speed
between them will likely be similar to a very fast internal network.

Some of the disadvantages of this approach include:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 26

Development and Deployment of Delphi Multi-tier Applications

* Costs often much higher than native hosting, if requirements are stable over time (that
is, if you are not envisioning usage peaks)

* Slow compared to an internal solution, if the users are from inside the company

Now there are basically two sides in terms of database offerings in the cloud, as you can use
either relational databases or NOSQL databases.

RELATIONAL DATABASES IN THE CLOUD

Amazon Web Services (AWS) and Microsoft's Azure both offer relational databases in the
cloud. There are certainly many other vendors with similar opportunities, but these two
clearly stand out. These databases are available from these two companies:

* MySQL, hosted on Amazon Web Services - it was the first of these offers and dates
back a few years and it is one of the cheapest solutions.

* Oracle Database, hosted on Amazon Web Services and clearly a bit more expensive
that the MySQL offer.

* SQL Server, not surprisingly the only database hosted on Microsoft’s Azure.

Now the easy element for Delphi developers (and other developers in general) is that you
connect to these databases in the same way you do for client/server ones. You need a data
access component (for example dbExpress), the client library, and a specific connection string
referring to the proper domain or IP address. I've personally tested connections to SQL Server
on Azure and MySQL on AWS with success.

As an example, these are the parameters of a TSQLConnection I used to access to an SQL Azure
database with a connection like:

object MyAzure: TSQLConnection

ConnectionName = 'MyAzure’
DriverName = 'MSSQL'
GetDriverFunc = 'getSQLDrivermMSSQL'

Params.Strings = (
'drivername=mMSSQL '
'"HostName=x41fer9cqgm.database.windows.net'
'Database=firstsample’
'User_Name=...'
'Password=...")
end

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 27

Development and Deployment of Delphi Multi-tier Applications

USING SPECIFIC CLOUD SERVICES FROM DELPHI

Delphi has a specific library for cloud services. This portion of the Delphi library has two
visual components for holding connection information (like the account name or ID and a
password):

* TAmazonConnectioninfo is for Amazon’s AWS services
* TAzureConnectionlnfo is for Microsoft’s Azure services

The actual cloud service classes take these connection components as constructor parameters.
The Data.Cloud.AmazonAPI unit defines the following classes:

* TAmazonStorageService is a mapper for Amazon's S3, Simple Storage Service

* TAmazonTableService is a mapper for Amazon's SimpleDB API (a NoSQL database)

* TAmazonQueueService is a class for using Amazon's Queue Service
In parallel, Azure support is now in the unit Data.Cloud.AzureAPI (while the Delphi XE Azure

units still exists mostly for backwards compatibility):

* TAzureTableService is used to access Azure's Table service (a NOSQL database similar
to SimpleDB, not to be confused with Azure SQL Server service, which offers
Microsoft's relational database in a cloud configuration)

* TAzureQueueService is a class interfacing the Queue service
* TAzureBlobService is the service for binary or file storage, like S3.

Here is a summary of the names of the services for the two offerings supported by Delphi XE3:

< - . !
£J Windows Azure amazon
Storage Azure Blobs Service Amazon S3

Table Azure Table Service SimpleDB

Queue Azure Queue Service Amazon SQS

While the various services share a base abstract class, called TCloudService and defined in the
unit Data.Cloud.CloudAPI), this is more of an infrastructure class, as there are too many
differences among the services themselves to have a single base class with the same virtual
methods for, say, listing, getting, and uploading files.

This is the class hierarchy for Cloud Services in Delphi:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 28

Development and Deployment of Delphi Multi-tier Applications

TCloudService
TAmazonService
TAmazonStorageService
TAmazonBasicService
TAmazonTableService
TAmazonQueueService
TAzureService
TAzureTableService
TAzureQueueService
TAzureBlobService

NOSQL DATABASES IN THE CLOUD

As we have seen Delphi includes some components for Azure and AWS. Using these ready to
use classes you can easily populate tables and retrieve data. Or you can read and write BLOBS,
which often host images but can also be used to store data in JSON, XML, or any other custom
format. Even the CDS format, if you like.

In the following snippets I'll focus only on using the two Column-based NOSQL databases, that
it Tables (Azure) and Simple DB (AWS). For example, you can get all of the entries in an Azure
table by calling:

var
rowsList: TList<TCloudTableRow>;
aRow: TCloudTableRow;
begin
rowsList := TableService.QueryEntities(tablename);
for aRow in rowsList do

You can also query for one specific row and access some of the columns (or fields) of that row
with calls like:

var
aRow: TCloudTableRow;

begin
aRow := TableService.QueryEntity(tablename, rowkKey, partitionkey);
meDescription.Text := aRow.GetColumn('description').value;

The Rowkey and PartitionKey is two values uniquely identifying each row. You can also pass a
FilterExpression parameter to filter rows with specific values. Filtering is even easier when
you use AWS tables, as there is a SelectRowsXML function that basically accepts SQL-like

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 29

Development and Deployment of Delphi Multi-tier Applications

statements, as “select * from <tablename>", and accepts WHERE, LIKE, ORDER BY, and LIMIT
clauses.

PART III:
MAKING SERVICES SCALABLE AND ROBUST

If you have followed me up to this point, you now know that DataSnap servers come with
different internal architectures, different connection models, and different deployment
options. While for an internal server using sockets and keeping an active TCP/IP connection
between each client and the server makes individual operations fast, this is far from optimal
in case of unstable connections or in case the number of clients grows.

The HTTP stateless model requires you to set a connection for each request, and serve it using
a specific thread, and this certainly takes time. The advantage, though, is that while a client is
not making a request, it doesn’t need to be connected and this lets the server handle a larger
number of requests. The total number of connections is the total number of concurrent
requests, not the total number of clients. At the same time, using server-side sessions, a
DataSnap server can manage specific data for each user, handle authentication and
authorization, and track the application status, all with a rather lightweight model. In other
words, only the HTTP-based and even more the REST-based DataSnap servers should be more
scalable and flexible than the socket-based ones, particularly for Internet development.

TUNING THE DATASNAP REST SERVER

If you use the wizard to create a DataSnap REST server, you might expect to get a project with
the best possible configuration. This is not the case, however. What the wizard generates is a
rather standard code, not particularly optimized. To make things worse, if you try to test the
server by making as many calls as you can, you end up causing unwanted side effects, like
generating a new session for each request.

[have written a standard server and a simple testing client to show this scenario... and see
what we can do to improve the speed and the throughput of a DataSnap server. The initial
server project is what you get out of the DataSnap REST Application wizard, with the
DSServer component on its own data module to avoid creating it over and over. The project
used for testing is a simple VCL application with a testing loop like the following (placed in a
thread to avoid blocking the client user interface and listed here with some omissions):

procedure TextThread.Execute;

var
sw: TStopwatch;
I: Integer;

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 30

Development and Deployment of Delphi Multi-tier Applications

strurl: string;
IdHTTPl: TIDHTTP;

begin
IdHTTP1l := TIDHTTP.Create(nil);
try try
strurl := 'http://127.0.0.1:8080/datasnap/rest/' +

'TServerMethodsl/ReverseString/Hello';
sw := TStopwatch.StartNew;

for I := 1 to nIteractions do
begin
IdHTTPl.Get(strurl);
end;
sw.Stop;

except on E: Exception do
Form7 .Memol.Lines.Add (IntToStr (Threadid) +

': Exception ' + E.Message);
end;
finally
idhttpl.Free;
end;
Form7 .Memol.Lines.Add (IntToStr (Threadid) + ':' +

FloatToStr (nIteractions * 1000 / sw.ElapsedMilliseconds));
end;

The output of the program shows the number of requests per second that the server could
handle, and of course the numbers change a lot depending on the server and client hardware,
the bandwidth between the two, and other considerations. In my specific case, | am using a
single computer running both server and client, which is not an optimal configuration, but it is
certainly easy to reproduce over time. If I run this code against a plain server my DataSnap
server runs about 500 requests a second (495 on average).

There are two side effects a developer could notice. First, the server creates and destroys a
large number of threads (basically one for each request). Second, the server seems to use
more and more memory, although there is no memory leak reported.

Regarding threading, creating one for each incoming request is Indy’s IlHTTPServer default
configuration, but you can tune it adding code to the server main form, which creates and
manages the Web server component. The OnCreate event handler of this form initializes the
HTTP server, with the code:

procedure TForml.FormCreate(Sender: TObject);

begin
FServer := TIdHTTPwebBrokerBridge.Create(Self);

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 31

Development and Deployment of Delphi Multi-tier Applications

end;

Now we can change the configuration to use a thread pool, pre-allocating a number of threads
for the incoming concurrent requests:

procedure TForml.FormCreate(Sender: TObject);

var
SchedulerofThreadPool: TIdSchedulerofThreadPool;

begin
FServer := TIdHTTPwebBrokerBridge.Create(Self);
SchedulerofThreadpPool := TIdSchedulerofThreadPool.Create(FServer);
SchedulerofThreadPool.Pool1Size := 50;
FServer.Scheduler := SchedulerofThreadpPool;
FServer.MaxConnections := 50;

end;

As you can see in the last line above you can also put a limit to the concurrent connection
(MaxConnections): After reaching this limit the server will stop responding and simply return
an error. This value should probably be quite high, but it is relevant, as it will prevent the
server from shutting down in case of an attack or simply an excessive workload. It is often
better to return a clear error message (“too many connections”) than simply fail to respond
under the load.

While with this code we reduce the load on the server in terms of thread creation, the speed
increase under my testing scenario (single computer) is negligible. On a heavier load and with
many connections, things will vary.

The second issue is the apparent memory consumption. This is just the effect of the sessions
begin created on the DataSnap server and being kept in memory for 20 minutes. While you
can change the session timeout, this won’t have a direct effect. The issue here is that the
testing code making consecutive calls should do so within a single session. A technical solution
is to simulate what Delphi’s REST connections do: use extra headers to convey session
information.

What I have added to my testing code is a first call to create and return the session
information, which is then copied to HTTP extra headers. Here are the lines [added before the
calling loop:

IdHTTPl.Get(strurl);
strSession := Copy(

Idhttpl.Response.RawHeaders.values ['Pragma'], 1, 30);
IdHTTPl.Request.CustomHeaders.Clear;

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 32

Development and Deployment of Delphi Multi-tier Applications

IdHTTP1l.Request.CustomHeaders.Addvalue('Pragma', strSession);

If you want to make sure this code is effective you can look at the server memory
consumption, but also do a direct test adding this code to the server application:

ShowMessage (IntToStr(TDSSessionManager.Instance.GetSessionCount));

This second change keeps memory consumption under control in the testing scenario, but
again does not really affect the throughput. Thread pooling and sessions management can
certainly affect performance in real world situations, but DataSnap in itself has quite an
overhead. In other words, DataSnap offers a rather sophisticated call processing layer,
matching methods and parameters, performing conversions to and from JSON, and more. This
layer has some runtime overhead, of course.

A way to measure it is to add a plain response to the WebBroker server, defining a new
custom action. My new action is configured as follows:

item

Name = 'WebActionIteml'

PathInfo = '/direct'

OnAction webModulelwebActionItemlAction
End

The code of this action could be very simple like:

procedure TwebModulel.webModulelwebActionItemlAction(Sender: TObject;
Request: TwebRequest; Response: TwWebResponse; var Handled: Boolean);
begin
Response.Content := '{"result": "hello world"}"';
end;

You can execute this code from the client using (in my configuration) an URL like:

http://127.0.0.1:8080/direct

By repeating this direct WebBroker call rather than a DataSnap call my throughput grows
from around 500 requests a second to 50% more, to values around 750 requests a second.
This is a measure of the execution overhead of a DataSnap request compared to a WebBroker
one. If this sounds like a lot of extra time, consider that these are basically do-nothing
operations. In case the DataSnap server has to make a database call and do some real data
processing, the call overhead will become a fraction of the actual execution time.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 33

Development and Deployment of Delphi Multi-tier Applications

PROXIES, FAIL OVER, LOAD BALANCING, AND SESSIONS

Now, suppose you want your DataSnap server to really scale and survive system crashes. A
classic way to achieve this (on your own hardware or on a cloud service) is to have multiple
physical or virtual servers with the same configuration and running services. If you use a
specific proxy service (or Apache or IIS, as mentioned earlier) you can redirect the traffic to a
single computer. In case this computer doesn’t respond the traffic gets redirected to a new
one. This is a scenario that a Delphi DataSnap server can handle.

What is even nicer, though, is the ability to use a proxy (or some network configuration
engine) to send part of the requests to a server and some other requests to a second running
server. In the most naive scenario, 50% of the requests goes to each, but more sophisticated
tools (again, Apache proxy can do this) will distribute the requests depending on the average
response time, balancing the effective load among two or more servers.

The question now becomes if we can use a DataSnap REST server in such a scenario. Given
that the architecture is completely stateless and you can have your database server on
separate hardware (or on a virtual cloud database), can you let requests follow different paths
and reach different DataSnap servers? Unluckily this would only work for the simplest
applications, because DataSnap servers keep session information in memory (including login
status, permission, and so on). If your application requires no real login and session data, you
could be able to deploy your servers following this path. This might be true for a “pure
service” for which you handle permissions in a custom way (for example using extra HTTP
headers for each request).

However, if you need even minimal session and login management, moving session
information out of memory and into a shared database (or a shared service) is not exactly a
trivial operation to do in a DataSnap server. This might be an interesting feature to add in the
future.

PARTIV:

ACCESSING APPLICATION SERVICES
FROM DIFFERENT TYPES OF CLIENTS

Now that [have covered deployment and discussed some configurations that can help scale
your DataSnap server application, in the final part of this document [want to provide a short
overview of different types of clients that you can build for a DataSnap server application.
Again, my primary focus is on pure REST services, given their increased flexibility and
scalability.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 34

Development and Deployment of Delphi Multi-tier Applications

CALLING THE REST SERVER FROM A DELPHI CLIENT

Earlier in this paper I built a server and have shown how to use the Database Explorer or a
web browser to reach it. Now we can see how to write a Delphi client application for this
server. We can use two different approaches.

The first approach is to write a Delphi DataSnap client, using the specific REST client support.
The second approach is to create a custom REST client and use the IJHTTP component to call
the server and the DBXJSON support unit to parse the result. Here I will use both techniques,
starting with the “manual” one and later getting to the automatic support, which should be
generally preferred.

First, I have created a standard client VCL application and added to its main form a button, an
edit box, and an IdHTTP client component. In the button’s OnClick event handler I have
written the following code:

const
strServerurl = 'http://localhost:8080";
strMethodurl = '/datasnap/rest/TServermethodsl/ReverseString/"';

procedure TRestClientForm.btnManualClick(Sender: TObject);
var
strParam: string;
begin
strParam := edInput.Text;
ShowMessage (IdHTTPl.Get(strServerurl + strMethodurl + strParam));
end;

This call builds a proper URL by concatenating the server address, the relative path to reach
the given method within the REST server, and the only parameter. The final code of the demo
does the full parsing of the resulting JSON string, copying the result back to the edit box, so if
you enter the text “Hello World”, the call results in the following output:

o) RestXeOneClient - o IEl

wema | drowolen

Proxy

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 35

Development and Deployment of Delphi Multi-tier Applications

USING THE REST CLIENT SUPPORT

To make it much easier to write the client code, and still rely on the plain REST interface (and
not the DataSnap HTTP support), we can use the DataSnap REST Client Module Wizard. Before
you run this Wizard, make sure the server application is running and it not being executed in
the Delphi debugger. You can obtain this using the Run without Debugging command of the
Delphi IDE.

As you run the wizard, in the first page it will ask you if the server is local or remote (and you
would probably choose local) and in the second page which kind of architecture DataSnap the
server is based on:

() DataSnap REST Client Module ﬂ

DataSnap server project type
Specify the type of DataSnap server for this connection

WebBroker stand-alone applications support HTTP, using an Indy HTTP Server component.
‘7‘ DataSnap stand alone server

(®) WebBroker stand alone server
(_)11S module

() Do not know

20f3 << Back Finish Cancel Help

For this example, you should choose “WebBroker stand alone server” as I have done above. In
the third page the wizard will ask you the server port, the DataSnap context (by default
“/datasnap”), and optional account information. As you press Finish, the wizard will add two
different units to your project:

* Aclient module unit with a data module hosting the DSRestConnection component,
with the REST connection configuration.

* A unit with the proxy classes for calling the server, different from the client classes
generated for a traditional DataSnap connection in that they use the DSRestConnection
rather than the DBXConnection for invoking the server.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 36

Development and Deployment of Delphi Multi-tier Applications

Notice that you do not need to manually create the proxy object, because this is done
automatically by the client module as you access a specific property added by the wizard to
refer to the proxy itself:

function TClientModulel.
GetServerMethodslClient: TServerMethodslClient;
begin
if FServerMethodslClient = nil then
FServerMethodslClient:= TServerMethodslClient.Create(
DSRestConnectionl, FInstanceOwner);
Result := FServerMethodslClient;
end;

This means we can invoke the server simply by referring to the client module’s property and
invoking the method itself. Needless to say this version of the code is much simpler than the
direct call with manual JSON parsing that [wrote earlier:

procedure TRestClientForm.btnProxyClick(Sender: TObject);
begin
edInput.Text := ClientModulel.ServerMethodslClient.
ReverseString(edInput.Text);
end;

The two techniques produce exactly the same result. The key concept to keep in mind here is
that as you develop a Delphi DataSnap REST Server, you are building a web application,

enabling a Delphi client to call it, and also making it possible to call the server with any other
client, written in any language, as long as it can make an HTTP call and parse the JSON result.

THE HTML AND JAVASCRIPT SAMPLE CLIENT

As I have already shown earlier, when you create a DataSnap REST Application you end up
with a server, but also with a HTML and JavaScript sample client, powered by the same server
(using its WebBroker features).

The HTML of the sample page (if we ignore the extra code used to manage login and described
later) is quite simple:

<h1l>DataSnap REST Project</hl>
<div id="contentdiv" class="contentdiv">
<table>

<tr>
<td>

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 37

Development and Deployment of Delphi Multi-tier Applications

<input id="valueField" type="text" value="A B C" />
</td>
<td>
<button onclick='javascript:onReversesStringClick();'>
ReverseString</button>
</td>
</tr>
</table>
</div>

As you can imagine by reading the HTML code above, a key role is played by the call to the
onReverseStringClick JavaScript function, which has the following code (part of the same
HTML file):

function onReverseStringClick()

{

var valueField = document.getElementById('valueField");
var s = serverMethods().ReverseString(valueField.value);
valueField.value = s.result;

}

This function stores a reference to the input field, passes the value of this input field to the
ReverseString method call, and updates the field value with the result. The serverMehods
function returns an instance of the JavaScript proxy object defined in the ServerFunctin.js
source code file (the file that gets updated by the DSProxiGenerator component every time
you recompile and re-execute the server). The proxy object makes the Delphi server methods
easily available to the JavaScript browser-based application.

THE JQUERY MOBILE CLIENT

Given a DataSnap REST server, you can use JavaScript to build a mobile client application,
rather than a standard browser based on. The difference between the two models is in the
form factor, but also in the user interface controls, which in a mobile client tend to mimic
those of the mobile platform (generally i0S).

[have built some simple mobile clients using jQuery Mobile (http://jquerymobile.com), an
extension to the code jQuery JavaScript library [will introduce more details on the session
covering jQuery. Here I will just summarize a couple of key elements of an example. My
application has a single HTML file but it is made of three separate pages, alternatively shown
(here I will cover only the first page, though). The page links with special CSS styles to create
buttons and to turn HTML lists into controls like those on your phone and to make them
touch-friendly.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 38

Development and Deployment of Delphi Multi-tier Applications

For example the top part of the main page is defined with some rather plain HTML:

<div data-role="page" id="main_page">
<div data-role="header">
<hl>DataSnap REST Demo</hl>
</div><!-- /header -->

<div data-role="content" id="content">
<p>DataSnap Demo Collection by Marco Cantu</p>

<input id="valueField" type="text" value="A B C" />
Reverse

<p>Go to second page... and third</p>

Employee List
</div><!-- /content -->
</div><!-- /page -->

The output of this page can be seen on a regular PC browser, provided you re-size it properly,
but it really makes sense on mobile devices:

\:, =] %X
i / © DataSnap REST Projec » _§ H
il € & C O ajaxmarcocantu.conws £ & & @ A |
]‘ (3 Base (J Config (3 xe2 » (3 Other bookmarks

DataSnap REST Demo
I

DataSnap Demo Collection by Marco Cantu ‘
CBA
Reverse
Go to second page... and third

Employee List

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 39

Development and Deployment of Delphi Multi-tier Applications

The reverse string button (which is technically not a button, but looks like one) use some
standard jQuery code:

$('#reverse') .click (function (O{
var value = $('#valueField") .val(Q);
var value = serverMethods() .ReverseString(value).result;
$('#valueField') .val(value);

B

The other two pages use the same approach for showing the list of employees (which can be
filtered on the client) and the individual employee data. Again, the HTML is pretty simple and
the JavaScript processing the page is not much different from what you will use in a standard
HTML application. Here is the output of the second page, as example (I will not list the code
here):

15554 SampleD

#i Tl & 8:54Am

Employees List

Bender Oliver H.

Lee Terri

Sales and Marketing
MacDonald Mary S.
Yanowski Michael
Pacific Rim Headquarters

Baldwin Janet

Leung Luke

Field Office: Japan
s

BUILDING AN ANDROID WEB APPLICATION

The simple the jQuery Mobile client covered earlier can be transformed into a Web Android
Application. The application only has a full screen Web browser control, and behaves exactly
like the mobile web page. However, you can activate it with the icon (I know, I have been lazy

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 40

Development and Deployment of Delphi Multi-tier Applications

and left in the default Android application icon!) and it will show at full screen, that is, without
the browser address bar and other browser elements.

In terms of code, to build such an Android application you have to use the standard Android
development tool set based on Eclipse, and write your code in Java. Do not worry, as the code
required for this demo is extremely simple.

The application has a form made of a WebView control, like the following:

<?xm1 version="1.0" encoding="utf-8"7>

<Webview xmins:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:scrollbars="none" android:id="@+id/webview"/>

As the program starts, the WebView loads the proper URL:

public class mcjgmobile extends Activity {
@override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Remove title bar as we already have it in the web app
this.requestwindowFeature(window.FEATURE_NO_TITLE);
//Point to the content view defined in XML
setContentview(R.layout.main);
//Configure the webview setup in the xml Tlayout
webVview mywebview = (Webview) findviewById(R.id.webview);
webSettings webSettings = mywebview.getSettings();
//yes, we want javascript, pls.
webSettings.setJavaScriptEnabled(true);
//Make sure 1inks in the webview is handled by the webview
// and not sent to a full browser
myWebView.setwebviewClient(new webviewClient());
//And Tlet the fun begin
mywebview.loadurl("http://ajax.marcocantu.com/mobiledsnap/") ;
3
h
That is all the code for the application. Compile it and make the APK file available as a
download or publish in in an Android market, you are ready to go. Here are is the first page,
similar (but not identical) to the browser-based version shown earlier:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 41

Development and Deployment of Delphi Multi-tier Applications

=l 8 12:29

DataSnap REST ...

DataSnap Demo Collection by Marco
Cantu

CBA
Reverse
Go to second page... and third

Employee List

DATASNAP MOBILE CONNECTORS (FOR ANDROID)

If your goal is to build a mobile application, using the native tools, there is another approach
you can follow. DataSnap REST Applications (but also other DataSnap servers) have the ability
to generate proxy interfaces in languages other than Delphi, C++, or JavaScript. This
technology is called “mobile connectors” and helps on two different counts:

* [t generates a proxy file with a class in the given language (C#, Java, or ObjectiveC)
mapped to the REST methods exposed by your server.

* It offers extensive support for managing server connections, parsing JSON, mapping
data types, and handling callbacks. In other words, you have a set of basic classes in
each of these languages for helping you build REST clients and call into the Delphi
DataSnap REST server.

As I mentioned, there are several platforms supported, mostly the mobile platforms, here
listed after the token used to refer to them:

* java_android: Android 2.1

* java_blackberry: BlackBerry SDK 5 and 6

* csharp_silverlight: Windows Phone 7

* objective_ios42:i0S 4.2 (but there is also support for i0S 5.0)

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 42

Development and Deployment of Delphi Multi-tier Applications

The additional option introduced in Delphi XE2 Update 4 was:

* freepascal_ios50: FireMonkey clients compiled in FreePascal using XCode for the
latest version of iOS (but there is also support for i0S 4.2)
The support is provided by the TDSProxyGenerator generator component. You can retrieve a
ZIP file with the soruce code by connecting to the application URL using the path:
http://<site>/proxy/<token>.zip

As an alternative, there is a command-line utility, called Win32ProxyDownloader. Again, you
can to run it against a compiled application, for example typing:

win32ProxybDownloader -language java_android -host localhost:8080

If you use Eclipse for Android development, there is even a plug-in of the IDE that lets you
retrieve the proper source code files and update them right into the Eclipse IDE. You can see
the configuration of this plug-in in the Eclipse Preferences:

Preferences . . (50 S
type filter text DataSnap Mobile Proxy PY v
|
Genera Preference page for DataSnap Mobile Connector server settings
Android
Ant Host marco-precision
DataSnap Mobile Proxy Port 8080
Hel .
°p Use HTTPS
Install/Update
Java URL Path /proxy/ Il
Plug-in Development V| Always prompt for host:port
Run/Debug
Team
XML
lRestDre Defaults] l Apply]

To invoke it, select the project menu and use the corresponding command:

Compare With 4 - P —7 Tz
Restore from Local History...

DataSnap Mobile Proxy > Generate Proxy
Android Tools > e

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 43

Development and Deployment of Delphi Multi-tier Applications

AN ANDROID JAVA SAMPLE APPLICATION

Equipped with his information, I have proceeded building a very simple native Android client
for the Delphi DataSnap Rest server in Eclipse. First of all, | have downloaded the proxy
interfaces and helper classes. The ZIP file you receive has the three nested folders
com\embarcadero\javaandroid (given that folders structures match name spaces in Java)
with 56 support files for the various data types involved, plus the a DSProxy.java source code
file, including the Java proxy class declaration (from which I have omitted the private
declarations for the commands metadata):

package com.embarcadero.javaandroid;
import java.util.Date;

public class DSProxy {
public static class TServerMethodsl extends DSAdmin {
public TServerMethodsl(DSRESTConnection Connection) {

super (Connection);

}
/ ok

* @aram value [in] - Type on server: string
* @return result - Type on server: string
* /

public String EchoString(String value) throws DBXException {
DSRESTCommand cmd = getConnection() .CreateCommand();
cmd.setRequestType(DSHTTPRequestType.GET) ;
cmd.setText("TServermethodsl.EchoString');
cmd.prepare(get_TServerMethodsl_EchoString_Metadata());
cmd.getParameter(0).getvalue().SetAsString(value);
getConnection() .execute(cmd);
return cmd.getParameter(l).getvalue().GetAsString();

}

For the client application, I created a simple form, designed like the following:

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 44

Development and Deployment of Delphi Multi-tier Applications

3.7in WVGA (Nexus One) leortrait vHNormaI v[Daytime vlTheme.Black
= Palette 4 D@ S 8 @
> Form Widgets E @

. Large Medium B
\piDemos

m

Reverse

|_] Text Fields

] Layouts

[Composite

() Images & Media

[_] Time & Date

|_J Transitions

[_J Advanced

Custom & Library Views

DK praphical Layout| | =| mainxml

Here is the corresponding XML description of the visual controls:

<?xml version="1.0" encoding="utf-8"7>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical'">
<EditText android:Tayout_width="fill_parent"
android:Tayout_height="wrap_content"
android:id="@+id/editTextl">
<requestFocus></requestFocus>
</EditText>
<Button android:id="@+id/buttonl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/Reverse'></Button>
<EditText android:Tayout_width="fill_parent"
android:layout_height="wrap_content"
android:id="@+id/editText2"></EditText>
</LinearLayout>

As you can see, there are basically two edit boxes and a button. These are the components our
application will interact with, in the code behind this main form:

public class Reverse2Activity extends Activity {

/** called when the activity is first created. */
@override

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 45

Development and Deployment of Delphi Multi-tier Applications

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentview(R.layout.main);

Button button = (Button) findviewById(R.id.buttonl);
button.setonClickListener(new View.oOnClickListener() {
public void onClick(view v) {
EditText tedit = (EditText) findviewById(R.id.editTextl);
EditText tedit2 = (EditText) findviewById(R.id.editText2);

DSRESTConnhection connh = new DSRESTConnection();
conn.setHost("192.168.1.161");
conn.setPort(8080);
TServerMethodsl proxy
try {

tedit2.setText(

proxy.ReverseString(tedit.getText().toString()));

} catch (DBXException e) {

e.printStackTrace();

new TServerMethodsl(conn);

}
1)
}

The code installs an event handler for the button (using a closure or anonymous method). In
this method the program initializes the REST connection, connects to the proxy, and calls the
ReverseString method using the text of the first edit as input and copying the result in the
second edit box. Nothing fancy, but should give you an idea of the process involved.

ASSESSMENT: DATASNAP USAGE SCENARIOS

We have seen in the initial part of this paper that DataSnap accounts for many different types
of servers and connectivity. In this last part we have seen that even client applications can
vary significantly, from classic Delphi applications to web and mobile clients. These last two
options, though, as limited to DataSnap servers with the REST interface (whether they are
classic servers or based on WebBroker).

In other words, if your goal is an internal multi-tier architecture with Delphi or C++Builder
clients you can use sockets and HTTP and take advantage of the dual interfaces (datasets
exposed by providers, plus remote methods invocation). If your goal is to deploy an open and
scalable architecture, independent from the client side technologies, you should probably
stick with REST and the methods invocation only.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 46

Development and Deployment of Delphi Multi-tier Applications

DataSnap offers a solid and open foundation, which Embarcadero plans expanding in the
future. In fact, given that Delphi is becoming a multi-platform and multi-device development
environment, with direct support for mobile clients, the need for a flexible server-side data
access solution is going to grow.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 47

Development and Deployment of Delphi Multi-tier Applications

ABOUT THE AUTHOR

Marco Cantu recently joined Embarcadero Technologies as Delphi Product Manager. He was
the author of the best-selling Mastering Delphi series and in the recent years he has self-
published Handbooks on the latest versions of Delphi (from 2007 to XE).

Marco is a frequent conference speaker, author of countless articles on Delphi, and used to
teach advanced Delphi classes (including Web development with Delphi) at companies
worldwide. You can read Marco's blog at http://blog.marcocantu.com, follow him on Twitter
as @marcocantu, and contact him on marco.cantu@embarcadero.com.

ABOUT EMBARCADERO TECHNOLOGIES

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of the
Fortune 100 and an active community of more than three million users worldwide rely on
Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered in
San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

Copyright © 2012 Marco Cantu. All Rights Reserved.

Embarcadero Technologies 48

